JPH04218300A - Superconductive acceleration tube and manufacture thereof - Google Patents

Superconductive acceleration tube and manufacture thereof

Info

Publication number
JPH04218300A
JPH04218300A JP3088355A JP8835591A JPH04218300A JP H04218300 A JPH04218300 A JP H04218300A JP 3088355 A JP3088355 A JP 3088355A JP 8835591 A JP8835591 A JP 8835591A JP H04218300 A JPH04218300 A JP H04218300A
Authority
JP
Japan
Prior art keywords
welding
accelerator tube
superconducting
welded
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3088355A
Other languages
Japanese (ja)
Inventor
Misao Sakano
操 坂野
Shinichi Mukoyama
晋一 向山
Takashi Shimano
島野 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to US07/746,122 priority Critical patent/US5239157A/en
Priority to EP19910308301 priority patent/EP0483964A3/en
Priority to CN91108047A priority patent/CN1061316A/en
Priority to KR1019910018753A priority patent/KR920008810A/en
Publication of JPH04218300A publication Critical patent/JPH04218300A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/206Laser sealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/34Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • H05H7/20Cavities; Resonators with superconductive walls

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To provide a superconductive acceleration tube which can be manufactured in a short manufacturing time, with a simple jig, at a low cost, and with an easy weld work, and provide manufacturing thereof for the acceleration tube having equivalent or exceeding characteristics to those obtained by electron beam weld in manufacturing the superconductive acceleration tube. CONSTITUTION:A superconductive acceleration tube 10 is composed of a plural component parts 11, 12, 13 comprising superconductive material welded with each other at peripheral parts. The superconductive acceleration tube 10 is welded by a laser beam at each peripheral part. The component parts 11, 12, 13 having the peripheral parts to be put to each other and comprising the superconductive material are laser welded by a laser beam radiated to the peripheral parts.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、荷電粒子加速装置用の
Nb等を用いた超電導高周波加速管及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting high-frequency accelerator tube using Nb or the like for a charged particle accelerator, and a method for manufacturing the same.

【0002】0002

【従来の技術】加速器の原理は、荷電粒子の進行方向に
電場の成分を有する進行波の位相速度を、荷電粒子が常
に加速の位相にのって、加速電場の作用を受けるように
調整することにより荷電粒子の加速を行うものである。 かかる加速器のうち高周波電場を用いる加速器において
は、加速管が高周波電場を発生させる手段として利用さ
れる。
[Prior Art] The principle of an accelerator is to adjust the phase velocity of a traveling wave that has an electric field component in the traveling direction of the charged particles so that the charged particles are always in the acceleration phase and are affected by the accelerating electric field. This accelerates charged particles. Among such accelerators, in an accelerator that uses a high-frequency electric field, an accelerating tube is used as a means for generating the high-frequency electric field.

【0003】より低い電力で高い加速電界を得るために
は超電導体からなる超電導加速管が用いられ、その材料
としては、ニオブ(Nb)等が用いられている。また、
高周波電場により励起される電流は加速管の内面近傍を
流れるので、構成部品相互が接合された内面の周端部近
傍で荷電粒子の管外への飛び出しがなく、荷電粒子の流
れをスムースにする電気的特性の向上が重要となる。更
に、Nb等の超電導体は酸化により超電導特性が劣化す
るので、酸化させることなく加工しなければならない。
[0003] In order to obtain a high accelerating electric field with lower power, a superconducting accelerator tube made of a superconductor is used, and the material used is niobium (Nb) or the like. Also,
Since the current excited by the high-frequency electric field flows near the inner surface of the accelerator tube, charged particles do not jump out of the tube near the peripheral edge of the inner surface where the component parts are joined, making the flow of charged particles smooth. Improving electrical characteristics is important. Furthermore, superconductors such as Nb must be processed without being oxidized, since their superconducting properties deteriorate due to oxidation.

【0004】超電導加速管を製造する方法としては、例
えば、Nb等の超電導材料を切削またはプレス成型して
図22乃至図24に示すフランジ1、セル結合部品2、
小径部3aと大径部3bとを有する半割セル3等の構成
部品を製作し、これらを周端部で相互に突合わせ、互い
に溶接して加速管とする。ここで、図25に示したよう
にセルが1個の加速管を単セル加速管4、図26に示し
たように複数のセルを連結した加速管を多セル加速管5
と呼ぶ。
[0004] As a method for manufacturing a superconducting accelerator tube, for example, a superconducting material such as Nb is cut or press-molded to form a flange 1, a cell coupling part 2, as shown in FIGS.
Components such as a half-split cell 3 having a small diameter portion 3a and a large diameter portion 3b are manufactured, and these are abutted against each other at their peripheral ends and welded together to form an acceleration tube. Here, as shown in FIG. 25, an acceleration tube with one cell is used as a single cell acceleration tube 4, and as shown in FIG. 26, an acceleration tube with a plurality of cells connected as a multi-cell acceleration tube 5.
It is called.

【0005】かかる加速管4,5の溶接には、TIG溶
接や電子ビーム溶接等が用いられるが、電気的特性の良
い加速管を製作することができることから、現在では主
として電子ビーム溶接が用いられている。
[0005] TIG welding, electron beam welding, etc. are used to weld the acceleration tubes 4 and 5, but electron beam welding is currently mainly used because it allows the production of acceleration tubes with good electrical characteristics. ing.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、電子ビ
ーム溶接によって構成部品相互を接合する従来の加速管
の製造方法には次のような問題点があった。すなわち、
電子ビーム溶接では、真空容器内で加速管の構成部品を
接合するが、電子ビームを散乱させずに直進させること
及びNb等の超電導体の酸化防止の見地から、真空度1
0−6torr以下の高い真空度の下で溶接を行う必要
がある。
However, the conventional method of manufacturing an accelerating tube in which component parts are joined together by electron beam welding has the following problems. That is,
In electron beam welding, the components of the accelerator tube are joined together in a vacuum vessel, but from the standpoint of allowing the electron beam to travel straight without scattering and to prevent oxidation of superconductors such as Nb, the degree of vacuum is 1.
It is necessary to perform welding under a high degree of vacuum of 0-6 torr or less.

【0007】しかも、溶接時には加速管は真空容器内で
両端を治具で保持されるため、真空容器内において加速
管内の真空度を外部と同様に高真空にしなければならな
い。従って、加速管の内外における真空度が等しくなる
ようにコンダクタンスを上げる、流通孔等のガス抜き対
策を前記治具に施す必要があった。このため、前記治具
が高価になったり、真空容器の真空引きに時間が掛り、
溶接の前工程に多大の時間が掛かるうえ、真空容器や治
具等の設備が大掛かりになり超電導加速管の製造コスト
が高く、溶接作業が非常に煩雑であるという問題があっ
た。
Furthermore, during welding, the acceleration tube is held at both ends with jigs inside the vacuum container, so the degree of vacuum inside the acceleration tube must be made as high as the outside vacuum inside the vacuum container. Therefore, it was necessary to provide the jig with gas venting measures such as communication holes to increase the conductance so that the degree of vacuum inside and outside the accelerating tube is equal. For this reason, the jig becomes expensive, and it takes time to evacuate the vacuum container.
There are problems in that the pre-welding process takes a lot of time, the equipment such as vacuum vessels and jigs is large-scale, the manufacturing cost of the superconducting accelerator tube is high, and the welding work is extremely complicated.

【0008】本発明は上記の点に鑑みてなされたもので
、加速管の製造に際して、電子ビーム溶接と同等以上の
特性を有する加速管を、短い製造時間と簡単な治具によ
り安価に製造でき、しかも溶接作業が簡単な超電導加速
管及びその製造方法を提供することを目的とする。
[0008] The present invention has been made in view of the above points, and it is possible to manufacture an accelerating tube having characteristics equal to or better than electron beam welding at a low cost using a short manufacturing time and a simple jig. It is an object of the present invention to provide a superconducting accelerator tube and a method for manufacturing the same which are easy to weld.

【0009】[0009]

【課題を解決するための手段及び作用】本発明において
は上記目的を達成するため、第1の発明を、超電導材か
らなる複数の構成部品の周端部を相互に溶接してなる超
電導加速管において、前記各周端部がレーザビームによ
り溶接されている構成としたものである。また、第2の
発明を、互いに突合わされる周端部を有し、超電導材か
らなる複数の構成部品相互を、前記周端部に照射するレ
ーザビームにより相互にレーザ溶接する超電導加速管の
製造方法としたものである。
[Means and Effects for Solving the Problems] In order to achieve the above object, the present invention provides a superconducting accelerator tube formed by welding the circumferential ends of a plurality of components made of superconducting material to each other. In this case, each of the peripheral ends is welded by a laser beam. The second aspect of the present invention also relates to the production of a superconducting accelerator tube having circumferential ends that abut against each other and in which a plurality of components made of superconducting material are laser welded to each other using a laser beam irradiated to the circumferential ends. This is a method.

【0010】本発明の超電導加速管は、各周端部の内表
面のみがレーザ溶接され、溶接の深さが超電導材の厚さ
の二分の一以下である。ここで、内表面のみレーザ溶接
されているとは、周端部を加速管の内側から溶接する場
合には、製造された加速管の表面部分のみが溶融して溶
接されていることをいい、外側から溶接する場合には、
溶融部分が製造される加速管の内面まで到達し、内面の
ビードが波状になることなく滑らかに溶接されているこ
とをいう。
[0010] In the superconducting accelerator tube of the present invention, only the inner surface of each circumferential end portion is laser welded, and the welding depth is one-half or less of the thickness of the superconducting material. Here, "only the inner surface is laser welded" means that when the peripheral end is welded from the inside of the acceleration tube, only the surface portion of the manufactured acceleration tube is melted and welded. When welding from the outside,
This means that the molten part reaches the inner surface of the accelerated tube to be manufactured, and the bead on the inner surface is smoothly welded without becoming wavy.

【0011】溶接の深さが超電導材の厚さの二分の一よ
り深くなると、溶接部の収縮により製造される超電導加
速管の寸法精度が悪くなる。また、溶接の深さを 15
0μm以上としたのは、後続の研磨工程で溶接部に50
〜 100μm程度の表面研磨を施すことを考慮したも
のである。 また、治具により加速管の外側を固定するのは、製造さ
れた超電導加速管の振動等の外力による変形を防ぐため
である。
[0011] When the welding depth is deeper than one-half of the thickness of the superconducting material, the dimensional accuracy of the manufactured superconducting accelerator tube deteriorates due to shrinkage of the welded portion. Also, the depth of welding is 15
The reason why the diameter was set to 0 μm or more was that 50 μm was applied to the welded part in the subsequent polishing process.
This takes into consideration surface polishing of approximately 100 μm. Furthermore, the reason why the outside of the accelerating tube is fixed using a jig is to prevent the manufactured superconducting accelerating tube from deforming due to external forces such as vibrations.

【0012】超電導材は、厚さが0.1mmより小さく
なると、強度的に弱くなると共に、肉厚が薄過ぎて良好
なレーザ溶接ができない。一方、超電導材の厚さが1m
mを超えると、熱伝導性が下がり超電導加速管の冷却効
率が低下するので好ましくない。本発明の超電導加速管
の製造方法において、突合わされた構成部品の周端部に
レーザビームを照射して内表面をレーザ溶接すると、超
電導加速管の表面を 150〜 300μm程度の深さ
で滑らかに溶接することができ、電気的特性が良く(Q
値(Q  quality factor) が大きい
)、かつ、溶接歪みの少ない精度のよい加速管が得られ
る。
[0012] When the thickness of the superconducting material is less than 0.1 mm, the strength becomes weak and the thickness is too thin to perform good laser welding. On the other hand, the thickness of the superconducting material is 1 m.
If it exceeds m, the thermal conductivity decreases and the cooling efficiency of the superconducting accelerator tube decreases, which is not preferable. In the method for manufacturing a superconducting accelerator tube of the present invention, by irradiating the peripheral ends of the butted components with a laser beam and laser welding the inner surfaces, the surface of the superconducting accelerator tube is smoothed to a depth of about 150 to 300 μm. Can be welded and has good electrical characteristics (Q
A high-precision accelerator tube with a large value (Q quality factor) and little welding distortion can be obtained.

【0013】また、溶接作業を不活性ガスの雰囲気中で
行うと、電子ビーム溶接のように雰囲気を高真空とする
必要がなくなると共に、溶接部で発生する熱を効率よく
除去できるので、薄肉の加速管の場合には特に好ましい
方法であるが、超電導材の酸化が防止できれば単なる真
空でもよい。一方、構成部品の互いに突合わされた各周
端部の複数箇所をスポット溶接して仮付けした後、周端
部全体を溶接すると、構成部品相互を適切に位置決めす
ることができ、製造される超電導加速管の寸法精度が向
上する。
In addition, when welding work is performed in an inert gas atmosphere, there is no need to create a high vacuum atmosphere as in electron beam welding, and the heat generated in the welding area can be efficiently removed, so welding can be performed with thin walls. This method is particularly preferred in the case of an accelerator tube, but a simple vacuum may be used as long as oxidation of the superconducting material can be prevented. On the other hand, if we spot-weld multiple points on the circumferential ends of the components butted against each other to temporarily attach them, and then weld the entire circumference, the components can be properly positioned with respect to each other, and the superconducting The dimensional accuracy of the accelerator tube is improved.

【0014】更に、周端部全体の溶接に際し、溶接すべ
き領域を2以上の領域に区分し、1つの領域の溶接終了
後、次の領域の溶接を始めるまでに所定の冷却時間を置
き、溶接された構成部品全体の温度を下げると、溶接部
とその周囲の温度差によって急冷することができ、超電
導材の過度の酸化を防ぐことができる。また、過度の温
度上昇を避けると共に、急冷によって高温状態にある時
間を短くすると、溶接部のダレや溶け落ちが防止される
Furthermore, when welding the entire circumferential edge, the area to be welded is divided into two or more areas, and after welding of one area is completed, a predetermined cooling time is allowed before welding of the next area is started. Lowering the overall temperature of the welded components allows for rapid cooling due to the temperature difference between the weld and its surroundings, which prevents excessive oxidation of the superconducting material. In addition, by avoiding excessive temperature rise and shortening the time in the high temperature state by rapid cooling, sagging and burn-through of the welded portion can be prevented.

【0015】[0015]

【実施例1】以下、本発明の超電導加速管及びその製造
方法に係る第1の実施例を図1乃至図9に基づいて詳細
に説明する。超電導加速管10は、図2に示す多セル加
速管のように、Nbからなる半割セル11、連結部材1
2及びフランジ13の各構成部品を周端部で表面のみを
相互にレーザ溶接して管状に成形したものである。
[Embodiment 1] Hereinafter, a first embodiment of the superconducting accelerator tube and its manufacturing method of the present invention will be described in detail with reference to FIGS. 1 to 9. The superconducting accelerating tube 10, like the multi-cell accelerating tube shown in FIG.
2 and the flange 13 are formed into a tubular shape by laser welding only the surfaces of the peripheral end portions to each other.

【0016】半割セル11は、厚さ0.5mm、外径9
cmの周端部が開口した皿状の部材で、周端部の一端に
小径部11aが他端に大径部11bが形成されている。 連結部材12は、半割セル11,11を各小径部11a
で接続するリング状の部材で、外周両側には小径部11
aの先端を当接する段部12a,12aが形成されてい
る。
The half cell 11 has a thickness of 0.5 mm and an outer diameter of 9
It is a dish-shaped member with an open peripheral end of cm, and a small diameter part 11a is formed at one end of the peripheral end, and a large diameter part 11b is formed at the other end. The connecting member 12 connects the half cells 11, 11 to each small diameter portion 11a.
It is a ring-shaped member that connects with
Stepped portions 12a, 12a are formed which abut the tips of a.

【0017】フランジ13は、超電導加速管10の両端
部に配置される部材で、一端に半割セル11の小径部1
1aが溶接される管部13aと、管部13aの他端から
半径方向に延出するフランジ部13bとを有している。 本発明においては、超電導加速管10は以上のように構
成され、上記各構成部品11〜13を用いて以下のよう
に製造される。
The flange 13 is a member disposed at both ends of the superconducting acceleration tube 10, and has a small diameter portion 1 of the half-split cell 11 at one end.
It has a tube portion 13a to which the tube portion 1a is welded, and a flange portion 13b extending radially from the other end of the tube portion 13a. In the present invention, the superconducting accelerator tube 10 is configured as described above, and is manufactured using the components 11 to 13 as described below.

【0018】先ず、図3に示すように、超電導加速管1
0をレーザ溶接する光学系20とチェンバー30とを平
面から見て図示のように配置する。図中、21はYAG
レーザ発生装置、22は溶接部分の位置決めに用いるプ
ローブ用光源(He−Neの可視光レーザ光源)、23
はYAGレーザ光を集光する集光ミラー(焦点距離f=
4.5cm)、24は集光ミラー23を冷却する不活性
ガスを流し込むパイプ、25はレーザ光の光路26を定
めるベンダミラー、31はチェンバー30内を矢印X,
Yで示す水平方向に移動自在で、加速管10を設置して
溶接作業を行う移動テーブル、32は移動テーブル31
上に設置した回転装置、33は不活性ガスを封入したチ
ェンバー30に設けられ、レーザ光を透過する窓である
First, as shown in FIG. 3, a superconducting accelerator tube 1
An optical system 20 for laser welding 0 and a chamber 30 are arranged as shown in the figure when viewed from above. In the figure, 21 is YAG
A laser generator, 22 a probe light source (He-Ne visible light laser light source) used for positioning the welding part, 23
is a condensing mirror that condenses the YAG laser beam (focal length f=
4.5 cm), 24 is a pipe for flowing inert gas to cool the condensing mirror 23, 25 is a bend mirror that defines the optical path 26 of the laser beam, 31 is an arrow pointing inside the chamber 30,
A movable table 32 is movable in the horizontal direction indicated by Y and is used for welding work with the accelerator tube 10 installed; 32 is a movable table 31;
The rotating device 33 installed above is a window that is provided in a chamber 30 filled with inert gas and that transmits laser light.

【0019】ここで、光学系20は、YAGレーザ発生
装置21を出て、集光ミラー23で屈折しプローブ用光
源22に至るYAGレーザ光の光軸Aと、プローブ用光
源22から出る可視光の光軸Bとが一致するように設定
されている。次に、図4に示すように、半割セル11,
11を各小径部11aで連結部材12を介してレーザ溶
接し複数のセル部品を製作する。また、超電導加速管1
0の両端に配置される半割セル11には、小径部11a
に管部13aを溶接してフランジ13を接合した(図示
せず)。
Here, the optical system 20 connects the optical axis A of the YAG laser beam that exits the YAG laser generator 21, is refracted by the condensing mirror 23, and reaches the probe light source 22, and the visible light emitted from the probe light source 22. is set so that the optical axis B of Next, as shown in FIG.
11 are laser welded at each small diameter portion 11a via a connecting member 12 to produce a plurality of cell parts. In addition, superconducting accelerator tube 1
The half cell 11 arranged at both ends of the cell 0 has a small diameter portion 11a.
The pipe portion 13a was welded to the flange 13 (not shown).

【0020】次いで、このようにして製作した複数のセ
ル部品を、各半割セル11の周端部である大径部11b
で相互に突合わせ、図5に示すようにリング状の治具4
0で締めつけ固定する。ここで、治具40は、互いに対
称な一組の締結治具41,42からなり、図5乃至図8
に示すように、外側に夫々2個の半円形状の切り欠き部
41a,42aが設けられると共に、外側から内側に貫
通する小孔41b,42bが形成され、図5に示したよ
うに、端部においてピン43で互いに連結される。
[0020] Next, the plurality of cell parts manufactured in this manner are attached to the large diameter part 11b, which is the peripheral end of each half cell 11.
a ring-shaped jig 4 as shown in Fig. 5.
Tighten and fix at 0. Here, the jig 40 consists of a pair of symmetrical fastening jigs 41 and 42, and is shown in FIGS.
As shown in FIG. 5, two semicircular notches 41a and 42a are provided on the outside, and small holes 41b and 42b penetrating from the outside to the inside are formed, and as shown in FIG. They are connected to each other by pins 43 at the parts.

【0021】このようにしてセル部品を2個宛治具40
で固定して管状に連結し、管状体Tとした後、図9に示
すように、4本の連結パイプ44を締結治具41,42
の各切り欠き部41a,42aに装着し、連結パイプ4
4全体を締結バンド45で締めつけて一体化した。しか
る後、中央にネジ孔を有する円形フランジ46を4本の
連結パイプ44の両端に固定し、円形フランジ46の前
記ネジ孔と螺合するネジ部47aを外周に形成した円筒
形の各押圧部材47を前記ネジ孔に螺着し、管状体Tを
両側から締めつけた。
In this way, the jig 40 for attaching two cell parts
After fixing and connecting them into a tubular shape to form a tubular body T, as shown in FIG.
The connection pipe 4 is attached to each notch 41a, 42a of the
4 was integrated by tightening it with a fastening band 45. After that, a circular flange 46 having a threaded hole in the center is fixed to both ends of the four connecting pipes 44, and each cylindrical pressing member has a threaded portion 47a formed on its outer periphery to be threaded into the threaded hole of the circular flange 46. 47 was screwed into the screw hole, and the tubular body T was tightened from both sides.

【0022】このとき、各押圧部材47に関して、円形
フランジ46の前記ネジ孔への螺入量を調節することに
より、管状体Tの締め付け力を調節した。また、各押圧
部材47には、フランジ13と当接する端部に、開口(
図示せず)を有するNb製の当板48を取付け、レーザ
溶接によって製造される超電導加速管10の超電導特性
を損なわないように配慮した。
At this time, with respect to each pressing member 47, the tightening force of the tubular body T was adjusted by adjusting the amount of screwing of the circular flange 46 into the screw hole. Each pressing member 47 also has an opening (
A Nb-made backing plate 48 having a metal oxide (not shown) was attached to take care not to impair the superconducting properties of the superconducting accelerator tube 10 manufactured by laser welding.

【0023】次に、図1に示すように、管状体Tをチェ
ンバー30内にセットし、各円形フランジ46を回転装
置32に夫々取り付け、移動テーブル31を以下のよう
にして位置決めした。先ず、図中矢印X方向にテーブル
31を移動し、プローブ用光源22を用いて、締結治具
41,42の小孔41b,42bを光軸B上に位置させ
た。
Next, as shown in FIG. 1, the tubular body T was set in the chamber 30, each circular flange 46 was attached to the rotating device 32, and the moving table 31 was positioned as follows. First, the table 31 was moved in the direction of the arrow X in the figure, and the small holes 41b and 42b of the fastening jigs 41 and 42 were positioned on the optical axis B using the probe light source 22.

【0024】しかる後、矢印Y方向に移動テーブル31
を移動させ、集光ミラー23の焦点上に溶接部を位置さ
せた。ここで、溶接部とは、互いに突合わされた半割セ
ル11,11の周端部である大径部11b,11bの表
面をいい、以下の各実施例においても同様とする。本実
施例では、半割セル11の外径を9cm、集光ミラー2
3の焦点距離を4.5cmとした。このため、半割セル
11の中心位置に集光ミラー23を配置すると、YAG
レーザ発生装置21から出力され、集光ミラー23によ
って集光されたYAGレーザ光は、溶接部である各半割
セル11の大径部11bにおける内面に収束する。
After that, the table 31 moves in the direction of arrow Y.
was moved to position the welding portion on the focal point of the condensing mirror 23. Here, the welded portion refers to the surfaces of the large diameter portions 11b, 11b which are the peripheral ends of the half cells 11, 11 butted against each other, and the same applies to each of the following examples. In this embodiment, the outer diameter of the half-split cell 11 is 9 cm, and the condensing mirror 2 is
The focal length of No. 3 was set to 4.5 cm. Therefore, if the condensing mirror 23 is placed at the center of the half-split cell 11, the YAG
The YAG laser beam output from the laser generator 21 and condensed by the condensing mirror 23 converges on the inner surface of the large diameter portion 11b of each half cell 11, which is the welding portion.

【0025】かくして移動テーブル31を位置決めした
後、チェンバー30にパイプ24から不活性ガスを送り
込んで満たし、回転装置32,32で各円形フランジ4
6を回転させることにより管状体T全体を回転させ、溶
接部の内面を溶接した。このとき、漏れた加工用のYA
Gレーザ光によりチェンバー30が破壊されないように
、ビームアブソーバ27を図中矢印で示すように移動さ
せて光路上に置いた。
After positioning the movable table 31 in this manner, the chamber 30 is filled with inert gas from the pipe 24, and each circular flange 4 is rotated by the rotating devices 32, 32.
6, the entire tubular body T was rotated, and the inner surface of the welded portion was welded. At this time, the leaked YA for processing
In order to prevent the chamber 30 from being destroyed by the G laser beam, the beam absorber 27 was moved as shown by the arrow in the figure and placed on the optical path.

【0026】このようにして、溶接部に沿って一周溶接
した後、移動テーブル31をX方向に1ピッチ(=3.
5cm)移動し、隣り合う半割セル11,11の溶接部
を溶接した。以下、同様の操作を繰り返し、半割セル1
1、連結部材12及びフランジ13の構成部品が、溶接
部で相互にレーザ溶接された超電導加速管10を製造し
た。
After welding one round along the welded part in this way, the movable table 31 is moved one pitch (=3.
5 cm), and welded the welded portions of adjacent half cells 11,11. Hereafter, repeat the same operation and half-split cell 1
1. A superconducting accelerator tube 10 was manufactured in which the components of the connecting member 12 and the flange 13 were laser welded to each other at the welding part.

【0027】ここで、本実施例における溶接条件は以下
の通りであった。YAGレーザ波長は1.6μm、平均
出力は 200W、パルス幅は10msec.、繰り返
し周波数は10Hz、ピークパワーは2.0KWであっ
た。以上のようにして製造した超電導加速管10につい
て種々の測定を行った。その結果、YAGレーザ光を周
端部表面のみに照射したことから、各構成部品は表面の
みがレーザ溶接され、溶接部における溶接の深さは、内
面研磨(50μm)後で 200μmであった。
The welding conditions in this example were as follows. The YAG laser wavelength is 1.6 μm, the average output is 200 W, and the pulse width is 10 msec. , the repetition frequency was 10 Hz, and the peak power was 2.0 KW. Various measurements were performed on the superconducting accelerator tube 10 manufactured as described above. As a result, since the YAG laser beam was irradiated only on the peripheral edge surface, only the surface of each component was laser welded, and the welding depth at the welded part was 200 μm after internal polishing (50 μm).

【0028】また、製造された加速管の寸法精度は、単
位セル当たりの溶接前後の長さにおいて、従来の電子ビ
ーム溶接の場合には 100μm程度であったのに対し
、本実施例のレーザ溶接では10μm以下と改善されて
いた。 ここで、本実施例により製造した加速管10は、溶接後
も治具40で固定した状態で使用しても差支えなく、こ
のようにすると加速管10の機械的強度をより一層高め
ることが可能である。
In addition, the dimensional accuracy of the manufactured accelerator tube was approximately 100 μm in the length before and after welding per unit cell in the case of conventional electron beam welding, whereas the dimensional accuracy of the laser welding in this example was approximately 100 μm. It was improved to 10 μm or less. Here, the acceleration tube 10 manufactured according to this example may be used while being fixed with the jig 40 even after welding, and in this way, the mechanical strength of the acceleration tube 10 can be further increased. It is.

【0029】[0029]

【実施例2】次に、超電導加速管として共振周波数28
56MHz、セル長3.5cm、セルの厚み0.5mm
の単セル加速管を、YAGレーザをパルス発信させて製
造する本発明方法の第2の実施例を図10乃至図12に
基づいて説明する。ここで、以下の各実施例においては
、超電導加速管の構成部品は実施例1と同様に、Nbか
らなる半割セル11、連結部材12及びフランジ13で
あるので、以下の説明では同一の符号を用いて説明する
[Example 2] Next, as a superconducting accelerator tube, a resonance frequency of 28
56MHz, cell length 3.5cm, cell thickness 0.5mm
A second embodiment of the method of the present invention for manufacturing a single-cell accelerator tube by pulse-radiating a YAG laser will be described with reference to FIGS. 10 to 12. Here, in each of the following examples, the components of the superconducting accelerator tube are the half cell 11 made of Nb, the connecting member 12, and the flange 13, as in Example 1, so the same reference numerals will be used in the following description. Explain using.

【0030】本実施例においては、図10に示す溶接装
置50を用い、上記各構成部品相互を周端部表面にYA
Gレーザ光を照射して溶接する。溶接装置50は、移動
テーブル51上に設置され、上部が開放された容器52
内に、底部に上記各構成部品を載置して溶接する作業台
53が配置されると共に、不活性ガスを供給する供給パ
イプ54が配管され、容器52内の深さ方向略中間に位
置する作業台53上方には吹出ノズル55が配置されて
いる。
In this embodiment, using a welding apparatus 50 shown in FIG.
Weld by irradiating G laser light. The welding device 50 is installed on a moving table 51 and has a container 52 with an open top.
Inside, a workbench 53 on which the above components are placed and welded is arranged at the bottom, and a supply pipe 54 for supplying inert gas is installed, and is located approximately in the middle of the container 52 in the depth direction. A blowout nozzle 55 is arranged above the workbench 53.

【0031】移動テーブル51は、水平方向(前後・左
右)及び上下方向の3軸方向に移動自在なテーブルで、
作業台53上に設置された構成部品を3軸方向に移動さ
せて、互いに突合わされた周端部表面にYAGレーザ光
を照射させる。作業台53は、溶接された構成部品の放
熱効果による温度低下を促進すべく、銅板等の熱伝導率
の大きい素材が使用され、図10においては半割セル1
1及びフランジ13が周端部を突合わせて設置されてい
る。但し、半割セル11と連結部材12とを溶接する場
合には、作業台53上に所定の治具(図示せず)を設置
する。
The movable table 51 is a table that is movable in three axes, horizontally (back and forth, left and right) and up and down.
The component parts installed on the workbench 53 are moved in three axial directions, and YAG laser light is irradiated onto the surfaces of the peripheral end portions that are abutted against each other. The workbench 53 is made of a material with high thermal conductivity, such as a copper plate, in order to promote temperature reduction due to the heat dissipation effect of the welded components, and in FIG.
1 and a flange 13 are installed with their peripheral ends butted against each other. However, when welding the half cell 11 and the connecting member 12, a predetermined jig (not shown) is installed on the workbench 53.

【0032】供給パイプ54は、不活性ガス、例えば、
アルゴンガスを容器52内の作業台53の近傍に吹き出
して容器52内に満たす(下方置換)もので、溶接時及
び溶接された構成部品の温度が十分低下するまで20リ
ットル/min.以上の流量で連続的に供給する。吹出
ノズル55は、互いに突合わされた構成部品11,13
の周端部表面にYAGレーザ光のビームを照射する際に
、アルゴンガス等の不活性気体を溶接部に吹き出す。
[0032] The supply pipe 54 is filled with an inert gas, for example,
Argon gas is blown into the container 52 near the workbench 53 to fill the container 52 (downward displacement) at a rate of 20 liters/min during welding and until the temperature of the welded components has sufficiently decreased. Continuously supply at the above flow rate. The blowing nozzle 55 has the components 11 and 13 abutted against each other.
When irradiating the peripheral end surface with a beam of YAG laser light, an inert gas such as argon gas is blown out to the welded part.

【0033】そして、本実施例の溶接方法においては、
容器52内の作業台53に、先ず、小径部11aと管部
13aの端部とを突合わせて図示のように半割セル11
とフランジ13とをセットし、供給パイプ54からアル
ゴンガスを容器52内に流した。次に、移動テーブル5
1を移動し、互いに突き合わされた半割セル11とフラ
ンジ13との周端部表面の溶接部にYAGレーザ光を照
射すると共に、吹出ノズル55から溶接部に向けてアル
ゴンガスを吹き出し、4箇所スポット溶接して仮止めし
た。このとき、スポット溶接時におけるYAGレーザ光
の照射条件は、パルス幅を、以下に述べる溶接部全周に
亘る溶接の際に用いるレーザ光の7割に設定した。
In the welding method of this embodiment,
First, place the halved cell 11 on the workbench 53 inside the container 52 by butting the small diameter portion 11a and the end of the tube portion 13a together as shown in the figure.
and flange 13 were set, and argon gas was flowed into the container 52 from the supply pipe 54. Next, the moving table 5
1, and irradiated the welded part of the circumferential end surface of the half cell 11 and flange 13, which were butted against each other, with a YAG laser beam, and argon gas was blown out from the blowing nozzle 55 toward the welded part at four locations. It was spot welded and temporarily attached. At this time, the irradiation conditions of the YAG laser beam during spot welding were such that the pulse width was set to 70% of the laser beam used for welding over the entire circumference of the welded portion, which will be described below.

【0034】次いで、移動テーブル51を溶接部に沿っ
て円周を描くように3軸方向に移動させ、YAGレーザ
光のピークパワーで溶接部全周に亘って溶接を行った。 このとき、例えば、半割セル11の小径部11aの直径
が18mm(周長≒57mm)のように、溶接すべき周
長が比較的短く、レーザ光の照射によって溶接部に入射
する熱の単位周長当たりの許容熱容量が大きい場合には
一度に溶接した。一方、小径部11aの直径が38mm
(周長≒120mm)のように、溶接すべき周長が比較
的長く、単位周長当たりの許容熱容量が小さい場合には
、溶接される半割セル11、連結部材12及びフランジ
13等、構成部品の温度上昇の影響を考慮して、溶接部
を複数の領域に分けて溶接した。
Next, the movable table 51 was moved along the welding area in three axial directions in a circumferential manner, and welding was performed over the entire circumference of the welding area using the peak power of the YAG laser beam. At this time, for example, when the circumferential length to be welded is relatively short, such as when the diameter of the small diameter portion 11a of the half-split cell 11 is 18 mm (peripheral length≒57 mm), the unit of heat that enters the welded portion by laser light irradiation is If the allowable heat capacity per circumference was large, welding was performed at one time. On the other hand, the diameter of the small diameter portion 11a is 38 mm.
(Perimeter ≒ 120 mm), when the circumference to be welded is relatively long and the allowable heat capacity per unit circumference is small, the structure of the half cell 11, connecting member 12, flange 13, etc. to be welded is Considering the effect of temperature rise on the parts, the weld zone was divided into multiple areas and welded.

【0035】このとき、例えば、溶接すべき周長が長い
場合には、図11に示すように、半割セル11とフラン
ジ13との互いに突合わされた周端部の溶接部に沿って
8つの領域a〜hに区分した。そして、領域aを溶接し
た後、2分間の冷却時間を置いて全体の温度が下がるの
を待ち、領域aの中心に対して反対側に位置する領域e
を溶接した後、同様に冷却時間をとりながら領域c→領
域g→領域b→領域f→領域h→領域dと順次溶接し、
全ての領域を溶接した。
At this time, for example, if the circumferential length to be welded is long, eight welds are made along the welded portion of the circumferential ends of the half cell 11 and the flange 13 where they butt together, as shown in FIG. It was divided into regions a to h. After welding area a, we wait for 2 minutes of cooling time to lower the overall temperature, and then weld area e, which is located on the opposite side to the center of area a.
After welding, weld the area c → area g → area b → area f → area h → area d in the same manner while taking cooling time,
All areas were welded.

【0036】次に、このようにして溶接された半割セル
11とフランジ13からなるセル部品を相互を、各半割
セル11の大径部11bを互いに突合わせて溶接する。 この溶接に際しては、図12に示す溶接装置60を用い
る。溶接装置60は、基台61上に回転手段62,63
が所定の間隔を置いて対向配置され、回転手段62,6
3間には吹出ノズル64が配置されている。
Next, the cell parts consisting of the half cells 11 and the flanges 13 thus welded are welded together by abutting the large diameter portions 11b of each half cell 11 against each other. For this welding, a welding device 60 shown in FIG. 12 is used. The welding device 60 includes rotating means 62 and 63 on a base 61.
are arranged facing each other at a predetermined interval, and the rotating means 62, 6
A blowout nozzle 64 is arranged between the three.

【0037】回転手段62,63は、少なくとも一方が
基台61上を他の回転手段に対して離接自在であり、モ
ータ等の駆動手段によって回転される回転部材62a,
63aを有している。また、回転部材62aは、溶接さ
れた半割セル11とフランジ13からなるセル部品の放
熱による速やかな温度低下を考慮してアルミニウム素材
を用い、アルゴン供給パイプ65が挿通自在に構成され
ている。供給パイプ65は、前記セル部品相互を溶接す
るときにこれらの内部に挿通し、アルゴンガス等の不活
性ガスを20リットル/min.以上の流量で供給する
At least one of the rotating means 62 and 63 is movable toward and away from the other rotating means on the base 61, and includes a rotating member 62a, which is rotated by a driving means such as a motor.
63a. In addition, the rotating member 62a is made of aluminum in consideration of rapid temperature drop due to heat dissipation of the cell parts consisting of the welded half cell 11 and flange 13, and is configured such that the argon supply pipe 65 can be freely inserted therethrough. The supply pipe 65 is inserted into the cell parts when welding them together, and supplies an inert gas such as argon gas at a rate of 20 liters/min. Supply at a flow rate of

【0038】そして、本実施例の超電導加速管の製造方
法においては溶接装置60を用い、前記セル部品相互を
半割セル11の大径部11b,11bで互いに突合わせ
、突合わせた大径部11b,11bの外周に締結バンド
66を装着して、図12に示したように、突合わせた大
径部11b,11b間のズレが小さくなるように組上げ
る。
In the method of manufacturing a superconducting accelerator tube of this embodiment, the welding device 60 is used to butt the cell parts together at the large diameter portions 11b, 11b of the halved cell 11, and the butted large diameter portions A fastening band 66 is attached to the outer periphery of the large diameter portions 11b, 11b, and assembled so that the displacement between the large diameter portions 11b, 11b that are butted together is reduced, as shown in FIG.

【0039】ここで、締結バンド66には、周方向に延
びる幅5mm、長さ4cmの長孔66aが3箇所設けら
れている。しかる後、図示のように、前記一方のセル部
品のフランジ13と回転部材63aとの間に、回転部材
62aと同様に放熱効果を考慮したアルミニウム製の治
具67を配置して、互いに突合わせた前記セル部品相互
を回転手段62,63間に装着し、供給パイプ65から
互いに突合わせた前記セル部品内にアルゴンガスを流し
た。 ここにおいて、治具67には、アルゴンガスの供給に伴
う内圧の上昇を防止するため、図示のようにガス抜き孔
67aが設けられている。
Here, the fastening band 66 is provided with three elongated holes 66a extending in the circumferential direction and each having a width of 5 mm and a length of 4 cm. After that, as shown in the figure, an aluminum jig 67 is placed between the flange 13 of one of the cell parts and the rotating member 63a, and the jig 67 made of aluminum is placed in consideration of the heat dissipation effect like the rotating member 62a, and the jig 67 is butted against each other. The cell parts were mounted between rotation means 62 and 63, and argon gas was flowed from the supply pipe 65 into the cell parts that were butted against each other. Here, the jig 67 is provided with a gas vent hole 67a as shown in the figure in order to prevent an increase in internal pressure due to the supply of argon gas.

【0040】次に、互いに突き合わされた半割セル11
,11の周端部表面を、吹出ノズル64からアルゴンガ
スを吹き出すと共にYAGレーザ光を照射し、締結バン
ド64の各長孔64aに対応する部分で3箇所スポット
溶接して仮止めした。このとき、スポット溶接における
YAGレーザ光の照射条件は、強度をピークパワーの1
/2〜1/3に設定し、パルス幅は全周に亘って溶接す
る際の3〜8割に設定した。
Next, the half cells 11 are butted against each other.
, 11 was irradiated with YAG laser light while blowing out argon gas from the blow-off nozzle 64, and spot welded at three locations corresponding to each of the elongated holes 64a of the fastening band 64 to temporarily fix them. At this time, the irradiation conditions for YAG laser light in spot welding are such that the intensity is 1 of the peak power.
/2 to 1/3, and the pulse width was set to 30 to 80% of the width when welding over the entire circumference.

【0041】次いで、互いに突合わされた前記セル部品
の大径部11b,11bの外周から締結バンド64を外
し、前記セル部品の互いに突合わされた大径部11b,
11bの外周にズレが生じないように、回転手段62,
63により前記セル部品を回転させながら、突合わされ
た大径部11b,11b表面の溶接部に沿って全体に亘
って複数箇所スポット溶接した。
Next, the fastening band 64 is removed from the outer periphery of the large diameter portions 11b, 11b of the cell components that are butted against each other, and the large diameter portions 11b, 11b of the cell components that are butted against each other are removed.
The rotating means 62,
63, while rotating the cell component, spot welding was performed at a plurality of locations along the welded portions of the surfaces of the butted large diameter portions 11b, 11b.

【0042】しかる後、YAGレーザ光のピークパワー
で全周に亘って溶接した。このとき、溶接部は、全周を
16の領域に区分し、1分間の冷却時間を置いて前記と
同様にして溶接した。以上の方法で製造した単セル加速
管においては、構成部品の全体の温度が 100℃を超
えないように、アルゴンガスを吹き付けた雰囲気中で、
溶接部を複数の領域に区分して数cmの溶接の後、冷却
時間を設けパルス溶接を行ったので、溶接部が急冷され
、熱による溶接歪の発生は殆ど見られず、しかも溶接部
における電気的特性も10−6torrの真空中で行っ
た電子ビーム溶接の場合に比べて改善されていた。
Thereafter, welding was performed over the entire circumference using the peak power of YAG laser light. At this time, the entire circumference of the welded part was divided into 16 areas, and welding was performed in the same manner as described above after a cooling period of 1 minute. In the single-cell accelerator tube manufactured by the above method, it is heated in an atmosphere sprayed with argon gas so that the overall temperature of the components does not exceed 100°C.
After dividing the weld into several areas and welding a few centimeters, pulse welding was performed with a cooling period, so the weld was rapidly cooled and almost no weld distortion due to heat was observed. The electrical properties were also improved compared to electron beam welding performed in a vacuum of 10-6 torr.

【0043】また、本実施例と同一構造の単セル加速管
を、従来の電子ビーム溶接で製造した場合には10〜1
5時間も要したのに対し、本実施例の方法では40〜6
0分で製造することができ、製造時間を飛躍的に減少さ
せることができた。
Furthermore, when a single cell accelerator tube having the same structure as that of this example is manufactured by conventional electron beam welding, the
While it took 5 hours, the method of this example took 40 to 6 hours.
It could be manufactured in 0 minutes, and the manufacturing time could be dramatically reduced.

【0044】[0044]

【実施例3】次に、超電導加速管として共振周波数28
56MHz、2/3πモードの多セル加速管を、YAG
レーザをパルス発信させて製造する本発明方法の第3の
実施例を図13乃至図15に基づいて説明する。先ず、
実施例1と同様にして、図13及び図14に示すように
、半割セル11とフランジ13及び半割セル11,11
を連結部材12を介して互いに周端部で溶接した複数の
セル部品を作った。
[Example 3] Next, as a superconducting accelerator tube, a resonance frequency of 28
56MHz, 2/3π mode multi-cell accelerator tube, YAG
A third embodiment of the method of the present invention for manufacturing by emitting laser pulses will be described with reference to FIGS. 13 to 15. First of all,
In the same manner as in Example 1, as shown in FIGS. 13 and 14, the half cell 11, the flange 13, and the half cells 11, 11
A plurality of cell parts were made by welding the peripheral ends of the cell parts to each other via the connecting member 12.

【0045】次に、これら複数のセル部品の夫々を互い
に突合わせ、締結バンド66で締結して組上げた後、図
15に示すように、溶接装置60の回転手段62,63
間に装着した。次いで、実施例2と同様にして、各締結
バンド66の長孔66aの部分でスポット溶接してセル
部品の夫々を仮止めした後、各締結バンド66を外し、
供給パイプ65からアルゴンガスを互いに突合わされた
セル部品内に供給した。
Next, after assembling the plurality of cell parts by abutting each other and fastening them with fastening bands 66, as shown in FIG.
I installed it in between. Next, in the same manner as in Example 2, after spot welding the long holes 66a of each fastening band 66 to temporarily fasten each of the cell parts, each fastening band 66 was removed.
Argon gas was supplied from the supply pipe 65 into the cell parts that were butted against each other.

【0046】そして、回転手段62,63により前記セ
ル部品を一体に回転させながら、突合わされた大径部1
1b,11b表面の溶接部に沿って、YAGレーザ光の
ピークパワーで全周に亘って溶接した。ここで、YAG
レーザ光は、ビームを収束させるために焦点距離f= 
120mmの集光レンズを用い、レーザ光による溶接条
件は以下の通りであった。
Then, while rotating the cell parts together by the rotating means 62 and 63, the abutted large diameter portion 1
Welding was carried out along the entire circumference along the welded portions of the surfaces of 1b and 11b using the peak power of the YAG laser beam. Here, YAG
In order to converge the laser beam, the focal length f=
A 120 mm condensing lens was used, and the welding conditions using laser light were as follows.

【0047】                          
 レーザ光による溶接条件             
           半割セルとフランジ     
   半割セル相互平行ビーム直径(mm)     
        30               
        30ピークパワー(KW)     
           3.25(1.25)*1  
           3.08(1.25) *1パ
ルス幅(m sec.)              
 10                      
 10周波数(Hz)               
      12                 
      12移動速度(mm/min.) *2 
         180             
         180ノズル径(mm)     
               6         
               6アルゴンガス流量 
              30         
              40(リットル/min
.)                       
   構成部品間距離(mm)           
   5                     
   3*1カッコ内はスポット溶接におけるレーザ光
の強度*2移動速度(mm/min.) とは、溶接部
表面に沿ったレーザ光の移動速度をいう。
[0047]
Welding conditions using laser light
Half cell and flange
Half cell mutually parallel beam diameter (mm)
30
30 peak power (KW)
3.25 (1.25)*1
3.08 (1.25) *1 Pulse width (m sec.)
10
10 frequencies (Hz)
12
12 Traveling speed (mm/min.) *2
180
180 nozzle diameter (mm)
6
6 Argon gas flow rate
30
40 (liter/min
.. )
Distance between component parts (mm)
5
3*1 The value in parentheses is the intensity of laser light in spot welding *2 Traveling speed (mm/min.) The phrase refers to the traveling speed of laser light along the surface of the weld.

【0048】以上の方法で製造した多セル加速管におい
ては、アルゴンガスを吹き付けた雰囲気中で、溶接部を
複数の領域に区分して冷却時間を置いて溶接したため、
溶接部に過剰な熱が入らないうえ溶接部の冷却が早いこ
とから、溶接に伴う熱歪の発生が殆ど見られず、溶接部
における電気的特性も電子ビーム溶接の場合に比べて改
善されていた。
[0048] In the multi-cell accelerator tube manufactured by the above method, the welded part was divided into a plurality of regions and welded after cooling time in an atmosphere sprayed with argon gas.
Because excessive heat does not enter the weld and the weld cools quickly, there is almost no thermal distortion associated with welding, and the electrical characteristics of the weld are improved compared to electron beam welding. Ta.

【0049】しかも、同一構造の多セル加速管を電子ビ
ーム溶接で製造する場合に比べて、1/10以下の時間
で製造することができた。
Furthermore, the manufacturing time was less than 1/10 of the time required to manufacture a multi-cell accelerator tube of the same structure by electron beam welding.

【0050】[0050]

【実施例4】次に、多セル加速管の製造に係る本発明方
法の第4の実施例を、図16乃至図18に基づいて説明
する。先ず、実施例3と同様にして半割セル11とフラ
ンジ13及び半割セル11,11を連結部材12を介し
て互いに周端部で溶接した複数のセル部品を作った。
[Embodiment 4] Next, a fourth embodiment of the method of the present invention relating to manufacturing a multi-cell accelerator tube will be described based on FIGS. 16 to 18. First, in the same manner as in Example 3, a plurality of cell parts were made by welding the half cells 11, the flange 13, and the half cells 11, 11 to each other at their peripheral ends via the connecting member 12.

【0051】しかる後、これら複数のセル部品の夫々を
互いに突合わせ、締結バンド66で締結して組上げて、
図16に示すように、溶接装置60の回転手段62,6
3間に装着した。次いで、供給パイプ65内に挿通した
治具68からアルゴンガスを互いに突合わされたセル部
品内に供給すると共に、光ファイバ70により、セル部
品内にYAGレーザ光を導いた。
[0051] Thereafter, the plurality of cell parts are butted against each other and fastened with fastening bands 66 to assemble them.
As shown in FIG. 16, rotation means 62, 6 of the welding device 60
It was installed for 3 years. Next, argon gas was supplied from a jig 68 inserted into the supply pipe 65 into the cell parts that were butted against each other, and YAG laser light was guided into the cell parts through the optical fiber 70.

【0052】このようにして、各セル部品の内側からレ
ーザ光を照射して半割セル11の大径部11b内面の溶
接部でスポット溶接により仮付けした後、各締結バンド
66を取外し、実施例3と同様に溶接部を複数領域に区
分して1分間の冷却時間をおき、ピークパワー7KWの
レーザ光で溶接部全周に亘って溶接した。ここで、治具
68は、図17及び図18に示すように、内部に挿通し
た光ファイバ70を支持部材68a,68aで支持しな
がらその先端を溶接部へ導くパイプ状の部材で、治具6
8の先端には内部を送られてくるアルゴンガスを溶接部
に強制的に吹き付ける制御板68b,68bが設けられ
ている。また、溶接部は、供給パイプ治具68から吹き
付けられるアルゴンガスの他、外部に設けた吹出ノズル
69から吹き出すアルゴンガスにより不活性雰囲気にさ
れると共に、強制的に冷却される。
In this way, each cell component is irradiated with a laser beam from the inside and temporarily attached by spot welding at the welded portion on the inner surface of the large diameter portion 11b of the half-split cell 11, and then each fastening band 66 is removed. As in Example 3, the welded area was divided into a plurality of areas, cooled for 1 minute, and then welded over the entire circumference of the welded area using a laser beam with a peak power of 7 kW. Here, as shown in FIGS. 17 and 18, the jig 68 is a pipe-shaped member that guides the tip of the optical fiber 70 inserted therein to the welding part while supporting it with support members 68a, 68a. 6
Control plates 68b, 68b for forcibly spraying the argon gas sent inside to the welding part are provided at the tip of the welding part 8. In addition to the argon gas blown from the supply pipe jig 68, the welded area is made into an inert atmosphere by argon gas blown from an externally provided blow-off nozzle 69, and is forcibly cooled.

【0053】従って、本実施例においては、光ファイバ
70を用いたことにより、レーザビームを集光レンズや
集光ミラーで集光して溶接部に照射する場合に比べて、
光学系が小さくなり、より小型の加速管を製造すること
が可能となった。また、内側から溶接するため、溶接部
内面のビードが波状になることなく綺麗に仕上がり、溶
接部の寸法精度も良好で、製造された加速管は電気的特
性において電子ビーム溶接による場合よりも向上してい
た。
Therefore, in this embodiment, by using the optical fiber 70, compared to the case where the laser beam is focused by a condensing lens or a condensing mirror and irradiated to the welding part,
The optical system became smaller, making it possible to manufacture smaller accelerator tubes. In addition, since welding is performed from the inside, the bead on the inner surface of the welded part is finished neatly without becoming wavy, and the dimensional accuracy of the welded part is also good, and the manufactured accelerator tube has improved electrical properties compared to electron beam welding. Was.

【0054】[0054]

【実施例5】また、図19は、連結部材12を使用せず
に多セル加速管を製造する本発明方法の第5の実施例を
説明するもので、第4の実施例と同様に、光ファイバを
用いて互いに突合わされた複数のセル部品を溶接するも
のである。従って、以下の説明においては、かかる溶接
に関係した要部についてのみ説明し、実施例4と同一の
部材には図中同一の符号を付して説明する。
[Embodiment 5] Furthermore, FIG. 19 illustrates a fifth embodiment of the method of the present invention for manufacturing a multi-cell accelerator tube without using the connecting member 12. Similarly to the fourth embodiment, This method uses optical fibers to weld a plurality of cell parts that are butted together. Therefore, in the following explanation, only the main parts related to such welding will be explained, and the same members as in the fourth embodiment will be described with the same reference numerals in the drawings.

【0055】互いに溶接されるセル部品の半割セル11
,11は、図示のように周端部外周に締結した締結バン
ド75によって加速管形状に組上げられており、この状
態で光ファイバ70によりピークパワー7KWのYAG
レーザ光を、大径部11b,11bの内側から複数箇所
に照射してスポット溶接した。しかる後、再度、光ファ
イバ70により内側から周端部内面の溶接部全周に亘っ
てYAGレーザ光を照射し、半割セル11,11を溶接
して多セル加速管を製造した。
Cell halves 11 of cell parts to be welded together
, 11 are assembled into an accelerating tube shape by a fastening band 75 fastened to the outer periphery of the peripheral end as shown in the figure, and in this state, a YAG with a peak power of 7 KW is
Spot welding was performed by irradiating a plurality of locations with laser light from inside the large diameter portions 11b, 11b. Thereafter, YAG laser light was again irradiated from the inside through the optical fiber 70 over the entire circumference of the welded portion on the inner surface of the peripheral end portion, and the half cells 11, 11 were welded to manufacture a multi-cell accelerator tube.

【0056】このとき、複数のセル部品を加速管形状に
組上げている各締結バンド75は、内部に冷却水の流路
75aが形成され、流路75aには図示のように給水パ
イプ76が配管され、供給される所定流量の冷却水によ
って溶接部の外側を強制的に冷却した。このように、本
実施例は、溶接部を強制的に冷却することにより、一度
に溶接し得る長さが長くなると共に、冷却時間を短縮す
ることができこれにより、加速管の製造速度が上がる。
At this time, each fastening band 75 that assembles a plurality of cell parts into an accelerating tube shape has a cooling water flow path 75a formed therein, and a water supply pipe 76 is connected to the flow path 75a as shown in the figure. The outside of the welded part was forcibly cooled by the supplied cooling water at a predetermined flow rate. In this way, in this embodiment, by forcibly cooling the welded part, the length that can be welded at one time can be lengthened, and the cooling time can be shortened, thereby increasing the manufacturing speed of the accelerator tube. .

【0057】尚、互いに突合わされた複数のセル部品は
、外側から溶接することも可能である。この場合には、
複数のセル部品を、実施例2,3に示す方法により締結
バンド64によって組上げ、スポット溶接した後、各締
結バンド64を外して溶接部を全周に亘ってレーザ光で
溶接すればよい。
[0057] It is also possible to weld a plurality of cell parts that are butted against each other from the outside. In this case,
After assembling and spot welding a plurality of cell parts using fastening bands 64 using the method shown in Examples 2 and 3, each fastening band 64 may be removed and the welded portion may be welded over the entire circumference with a laser beam.

【0058】[0058]

【実施例6】更に、図20及び図21は、本発明方法の
第6の実施例を説明するもので、実施例5と同様に、図
において実施例4と同一の部材には同一の符号を付して
説明する。本実施例は、連結部材12を用いることなく
半割セル11,11相互を直接溶接するもので、半割セ
ル11,11は溶接に際して小径部11a,11a相互
が位置決めし難いので、位置決め治具80を用いて溶接
する。
[Embodiment 6] Furthermore, FIGS. 20 and 21 illustrate a sixth embodiment of the method of the present invention. Similarly to Embodiment 5, the same members in the figures as in Embodiment 4 have the same reference numerals. I will explain it by attaching it. In this embodiment, the half cells 11, 11 are directly welded to each other without using the connecting member 12, and since it is difficult to position the small diameter portions 11a, 11a of the half cells 11, 11 when welding, a positioning jig is required. 80 is used for welding.

【0059】ここにおいて位置決め治具80は、アルミ
ニウム製の部材で、図21に示すように、円筒状の基体
80a上の互いに対向する位置に半径方向外方へ突出す
る突出部80bが4箇所形成され、中心には冷却水を流
す流路80cが形成されている。この流路80cには、
例えば、クイック継手等の継手により冷却水を供給する
供給パイプ(図示せず)が接続される。
Here, the positioning jig 80 is a member made of aluminum, and as shown in FIG. 21, four protrusions 80b protruding outward in the radial direction are formed at mutually opposing positions on a cylindrical base 80a. A flow path 80c through which cooling water flows is formed in the center. In this flow path 80c,
For example, a supply pipe (not shown) for supplying cooling water is connected by a coupling such as a quick coupling.

【0060】そして、溶接に際しては、図示のように、
半割セル11,11相互を各小径部11aの内側に位置
決め治具80を挿着し、互いに突合わされる小径部11
a,11aに段差等が生じないように4箇所の突出部8
0bで半割セル11,11を位置決めして支持した。次
に、このようにして位置決めした半割セル11,11を
、流路80cに前記供給パイプを接続して冷却水を流し
ながら近傍に配置した吹出ノズル81から溶接部にアル
ゴンガスを吹き付け、位置決め治具80の4箇所の突出
部80bを避けて、小径部11a,11aの外側から溶
接部に光ファイバ70でピークパワー7KWのYAGレ
ーザ光を照射し、スポット溶接して仮付けした。
[0060] When welding, as shown in the figure,
A positioning jig 80 is inserted between the half cells 11 and 11 inside each small diameter portion 11a, and the small diameter portions 11 are butted against each other.
There are four protrusions 8 to prevent steps from occurring on a and 11a.
The half cells 11, 11 were positioned and supported at 0b. Next, the half-split cells 11, 11 thus positioned are connected to the flow path 80c with the supply pipe, and while cooling water is flowing, argon gas is sprayed onto the welded portion from the blow-off nozzle 81 disposed nearby. Avoiding the four protrusions 80b of the jig 80, YAG laser light with a peak power of 7 KW was irradiated from the outside of the small diameter portions 11a, 11a to the welded portions using the optical fiber 70, and spot welding was performed for temporary attachment.

【0061】次いで、位置決め治具80を外し、吹出ノ
ズル81からアルゴンガスを吹き付けながら、仮付けさ
れた半割セル11,11を小径部11a,11aの外側
から溶接部の全周に亘って実施例3の方法により前記Y
AGレーザ光を照射して溶接した。次に、このようにし
て溶接して得た複数のセル部品を半割セル11の周端部
である大径部11bで相互に突合わせ、実施例3と同様
にして、大径部11b,11bの表面を外側から溶接し
て多セル加速管を製造した。
Next, the positioning jig 80 is removed, and while blowing argon gas from the blow-off nozzle 81, the temporarily attached half cells 11, 11 are welded from the outside of the small diameter portions 11a, 11a over the entire circumference of the welded portion. By the method of Example 3, the Y
Welding was performed by irradiating AG laser light. Next, the plurality of cell parts obtained by welding in this manner are butted against each other at the large diameter part 11b which is the peripheral end of the half cell 11, and in the same manner as in Example 3, the large diameter part 11b, A multi-cell accelerator tube was manufactured by welding the surface of 11b from the outside.

【0062】以上のようにして製造した加速管の溶接部
を調べたところ、外面のみ溶接された小径部11a,1
1aの内面側には波状の溶接ビードの発生が見られず、
溶接歪もなく綺麗に仕上がっていた。尚、上記実施例に
おいては、大出力レーザとして主として使用されている
炭酸ガスレーザとYAGレーザのうち、Nbに対するエ
ネルギー吸収率が高く、操作性が良いことから、レーザ
光としてYAGレーザを使用した。
When the welded parts of the accelerator tube manufactured as described above were examined, it was found that the small diameter parts 11a and 1 were welded only on the outer surface.
No wavy weld bead was observed on the inner surface of 1a.
The welding was finished beautifully with no distortion. In the above embodiment, a YAG laser was used as a laser beam because it has a high energy absorption rate for Nb and is easy to operate out of carbon dioxide lasers and YAG lasers that are mainly used as high-output lasers.

【0063】炭酸ガスレーザは、Nbに対する吸収率が
低く、出力を下げると極端に吸収効率が低下してスポッ
ト溶接の好適条件を探すことが困難である。また、温度
上昇に伴って急激に吸収率が増加するため、溶接部の温
度が上がり過ぎ、好ましい溶接面を得ることが難しい。 しかし、パルス幅を短くし、パルス波形を調節すること
により、溶接時の溶け込み深さや溶接部の温度を調節す
れば、本発明方法に炭酸ガスレーザを使用することも可
能である。
[0063] The carbon dioxide laser has a low absorption rate for Nb, and when the output is lowered, the absorption efficiency decreases extremely, making it difficult to find suitable conditions for spot welding. Furthermore, since the absorption rate rapidly increases as the temperature rises, the temperature of the weld zone rises too much, making it difficult to obtain a desirable weld surface. However, it is also possible to use a carbon dioxide laser in the method of the present invention by shortening the pulse width and adjusting the pulse waveform to adjust the penetration depth during welding and the temperature of the weld zone.

【0064】[0064]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、10−6torrの真空中で行った電子ビーム
溶接による場合以上の特性を有する超電導加速管が提供
され、しかも、加速管の製造においては、レーザ光を用
いて構成部品を溶接するので、簡単な治具を用いて、短
時間、且つ、高精度に製造することができ、溶接作業も
簡単であることから製造コストを低減して安価に提供で
きる等の優れた効果を奏する。
As is clear from the above description, according to the present invention, a superconducting accelerating tube having characteristics superior to those obtained by electron beam welding performed in a vacuum of 10-6 torr is provided, and In manufacturing, the component parts are welded using laser light, so it can be manufactured in a short time and with high precision using a simple jig.The welding work is also simple, which reduces manufacturing costs. It has excellent effects such as being able to reduce the amount of water and provide it at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の超電導加速管及びその製造方法の一実
施例を示すもので、超電導加速管の溶接に用いる光学系
及びチェンバーと配置した加速管の平面図である。
FIG. 1 shows an embodiment of a superconducting accelerator tube and a method for manufacturing the same according to the present invention, and is a plan view of an accelerating tube arranged with an optical system and a chamber used for welding the superconducting accelerator tube.

【図2】図1に示す加速管の断面正面図である。FIG. 2 is a cross-sectional front view of the accelerator tube shown in FIG. 1.

【図3】図1に示した光学系とチェンバーの平面配置図
である。
FIG. 3 is a plan layout diagram of the optical system and chamber shown in FIG. 1;

【図4】加速管の構成部品である半割セルを連結部材で
接合したセル部品の断面正面図である。
FIG. 4 is a cross-sectional front view of a cell component in which half cells, which are components of the acceleration tube, are joined by a connecting member.

【図5】図4のセル部品を治具で固定した状態を示す側
面図である。
FIG. 5 is a side view showing a state in which the cell component shown in FIG. 4 is fixed with a jig.

【図6】図5の治具を矢印VI方向から見た矢視図であ
る。
6 is a view of the jig shown in FIG. 5 viewed from the direction of arrow VI; FIG.

【図7】図5の治具を矢印VII 方向から見た矢視図
である。
7 is a view of the jig shown in FIG. 5 viewed from the direction of arrow VII; FIG.

【図8】図5の治具を矢印VIII方向から見た矢視図
である。
FIG. 8 is a view of the jig shown in FIG. 5 as viewed from the direction of arrow VIII.

【図9】複数のセル部品からなる管状体を締結バンドで
一体化した状態を示す正面図である。
FIG. 9 is a front view showing a state in which a tubular body made up of a plurality of cell parts is integrated with a fastening band.

【図10】本発明方法の第2の実施例を示すもので、単
セル加速管の構成部品を溶接してセル部品を製造する際
に用いる溶接装置の部分断面正面図である。
FIG. 10 shows a second embodiment of the method of the present invention, and is a partially sectional front view of a welding device used when manufacturing cell parts by welding components of a single cell acceleration tube.

【図11】セル部品を溶接する際に区分した溶接部の区
分図である。
FIG. 11 is a diagram illustrating a welded portion divided when cell parts are welded.

【図12】図10の溶接装置で製造したセル部品相互の
溶接に使用した溶接装置を示す部分断面正面図である。
12 is a partially sectional front view showing a welding device used for welding cell parts manufactured by the welding device of FIG. 10; FIG.

【図13】本発明方法の第3の実施例を説明するもので
、半割セルを連結部材を介して溶接したセル部品の断面
正面図である。
FIG. 13 explains a third embodiment of the method of the present invention, and is a sectional front view of a cell component in which half cells are welded via a connecting member.

【図14】半割セルとフランジとを溶接したセル部品の
断面正面図である。
FIG. 14 is a cross-sectional front view of a cell component in which a half cell and a flange are welded together.

【図15】図13及び図14に示す複数のセル部品を組
上げて溶接装置に装着した状態を示す部分断面正面図で
ある。
15 is a partially sectional front view showing a state in which a plurality of cell parts shown in FIGS. 13 and 14 are assembled and attached to a welding device. FIG.

【図16】本発明方法の第4の実施例を説明するもので
、図15に示す溶接装置において光ファイバを用いて複
数のセル部品を溶接する場合を示す部分断面正面図であ
る。
16 is a partially sectional front view illustrating a fourth embodiment of the method of the present invention, showing a case where a plurality of cell parts are welded using an optical fiber in the welding apparatus shown in FIG. 15. FIG.

【図17】図16におけるXVII部の拡大図である。17 is an enlarged view of section XVII in FIG. 16. FIG.

【図18】図16において矢印XVIII 方向から見
た拡大矢視図である。
18 is an enlarged view taken from the direction of arrow XVIII in FIG. 16. FIG.

【図19】本発明方法の第5の実施例を示すもので、互
いに突合わされた半割セル相互を光ファイバからレーザ
光を照射して溶接する場合の部分断面正面図である。
FIG. 19 shows a fifth embodiment of the method of the present invention, and is a partially sectional front view in the case of welding abutted half cells by irradiating laser light from an optical fiber.

【図20】本発明方法の第6の実施例を示すもので、内
部に冷却水を流した位置決め治具で半割セル相互を位置
決めして光ファイバからレーザ光を照射して溶接する場
合の半断面正面図である。
FIG. 20 shows a sixth embodiment of the method of the present invention, in which half cells are positioned with a positioning jig with cooling water flowing inside and welded by irradiating laser light from an optical fiber. It is a half-sectional front view.

【図21】図20の断面XXI −XXI に沿った断
面図である。
FIG. 21 is a sectional view taken along section XXI-XXI in FIG. 20;

【図22】従来の超電導加速管及びその製造方法を説明
するもので、構成部品の一つであるフランジを示す斜視
図である。
FIG. 22 is a perspective view showing a flange, which is one of the components, for explaining a conventional superconducting accelerator tube and its manufacturing method.

【図23】構成部品の一つであるセル結合部品を示す斜
視図である。
FIG. 23 is a perspective view showing a cell coupling component, which is one of the components.

【図24】構成部品の一つである半割セルを示す斜視図
である。
FIG. 24 is a perspective view showing a half cell which is one of the components.

【図25】図22,図24に示す構成部品を用いて製造
した単セル加速管の断面正面図である。
25 is a cross-sectional front view of a single cell accelerator tube manufactured using the components shown in FIGS. 22 and 24. FIG.

【図26】図22乃至図24に示す構成部品を用いて製
造した多セル加速管の断面正面図である。
26 is a cross-sectional front view of a multi-cell accelerator tube manufactured using the components shown in FIGS. 22 to 24. FIG.

【符号の説明】[Explanation of symbols]

10    超電導加速管 11    半割セル(構成部品) 11a  小径部(周端部) 11b  大径部(周端部) 12    連結部材(構成部品) 13    フランジ(構成部品) 10 Superconducting accelerator tube 11 Half cell (component) 11a Small diameter part (peripheral end) 11b Large diameter part (peripheral end) 12 Connecting member (component) 13 Flange (component)

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】  超電導材からなる複数の構成部品の周
端部を相互に溶接してなる超電導加速管において、前記
各周端部がレーザビームにより溶接されていることを特
徴とする超電導加速管。
1. A superconducting acceleration tube formed by welding peripheral ends of a plurality of components made of superconducting materials to each other, wherein each of the peripheral ends is welded by a laser beam. .
【請求項2】  前記超電導加速管は、前記各周端部の
内表面のみレーザ溶接され、溶接の深さが超電導材の厚
さの二分の一以下である、請求項1記載の超電導加速管
2. The superconducting accelerator tube according to claim 1, wherein only the inner surface of each peripheral end portion of the superconducting accelerator tube is laser welded, and the welding depth is one-half or less of the thickness of the superconducting material. .
【請求項3】  前記超電導加速管は、前記各周端部で
の溶接の深さが 150μm以上である、請求項2記載
の超電導加速管。
3. The superconducting accelerator tube according to claim 2, wherein the superconducting accelerator tube has a weld depth of 150 μm or more at each of the circumferential ends.
【請求項4】  前記超電導材は、厚さが0.1mm以
上、1mm以下の範囲である、請求項1記載の超電導加
速管。
4. The superconducting accelerator tube according to claim 1, wherein the superconducting material has a thickness in a range of 0.1 mm or more and 1 mm or less.
【請求項5】  前記超電導加速管は、外側が治具によ
り固定されている、請求項1乃至4記載の超電導加速管
5. The superconducting accelerator tube according to claim 1, wherein the outside of the superconducting accelerator tube is fixed by a jig.
【請求項6】  互いに突合わされる周端部を有し、超
電導材からなる複数の構成部品相互を、前記周端部に照
射するレーザビームによりレーザ溶接することを特徴と
する超電導加速管の製造方法。
6. Manufacture of a superconducting accelerator tube having circumferential ends that abut against each other, and in which a plurality of components made of superconducting material are laser welded to each other using a laser beam irradiated to the circumferential ends. Method.
【請求項7】  前記各周端部は、内表面のみレーザ溶
接され、溶接の深さが超電導材の厚さの二分の一以下で
ある、請求項6記載の超電導加速管の製造方法。
7. The method of manufacturing a superconducting accelerator tube according to claim 6, wherein each peripheral end portion is laser welded only on the inner surface, and the welding depth is one-half or less of the thickness of the superconducting material.
【請求項8】  前記各周端部は、溶接の深さが 15
0μm以上である、請求項7記載の超電導加速管の製造
方法。
8. Each of the peripheral edges has a welding depth of 15 mm.
The method for manufacturing a superconducting accelerator tube according to claim 7, wherein the thickness is 0 μm or more.
【請求項9】  前記超電導材の厚さを0.1mm以上
、1mm以下の範囲とした、請求項6記載の超電導加速
管の製造方法。
9. The method for manufacturing a superconducting accelerator tube according to claim 6, wherein the thickness of the superconducting material is in a range of 0.1 mm or more and 1 mm or less.
【請求項10】  レーザ溶接を不活性ガス雰囲気中で
行う、請求項6乃至9記載の超電導加速管の製造方法。
10. The method of manufacturing a superconducting accelerator tube according to claim 6, wherein the laser welding is performed in an inert gas atmosphere.
【請求項11】  前記超電導加速管は、前記複数の構
成部品の周端部を真空中で相互に溶接して製造される、
請求項6乃至9記載の超電導加速管の製造方法。
11. The superconducting accelerator tube is manufactured by welding peripheral ends of the plurality of components to each other in a vacuum.
A method for manufacturing a superconducting accelerator tube according to claims 6 to 9.
【請求項12】  前記構成部品の互いに突合わされた
各周端部の複数箇所をスポット溶接して仮付けした後、
周端部全体を溶接する、請求項6乃至11記載の超電導
加速管の製造方法。
12. After spot-welding and temporarily attaching a plurality of locations of each peripheral end portion of the component parts that are abutted against each other,
The method for manufacturing a superconducting accelerator tube according to any one of claims 6 to 11, wherein the entire peripheral end portion is welded.
【請求項13】  前記レーザ光は、スポット溶接時の
強度をピークパワーの1/2から1/3に設定した、請
求項6乃至12記載の超電導加速管の製造方法。
13. The method of manufacturing a superconducting accelerator tube according to claim 6, wherein the intensity of the laser beam during spot welding is set to 1/2 to 1/3 of the peak power.
【請求項14】  前記レーザ光は、スポット溶接時の
パルス幅を周端部全体を溶接する際における照射条件の
3割から8割のパルス幅に設定した、請求項6乃至12
記載の超電導加速管の製造方法。
14. Claims 6 to 12, wherein the pulse width of the laser beam during spot welding is set to 30% to 80% of the irradiation conditions when welding the entire peripheral edge.
The method for manufacturing the superconducting accelerator tube described above.
【請求項15】  前記周端部全体の溶接に際し、溶接
すべき領域を2以上の領域に区分し、各領域間の溶接に
おいて所定の冷却時間を置く、請求項6乃至14記載の
超電導加速管の製造方法。
15. The superconducting accelerator tube according to claim 6, wherein the region to be welded is divided into two or more regions when welding the entire peripheral end portion, and a predetermined cooling time is provided during welding between each region. manufacturing method.
【請求項16】  前記レーザ光が、YAGレーザであ
る、請求項6乃至15記載の超電導加速管の製造方法。
16. The method for manufacturing a superconducting accelerator tube according to claim 6, wherein the laser beam is a YAG laser.
【請求項17】  前記レーザ光は、パルス発振させて
用いる、請求項6乃至16記載の超電導加速管の製造方
法。
17. The method of manufacturing a superconducting accelerator tube according to claim 6, wherein the laser beam is used in pulsed oscillation.
JP3088355A 1990-10-31 1991-04-19 Superconductive acceleration tube and manufacture thereof Pending JPH04218300A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US07/746,122 US5239157A (en) 1990-10-31 1991-08-15 Superconducting accelerating tube and a method for manufacturing the same
EP19910308301 EP0483964A3 (en) 1990-10-31 1991-09-11 A superconducting accelerating tube and a method for manufacturing the same
CN91108047A CN1061316A (en) 1990-10-31 1991-10-22 Superconducting accelerating tube and manufacture method thereof
KR1019910018753A KR920008810A (en) 1990-10-31 1991-10-24 Superconducting pipe and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29394990 1990-10-31
JP2-293949 1990-10-31

Publications (1)

Publication Number Publication Date
JPH04218300A true JPH04218300A (en) 1992-08-07

Family

ID=17801265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3088355A Pending JPH04218300A (en) 1990-10-31 1991-04-19 Superconductive acceleration tube and manufacture thereof

Country Status (2)

Country Link
JP (1) JPH04218300A (en)
KR (1) KR920008810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028012A1 (en) * 1992-12-17 1995-10-19 Nippon Steel Corporation Antenna having a waveguide structure and method of its manufacture
JP2011040321A (en) * 2009-08-17 2011-02-24 Mitsubishi Heavy Ind Ltd Method of manufacturing superconducting acceleration cavity
WO2011055373A1 (en) * 2009-11-03 2011-05-12 The Secretary, Department Of Atomic Energy,Govt.Of India. Niobium based superconducting radio frequency (scrf) cavities comprising niobium components joined by laser welding; method and apparatus for manufacturing such cavities

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995028012A1 (en) * 1992-12-17 1995-10-19 Nippon Steel Corporation Antenna having a waveguide structure and method of its manufacture
JP2011040321A (en) * 2009-08-17 2011-02-24 Mitsubishi Heavy Ind Ltd Method of manufacturing superconducting acceleration cavity
WO2011021553A1 (en) * 2009-08-17 2011-02-24 三菱重工業株式会社 Manufacturing method for superconducting acceleration cavity
US8883690B2 (en) 2009-08-17 2014-11-11 Mitsubishi Heavy Industries, Ltd. Superconducting accelerating cavity production method
WO2011055373A1 (en) * 2009-11-03 2011-05-12 The Secretary, Department Of Atomic Energy,Govt.Of India. Niobium based superconducting radio frequency (scrf) cavities comprising niobium components joined by laser welding; method and apparatus for manufacturing such cavities
JP2013510463A (en) * 2009-11-03 2013-03-21 ザ セクレタリー,デパートメント オブ アトミック エナジー,ガヴァメント,オブ インディア Niobium-based superconducting radio frequency (SCRF) cavity with niobium parts joined by laser welding, method for manufacturing the same, and apparatus for manufacturing the same

Also Published As

Publication number Publication date
KR920008810A (en) 1992-05-28

Similar Documents

Publication Publication Date Title
US5239157A (en) Superconducting accelerating tube and a method for manufacturing the same
KR102404336B1 (en) Copper Welding Method and System Using Blue Laser
EP2496379B1 (en) Method of manufacturing niobium based superconducting radio frequency (scrf) cavities comprising niobium components by laser welding
US4990741A (en) Method of laser welding
JPH10225770A (en) Welding equipment
JPH04218300A (en) Superconductive acceleration tube and manufacture thereof
JP3034294B2 (en) Laser welding method and laser welding device
CN113967787B (en) Laser welding method
CN110773858A (en) Electron beam welding device and welding method
JPH06190575A (en) Welding method and fequipment by laser beam
CN114083150B (en) Method and system for cutting pipe body by laser combination
CN115055810A (en) Aluminum alloy laser welding process based on adjustable ring mode
CN115351420A (en) Laser modification welding method
JP2011071066A (en) Method for manufacturing high-frequency acceleration cavity
JPH02263585A (en) Combined heat source welding equipment
JP2003154477A (en) Laser cutting method and device
JP4828873B2 (en) Superconducting coil manufacturing method, manufacturing apparatus, and superconducting coil
CN110539076A (en) protective gas for laser welding and laser welding method using same
JPH04322100A (en) Manufacture of accelerating tube
JPS6284889A (en) Method and device for laser welding
JP2000348900A (en) Manufacture of superconductive high frequency acceleration cavity
US20230278139A1 (en) Welding method and laser device
CN116393821A (en) Pole welding device and welding method
JP2023032429A (en) Annular region simultaneous welding device, annular region simultaneous welding method, manufacturing method of water heater, and manufacturing method of compressor
Hella et al. High-power lasers in materials processing