JPH04217899A - Method for driving pentagon chopper of five-phase stepping motor - Google Patents

Method for driving pentagon chopper of five-phase stepping motor

Info

Publication number
JPH04217899A
JPH04217899A JP5052991A JP5052991A JPH04217899A JP H04217899 A JPH04217899 A JP H04217899A JP 5052991 A JP5052991 A JP 5052991A JP 5052991 A JP5052991 A JP 5052991A JP H04217899 A JPH04217899 A JP H04217899A
Authority
JP
Japan
Prior art keywords
excitation
windings
winding
phase
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5052991A
Other languages
Japanese (ja)
Other versions
JPH0697876B2 (en
Inventor
Koji Noguchi
野口 孝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PARUSUMOOTAA KK
Original Assignee
NIPPON PARUSUMOOTAA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PARUSUMOOTAA KK filed Critical NIPPON PARUSUMOOTAA KK
Priority to JP3050529A priority Critical patent/JPH0697876B2/en
Publication of JPH04217899A publication Critical patent/JPH04217899A/en
Publication of JPH0697876B2 publication Critical patent/JPH0697876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Stepping Motors (AREA)

Abstract

PURPOSE:To realize the 4-5 driving of a five-phase stepping motor. CONSTITUTION:The 4-5 driving of a five-phase stepping motor can be realized by pentagonally connecting five excitation windings (1), (2), (3), (4), and (5) in the order of (2), (4), (1), (3) and (5) so that a short-circuited non-excitation phase can be generated at every other one-phase excitation winding and selecting the flowing-in output point of an excitation current at each excitation step so that an electric current can flow to two sets of two-phase excitation windings connected in series on both sides of a non-excitation phase when the non-excitation phase is generated and to two and three windings respectively connected in series when no non-excitation phase is generated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は5相ステッピングモータ
のペンタゴンチョッパ駆動方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving a pentagon chopper using a five-phase stepping motor.

【0002】0002

【従来の技術】5箇の励磁巻線(以下巻線と云う)が巻
かれたステータと、永久磁石極を備えたロータとよりな
る5相ステッピングモータの駆動方法として、従来ペン
タゴンチョッパ駆動方法が用いられている。この駆動方
法は図1に示すように5箇の巻線(1)と(2)の巻終
り相互を接続し、巻線(2)と(3)の「●」で示す巻
始め相互を接続し、巻線(3)と(4)の巻終り相互を
接続し、巻線(4)と(5)の巻始め相互を接続し、巻
線(5)の巻終りと巻線(1)の巻始め相互を接続して
、巻線を(1)(2)(3)(4)(5)の順序で直列
ペンタゴン接続する。そしてこれらの巻線を10箇のト
ランジスタスイッチング素子Tr1〜Tr10 を用い
て図2に示す励磁シーケンスのもとに、各巻線に励磁ス
テップ毎に図3(a)〜(j)を1周期とする励磁電流
をそれぞれ流して駆動を行うものである。即ちロータを
図2のCW方向に廻すときには、第1に図1のようにエ
ミッタが電源Vの正極性端子(+)に接続されたスイッ
チング素子Tr9,Tr7,Tr3のオン、コレクタが
電源Vの負極性端子(−)に接続されたスイッチング素
子Tr2,Tr6のオンにより、図3(a)に示す「〇
」点を(+)電位(励磁電流の流入点)として、「●」
点を負電位(励磁電流の流出点)として4箇の巻線(2
)(3)(4)(5)に図中矢印方向の電流を流す。次
にスイッチング素子Tr9,Tr3,Tr8,Tr6,
Tr2をオンとして4箇の巻線(1)(3)(4)(5
)に図3(b)の矢印方向の電流を流す。次に巻線(1
)(2)(4)(5)に図3(c)に示す矢印方向の電
流、巻線(1)(2)(3)(5)に図3(d)の矢印
方向の電流を流し、以下図3(e)→(q)→…の順序
で電流を流したのち最後に図1のスイッチング素子Tr
7,Tr3とTr10 ,Tr6, Tr2をオンとし
て、図3(j)に示す矢印方向の電流を4箇の巻線(1
)(2)(3)(4)に流す励磁順序をとって駆動する
もので、電流流出入ポイントA,B,C,D,Eの電位
関係をまとめると表1のようになる。
[Prior Art] As a method for driving a five-phase stepping motor consisting of a stator wound with five excitation windings (hereinafter referred to as windings) and a rotor equipped with permanent magnet poles, a conventional pentagon chopper driving method has been used. It is used. As shown in Figure 1, this driving method connects the ends of five windings (1) and (2) to each other, and connects the beginnings of windings (2) and (3) indicated by "●" to each other. Then, connect the ends of windings (3) and (4), connect the beginnings of windings (4) and (5), and connect the end of winding (5) and winding (1). The windings are connected to each other at the beginning of the windings, and the windings are connected in series in the order of (1), (2), (3), (4), and (5). Then, these windings are subjected to the excitation sequence shown in FIG. 2 using 10 transistor switching elements Tr1 to Tr10, and each winding is subjected to one cycle of FIGS. 3(a) to (j) for each excitation step. They are driven by passing excitation currents through them. That is, when rotating the rotor in the CW direction in FIG. 2, firstly, as shown in FIG. By turning on the switching elements Tr2 and Tr6 connected to the negative polarity terminal (-), the "〇" point shown in FIG.
Four windings (2
) (3), (4), and (5), apply a current in the direction of the arrow in the figure. Next, switching elements Tr9, Tr3, Tr8, Tr6,
Turn on Tr2 and turn on four windings (1) (3) (4) (5
), a current is applied in the direction of the arrow in FIG. 3(b). Next, the winding (1
) (2), (4), and (5) in the direction of the arrow shown in Fig. 3(c), and in the windings (1), (2), (3), and (5) a current in the direction of the arrow in Fig. 3(d). , after passing the current in the order shown in Figure 3(e) → (q) →..., the switching element Tr in Figure 1 is finally connected.
7.Turn on Tr3, Tr10, Tr6, and Tr2, and apply current in the direction of the arrow shown in Figure 3(j) to four windings (1
), (2), (3), and (4), and the potential relationships at the current inflow and outflow points A, B, C, D, and E are summarized as shown in Table 1.

【表1】 このペンタゴン駆動方式では常に5相のうち4相の巻線
に電流を流す4相励磁、即ち4−4φフルステップ励磁
であるため常に最大出力が発揮される。しかも図3中に
示すように各励磁ステップ毎に電流流入点(図中「〇」
点)または電流流出点(図中「●」点)が5相のうちの
異なる1相の両端に必ず位置することになる。従って例
えば図3(a)のように電流流入点が両端に作られた「
×」で示す巻線(1)においては、スイッチング素子T
r7,Tr9のオンにより短絡された状態になるか、ま
たは図3(b)のように電流の流出点が作られた場合に
は、巻線(2)の両端が短絡され、1周期において巻線
(1)(2)(3)(4)(5)の順序で短絡状態にな
る。このためこのとき巻線に生じた誘起電圧の短絡によ
り、ロータを制御する方向の電流を流して周知の発電制
動が行われる。従ってフィードバック制御を行うことな
しにすぐれたダンピングをロータにきかせて共振現象を
効果的に消し去るすぐれた利点がある。またこれに加え
て他の駆動方式例えばスタンダード駆動方式の場合制御
用トランジスタスイッチング素子が図4に示すように原
理的に20箇必要であるに対し、図1に示すように1/
2の10箇ですむ回路構成上のすぐれた利点が得られる
[Table 1] In this pentagon drive system, the maximum output is always exerted because it is four-phase excitation in which current is always passed through the windings of four of the five phases, that is, 4-4φ full-step excitation. Moreover, as shown in Fig. 3, the current inflow point (marked with "〇" in the figure) is present at each excitation step.
point) or the current outflow point (point "●" in the figure) is always located at both ends of a different one of the five phases. Therefore, for example, as shown in Figure 3(a), current inflow points are created at both ends.
In the winding (1) indicated by “×”, the switching element T
When r7 and Tr9 are turned on, a short circuit occurs, or when a current outflow point is created as shown in Figure 3(b), both ends of the winding (2) are short-circuited, and the winding does not occur in one cycle. The wires (1), (2), (3), (4), and (5) become short-circuited in this order. For this reason, due to the short circuit of the induced voltage generated in the windings at this time, a current flows in a direction to control the rotor, thereby performing well-known dynamic braking. Therefore, there is an excellent advantage of applying excellent damping to the rotor and effectively eliminating the resonance phenomenon without performing feedback control. In addition to this, in the case of other drive systems, such as the standard drive system, 20 control transistor switching elements are required in principle as shown in FIG.
This provides an excellent advantage in terms of circuit configuration that only 10 parts of 2 are required.

【0003】0003

【発明が解決しようとする課題】しかしその反面前記し
たように電源の入出力ポイントが5箇所であるにもかか
わらず、必ず各励磁ステップ過程において異なる1相の
巻線の両端を同電位として短絡状態にすることから4−
4φ励磁に限定され、スタンダード方式のようにハーフ
励磁のための所謂4−5φ励磁を行うことができない不
利がある。またこのような駆動方法を採用した場合、例
えば図3中(a)に示すように2相分の電流を流すポイ
ント(図中A,B,E) と1相分の電流しか流さない
ポイント(図中C,D)があり、しかも2相分または1
相分の電流を流すポイントは図3(a)〜(j)に示す
ように励磁過程において次々と変化する。このため制御
回路の構成が複雑になると同時に大きい電源容量を必要
とするなど、他の駆動方式に比して経済的な不利がある
。 これに加えて電流流出入ポイントにおける電位の変化を
励磁シーケンスに沿って見ると、制御用トランジスタス
イッチング素子は前記表1のようにH−L−H−Lの急
激な電位変化をオフタイムをもつことなく頻繁に繰返し
受けるため、トランジスタは過酷な条件で使用されるこ
とになる。従ってトランジスタの破損を回避するための
工夫が必要となり、上記電流の供給上の回路の複雑化と
併せて回路構成を著しく複雑にする。このため使用条件
によっては、他の駆動方式にまさることが明らかである
にもかかわらず、殆ど実用化されていないのが現状であ
る。本発明は4−5φ駆動できるペンタゴン駆動方法の
提供を目的としてなされたものである。
[Problem to be Solved by the Invention] However, on the other hand, as mentioned above, even though there are five input/output points of the power supply, in each excitation step, both ends of the windings of different phases are always short-circuited with the same potential. 4- from making the state
It has the disadvantage that it is limited to 4φ excitation and cannot perform so-called 4-5φ excitation for half excitation as in the standard method. In addition, when such a driving method is adopted, for example, as shown in (a) in Figure 3, there are two points (A, B, and E in the figure) where current for two phases flows, and points (A, B, and E in the figure) where only one phase current flows. C, D) in the figure, and two phases or one
The points at which phase currents flow change one after another during the excitation process, as shown in FIGS. 3(a) to (j). For this reason, the configuration of the control circuit becomes complicated and at the same time it requires a large power supply capacity, which is economically disadvantageous compared to other drive systems. In addition, when looking at the changes in potential at the current inflow and outflow points along the excitation sequence, the control transistor switching element has a rapid potential change of H-L-H-L with an off time as shown in Table 1 above. Transistors are used under harsh conditions because they are subjected to frequent repeated exposure without any damage. Therefore, it is necessary to take measures to avoid damage to the transistors, which, together with the complication of the circuit for supplying the current, significantly complicates the circuit configuration. For this reason, although it is clear that this drive method is superior to other drive methods depending on the conditions of use, it is currently hardly put into practical use. The present invention has been made for the purpose of providing a pentagon driving method capable of driving 4-5φ.

【0004】0004

【課題を解決するための本発明の手段】本発明は図5(
a)(b)に示す4−4φ励磁方式における従来方式と
本発明の結線の対比図から明らかなように、従来のもの
が図5(a)のように巻線が(1)→(2)→(3)→
(4)→(5)の順序で接続され、かつ巻線(1)(2
)が巻終り同士(図「●」点でない点)、(2)(3)
が巻始め同士(図中「●」点)、(3)(4)が巻終り
同士、(4)(5)が巻始め同士、(5)(1)が巻始
め巻終り端がそれぞれ直列に接続されている。これに対
し本発明においては、図5(b)のように巻線を(2)
→(4)→(1)→(3)→(5)または(1)→(3
)→(5)→(2)→(4)の順序で接続し、かつ巻線
(2)(4)が巻始めと巻終り、(4)(1)が巻始め
同士、(1)(3)が巻終りと巻始め、(3)(5)が
巻終りと巻始め、(5)(2)が巻終り同士相互を接続
して、励磁巻線(2)(4)(1)(3)(5)の順序
でペンタゴン接続すると共に、1相の励磁巻線1つおき
に短絡状態の非励磁相が発生し、かつ非励磁相発生時に
はこれをはさむ2つの相の直列巻線2組に励磁電流が流
れ、非励磁相無発生時には2つの直列巻線と3つの相の
直列励磁巻線に励磁電流を流れるように、制御用トラン
ジスタスイッチング素子をオンオフ制御して、電流流入
点「〇」および電流流出点「●」を選定することを特徴
とするものである。
[Means of the present invention for solving the problems] The present invention is as shown in FIG.
As is clear from the comparison diagrams of the conventional 4-4φ excitation system and the connection of the present invention shown in a) and (b), in the conventional system, the winding changes from (1) to (2) as shown in Fig. 5(a). )→(3)→
Connected in the order of (4) → (5), and windings (1) (2)
) are at the end of the volume (points that are not "●" points in the figure), (2) (3)
(3) and (4) are the ends of the winding, (4) and (5) are the beginnings of the winding, and (5) and (1) are the beginning of the winding and the end of the winding are in series. It is connected to the. On the other hand, in the present invention, as shown in FIG. 5(b), the winding is
→(4)→(1)→(3)→(5) or (1)→(3
) → (5) → (2) → (4), and windings (2) and (4) are connected at the beginning and end of winding, (4) and (1) are connected at the beginning of winding, and (1) ( 3) is the end of the winding and the beginning of the winding, (3) (5) is the end of the winding and the beginning of the winding, (5) (2) is the end of the winding and the end of the winding are connected to each other, and the excitation winding (2) (4) (1) (3) In addition to connecting the pentagons in the order of (5), a short-circuited non-excited phase occurs every other excitation winding of one phase, and when a non-excited phase occurs, the series windings of the two phases sandwich this. The control transistor switching element is controlled on and off so that the excitation current flows through the two sets, and when the non-excitation phase is absent, the excitation current flows through the two series windings and the series excitation windings of the three phases. This is characterized by selecting "〇" and the current outflow point "●".

【0005】[0005]

【作用・効果】今電流が巻終りから巻始め方向に流れる
時を+(プラス)、巻始めから巻終り方向に流れる電流
を−(マイナス)とし、トルクを発生させる巻線を(1
)(3)(5)(2)(4)で示すと、図6(a)のよ
うに最初電流流入出点をポイントC,A,Eに選定すれ
ば、(a)は(+2)(+3)(+4)(+5)となっ
てトルクは加算的に働く。次に図6(a1 )のように
電流流入点をポイントC,流出点をポイントAに選定す
ることにより、巻線(5)(3)の直列回路と巻線(2
)(4)(1)の直列回路を形成して5相全部に所要励
磁極性の電流を流せば(a1 )は(+2)(+3)(
+4)(+5)(−1)となってトルクは加算的に働く
。次に図6(b)のように電流流入出点を図6(b)と
同様に短絡相(2)以外の4相に電流を流せば、図6(
b)は(+3)(+4)(+5)(−1)となってトル
クは加算的に働き、次に図6(b1 )のように電流の
流入出点をD,Aに選定して巻線(2)(5)(3)の
直列回路と巻線線(4)(1)の直列回路を形成して5
相全部に電流を流せば(b1 )は (+3)(+4)
(+5)(−1)(−2)となってトルクは加算的に働
き、以下図7(c)からは、(c)は (+4)(+5
)(−1)(−2)、(c1 )は (+4)(+5)
(−1)(−2) (−3)、(d)は(+5)(−1
)(−2)(−3)、(d1 )は(+5)(−1)(
−2)(−3)(−4)、(e)は (−1)(−2)
(−3)(−4)、(e1 )は (−1)(−2)(
−3)(−4)(−5)となり、5相の巻線を図5(b
)の通りとしたことによりトルクを常に加算するそれぞ
れ所要極性の電流を4φ→5φ→4φ→5φの順序で流
すことができる。従って、4−5φ励磁を可能としてハ
ーフ駆動を実現できる。またこのときの電流流入出点の
電位変化は表2のようになり、4−4φ励磁と同様にH
レベルとLレベルの間に必ずオフタイムが存在すること
から、トランジスタの保護回路を不要とするなど従来モ
ータの効果を得ながら4−5φ駆動バイポーラペンタゴ
ンチョッパ駆動方法を実現できる。
[Function/Effect] When the current flows from the end of the winding to the start of the winding, it is + (plus), when the current flows from the beginning of the winding to the end of the winding, it is - (minus), and the winding that generates torque is (1
) (3) (5) (2) (4) If the current inflow and outflow points are initially selected at points C, A, and E as shown in Figure 6 (a), (a) becomes (+2) ( +3) (+4) (+5), and the torque acts additively. Next, as shown in Figure 6 (a1), by selecting the current inflow point as point C and the current outflow point as point A, the series circuit of windings (5) and (3) and the winding (2
) (4) If a series circuit of (1) is formed and a current of the required excitation polarity is passed through all five phases, (a1 ) becomes (+2) (+3) (
+4) (+5) (-1), and the torque acts additively. Next, as shown in FIG. 6(b), if current flows through the four phases other than the short-circuited phase (2) at the current inflow and outflow points as in FIG. 6(b),
b) becomes (+3) (+4) (+5) (-1), and the torque acts additively. Next, as shown in Fig. 6 (b1), the current inflow and outflow points are selected as D and A, and the winding is performed. Forming a series circuit of wires (2), (5), and (3) and a series circuit of winding wires (4) and (1), 5
If current flows through all phases, (b1) becomes (+3) (+4)
(+5) (-1) (-2), and the torque acts additively. From Figure 7 (c) below, (c) is (+4) (+5
)(-1)(-2), (c1) is (+4)(+5)
(-1) (-2) (-3), (d) is (+5) (-1
)(-2)(-3), (d1) is (+5)(-1)(
-2) (-3) (-4), (e) is (-1) (-2)
(-3)(-4), (e1) is (-1)(-2)(
-3)(-4)(-5), and the five-phase winding is shown in Figure 5(b).
), it is possible to flow currents of required polarity in the order of 4φ→5φ→4φ→5φ, which always add torque. Therefore, 4-5φ excitation is possible and half drive can be realized. Also, the potential changes at the current inflow and outflow points at this time are as shown in Table 2, and as with 4-4φ excitation, H
Since there is always an off time between the level and the L level, the 4-5φ drive bipolar pentagon chopper driving method can be realized while obtaining the effects of the conventional motor, such as eliminating the need for a transistor protection circuit.

【表2】[Table 2]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】従来方式の巻線接続図である。FIG. 1 is a winding connection diagram of a conventional method.

【図2】従来方式の励磁シーケンス図である。FIG. 2 is an excitation sequence diagram of a conventional method.

【図3】従来方式の各ステップ毎の励磁状態図である。FIG. 3 is an excitation state diagram for each step of the conventional method.

【図4】スタンダード方式のスイッチ回路図である。FIG. 4 is a standard type switch circuit diagram.

【図5】(a)(b)は従来と本発明における巻線接続
の対比図である。
FIGS. 5(a) and 5(b) are comparison diagrams of winding connections in the prior art and in the present invention.

【図6】本発明は4−5φ励磁における各ステップ毎の
励磁状態図である。
FIG. 6 is an excitation state diagram for each step in 4-5φ excitation according to the present invention.

【符号の説明】[Explanation of symbols]

(1)  巻線 (2)  巻線 (3)  巻線 (4)  巻線 (5)  巻線 Tr1〜Tr10   制御用トランジススイッチング
素子A,B,C,D,E  電流流入または流出点。
(1) Winding (2) Winding (3) Winding (4) Winding (5) Winding Tr1 to Tr10 Control transistor switching elements A, B, C, D, E Current inflow or outflow point.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  励磁巻線(1)と(2)の巻終わり相
互を接続し、励磁巻線(2)と(3)の巻始め相互を接
続し、励磁巻線(3)と(4)の巻終り相互を接続し、
励磁巻線(4)と(5)の巻始め相互を接続し、励磁巻
線(5)の巻終りと励磁巻線(1)の巻始め相互を接続
して、(1)(2)(3)(4)(5)の順序で直列接
続してペンタゴン接続とした励磁巻線をステータに設け
、各励磁ステップにおける励磁電流の流出点と流入点を
スイッチング素子のオンオフにより選定して、1相の励
磁巻線を(1)(2)(3)(4)(5)の順序で順次
短絡状態にしながら、他の4相の励磁巻線に回転に必要
な所要極性の励磁電流を流すようにした5相ステッピン
グモータのペンタゴンチョッパ駆動方法において、前記
励磁巻線(2)の巻始めと励磁巻線(4)の巻終り相互
を接続し、励磁巻線(4)と(1)の巻始め相互を接続
し、励磁巻線(1)の巻終りと励磁巻線(3)の巻始め
相互を接続し、励磁巻線(3)の巻終りと励磁巻線(5
)の巻始め相互を接続し、励磁巻線(5)と(2)の巻
終り相互を接続して、励磁巻線を(2)(4)(1)(
3)(5)の順序でペンタゴン接続すると共に、1相の
励磁巻線1つおきに短絡状態の非励磁相が発生し、かつ
非励磁相発生時にはこれをはさむ2つの相の直列巻線2
組に励磁電流が流れ、非励磁相無発生時には2つの直列
巻線と3つの相の直列励磁巻線に励磁電流が流れるよう
に、各励磁ステップにおける励磁電流の流入出点を選定
して、4−5相励磁することを特徴とする5相ステッピ
ングモータのペンタゴンチョッパ駆動方法。
Claim 1: The ends of excitation windings (1) and (2) are connected to each other, the beginnings of excitation windings (2) and (3) are connected to each other, and excitation windings (3) and (4) are connected to each other. ), connect the ends of each volume,
Connect the beginnings of excitation windings (4) and (5), and connect the end of excitation winding (5) and the beginning of excitation winding (1) to form (1), (2), 3) Excitation windings connected in series in the order of (4) and (5) and connected in a pentagonal manner are provided on the stator, and the outflow and inflow points of the excitation current at each excitation step are selected by turning on and off the switching elements. While short-circuiting the excitation windings of the phases in the order of (1), (2), (3), (4), and (5), flow the excitation current with the required polarity necessary for rotation to the excitation windings of the other four phases. In the pentagon chopper driving method for a five-phase stepping motor, the beginning of the excitation winding (2) and the end of the excitation winding (4) are connected to each other, and the excitation windings (4) and (1) are connected to each other. The winding ends of the excitation winding (1) and the excitation winding (3) are connected together, and the end of the excitation winding (3) and the excitation winding (5) are connected together.
), connect the ends of the excitation windings (5) and (2), and connect the excitation windings (2) (4) (1) (
3) In addition to connecting the pentagons in the order of (5), a short-circuited non-excited phase occurs every other excitation winding of one phase, and when a non-excited phase occurs, the series windings 2 of the two phases are sandwiched between them.
The inflow and outflow points of the excitation current at each excitation step are selected so that the excitation current flows through the set, and when the non-excitation phase does not occur, the excitation current flows through the two series windings and the series excitation windings of the three phases. A pentagon chopper driving method for a 5-phase stepping motor characterized by 4-5 phase excitation.
JP3050529A 1991-02-22 1991-02-22 Pentagon chopper driving method for 5-phase stepping motor Expired - Lifetime JPH0697876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050529A JPH0697876B2 (en) 1991-02-22 1991-02-22 Pentagon chopper driving method for 5-phase stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050529A JPH0697876B2 (en) 1991-02-22 1991-02-22 Pentagon chopper driving method for 5-phase stepping motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7272285A Division JPS61231898A (en) 1985-04-08 1985-04-08 Pentagon chopper driving method for 5-phase stepping motor

Publications (2)

Publication Number Publication Date
JPH04217899A true JPH04217899A (en) 1992-08-07
JPH0697876B2 JPH0697876B2 (en) 1994-11-30

Family

ID=12861519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050529A Expired - Lifetime JPH0697876B2 (en) 1991-02-22 1991-02-22 Pentagon chopper driving method for 5-phase stepping motor

Country Status (1)

Country Link
JP (1) JPH0697876B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150655A (en) * 1984-12-22 1986-07-09 Oriental Motor Kk Drive circuit of multilayer stepping motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150655A (en) * 1984-12-22 1986-07-09 Oriental Motor Kk Drive circuit of multilayer stepping motor

Also Published As

Publication number Publication date
JPH0697876B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US4029977A (en) Rotary stepper motor and method of operation
JPS59149780A (en) Drive device for motor
JPS6176099A (en) 5-phase stepping motor
JP2000201461A (en) Magneto brush-less electric motor
JPH01308192A (en) Starting method for sensorless brushless motor
JPH08191591A (en) Device for controlling drive of brushless motor
JPH0517798B2 (en)
JPH08116651A (en) Variable reluctance motor and control method therefor
US4799002A (en) Method of driving a five-phase stepping motor
JPH04217899A (en) Method for driving pentagon chopper of five-phase stepping motor
JPH04183253A (en) Driving circuit of iron core type brushless motor
JP3286052B2 (en) Control circuit for brushless motor
JPH06319294A (en) Five-phase stepping motor
JPH01283090A (en) Driving method for 3-phase dc motor
JPH04312390A (en) Starter for brushless motor
JPH01255494A (en) Method of driving three-phase dc motor
JPH0467439B2 (en)
JPS60128899A (en) Driving method of step motor
JP2931164B2 (en) Drive circuit for brushless motor
JP2000050683A (en) Method for controlling conducting pattern of three- phase double-salient pole reluctance motor
EP0848488A1 (en) Method of driving a multiphase brushless DC motor and output stage
JPH0670578A (en) Brushless motor control circuit
JP2002199769A (en) Drive method for switched reluctance motor
JPH01283088A (en) Driving method for 3-phase dc motor
JPH02106191A (en) Method of controlling motor