JPH01283090A - Driving method for 3-phase dc motor - Google Patents

Driving method for 3-phase dc motor

Info

Publication number
JPH01283090A
JPH01283090A JP88110371A JP11037188A JPH01283090A JP H01283090 A JPH01283090 A JP H01283090A JP 88110371 A JP88110371 A JP 88110371A JP 11037188 A JP11037188 A JP 11037188A JP H01283090 A JPH01283090 A JP H01283090A
Authority
JP
Japan
Prior art keywords
phase
motor
transistor
windings
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP88110371A
Other languages
Japanese (ja)
Inventor
Mikio Sekine
幹夫 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP88110371A priority Critical patent/JPH01283090A/en
Publication of JPH01283090A publication Critical patent/JPH01283090A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To reduce power consumption by providing a common terminal at a common connection end of 3-phase windings. bipolarly driving it at the time of start, and unipolarly driving conducting it after it arrives at a predetermined speed. CONSTITUTION:A 3-phase current motor 1 has a 12-pole stator 2 and an 8-pole rotor 3, windings L1-L3 are wound on the stator 2, and coupled in a Y- connection. The rotor 3 is formed of a permanent magnet, and 3 Hall elements HU-HW are disposed at an internal of 60 degrees (120 degrees of electric al angle) mechanically at each 2 phases of the stator 2 directly thereunder. A control circuit of an analog switch 5 and a switch circuit of a transistor(Tr) is connected to each of the windings L1-L3 of the phases. Thus, the Tr 9 is turned OFF at the time of start, but turned ON by a switching signal when it arrives at a predetermined speed after starting, and one of the Trs 10-12 is selectively turned ON. As a result, a motor is switched from a bipolar drive to a unipolar drive.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ハードディスク装置や光デイスク駆動装置の
ように短時間で高速定常回転まで立上がる必要のある装
置に好適な3相直流モータの駆動方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a three-phase DC motor drive suitable for devices that need to start up to high-speed steady rotation in a short period of time, such as hard disk drives and optical disk drives. Regarding the method.

〔従来の技術〕[Conventional technology]

一般に、直流ブラシレスモータの速度−トルク特性は、
Ωを回転数(rpm)、7を発生トルク(g−am)、
Vを供給電圧(V)、K工を逆起電圧定数(V/rpm
)、、Kfをトルク定数(g・cm/A) 、Rsを巻
線抵抗(Ω)としてで与えられる。
Generally, the speed-torque characteristics of a DC brushless motor are as follows:
Ω is the rotational speed (rpm), 7 is the generated torque (g-am),
V is the supply voltage (V), K is the back electromotive force constant (V/rpm
), , where Kf is the torque constant (gcm/A) and Rs is the winding resistance (Ω).

また、kを定数、Iaを巻線電流とすると、が成立する
Further, when k is a constant and Ia is a winding current, the following holds true.

この種の3相直流モータを、例えば光デイスク装置のス
ピンドルモータとして使用する場合には、比較的低い供
給電圧Vが使用され、一定の巻線電流1aで3相直流モ
ータが駆動される。この場合、装置の小型化の面から小
さな消費電力で駆動され、且つ短時間で所定の高速定常
回転数に達するように駆動することが要求される。
When this type of three-phase DC motor is used, for example, as a spindle motor for an optical disk device, a relatively low supply voltage V is used, and the three-phase DC motor is driven with a constant winding current 1a. In this case, in order to miniaturize the device, it is required to drive the device with low power consumption and to reach a predetermined high-speed steady rotation speed in a short time.

−船釣には、(1)式から供給電圧Vを増加し、発生ト
ルクTを小さくすると高い回転数Ωが得られるが、具体
的には与えられる比較的低い供給電圧Vで所望の回転数
Ωと発生トルクTが得られるように(1)、  (2)
式に基づいて駆動法が設定される。
- For boat fishing, a high rotation speed Ω can be obtained by increasing the supply voltage V and decreasing the generated torque T from equation (1), but specifically, the desired rotation speed can be obtained with a relatively low supply voltage V. Ω and generated torque T (1), (2)
A driving method is set based on the formula.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した従来の方法では、与えられる比較的低い供給電
圧Vで高い回転数Ωを得るには、(1)式から発生トル
クTを小さくしなくてはならない。
In the conventional method described above, in order to obtain a high rotational speed Ω with a given relatively low supply voltage V, the generated torque T must be reduced from equation (1).

そこで、(2)式から巻線電流1a、さらにはトルク定
数に7を小さくすると、発生トルクTを小さくすること
が出来る。
Therefore, by reducing the winding current 1a and furthermore the torque constant by 7 from equation (2), the generated torque T can be reduced.

しかし、このようにして発生トルクTを小さくすると、
起動時に充分なトルクが得られず装置の駆動が円滑に行
なわれないことがある。
However, if the generated torque T is reduced in this way,
At startup, sufficient torque may not be obtained and the device may not drive smoothly.

一方、起動時に充分なトルクを得るために、巻線電流I
aを増加させると、増加した巻線電流に耐えるように巻
線の線径を大きくすることが必要になる。このように巻
線の線径を大きくすると、必要なターン数を確保するた
めに3相直流モ一タ自体が大型化し、製造コストの上昇
にもつながる。
On the other hand, in order to obtain sufficient torque at startup, the winding current I
Increasing a requires increasing the wire diameter of the winding to withstand the increased winding current. Increasing the wire diameter of the winding in this way increases the size of the three-phase DC motor itself in order to secure the necessary number of turns, which also leads to an increase in manufacturing costs.

本発明は、前述したようなこの種の3相直流モータの現
状に鑑みてなされたものであり、その目的は消¥1を力
が少なく、起動時に充分なトルクが発生し、短時間で高
い回転数に到達する3相直流モータの駆動方法をvl案
することにある。
The present invention was made in view of the current state of this type of three-phase DC motor as described above, and its purpose is to reduce power consumption, generate sufficient torque at startup, and generate high torque in a short time. The purpose of this invention is to propose a method for driving a three-phase DC motor that reaches a maximum rotational speed.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明では、3相の巻線が
施されたステータと、このステータの励磁相の切り換え
に応じて回転するロータとを備えた3相直流モータの駆
動方法において、前記3相の巻線の共通接続端部に共通
端子を設け、前記3相直流モータの起動時には、2相の
巻線に通電を行なうバイポーラ駆動を行ない、前記3相
直流モータが予め設定された回転数に達すると、前記共
通端子を用いて1相の巻線に通電してユニポーラ駆動が
行なわれる。
In order to achieve the above object, the present invention provides a method for driving a three-phase DC motor including a stator having three-phase windings and a rotor that rotates in accordance with switching of the excitation phase of the stator. A common terminal is provided at a common connection end of the three-phase windings, and when the three-phase DC motor is started, bipolar drive is performed in which the two-phase windings are energized, and the three-phase DC motor is set in advance. When the rotational speed is reached, the common terminal is used to energize the one-phase winding to perform unipolar drive.

〔作用〕[Effect]

本発明では、ステータの3相の巻線の共通接続端部に共
通端子が設けられている。
In the present invention, a common terminal is provided at the common connection end of the three-phase windings of the stator.

先ず、起動時においてはこの共通端子を使用した通電は
行なわれず、バイポーラ駆動が行なわれる。この場合、
各相の巻線抵抗をr、とすると、(1)式及び(2)式
から、回転数Ω及び発生トルクTは、それぞれ次式で与
えられる。
First, at startup, no current is applied using this common terminal, and bipolar driving is performed. in this case,
If the winding resistance of each phase is r, then from equations (1) and (2), the rotational speed Ω and the generated torque T are given by the following equations, respectively.

T”KtIa          ・・・・・・・・・
(4)次に、3相直流モータの回転数が、予め設定され
た所定値に達すると、前記共通端子を使用した通電が行
なわれる。この場合、通電される巻線の巻数が1/2に
なるので、トルク定数に?及び逆起電圧定数に、は1/
2となり、(1)、(2)式から回転数Ω′及び発生ト
ルクT′は、それぞれ次式で与えられる。
T”KtIa・・・・・・・・・
(4) Next, when the number of rotations of the three-phase DC motor reaches a predetermined value, energization is performed using the common terminal. In this case, the number of turns of the winding to be energized becomes 1/2, so the torque constant? and the back electromotive force constant is 1/
2, and from equations (1) and (2), the rotational speed Ω' and the generated torque T' are given by the following equations, respectively.

Kt    KtKt T””−Ktla        ・・・・・・・・・
(6)このようにして得られた(4)式と(6)式の比
較で明らかなように、起動時の発生トルクTはユニポー
ラ駆動時の2倍で充分なトルクにより、円滑に始動し短
時間で定常時の高い回転数に到達する。また、(3)式
と(5)式の比較で明らかなように、最高回転数に達し
発生トルクが充分に小さくなると、バイポーラ駆動時の
2倍の回転数で回転する。
Kt KtKt T””-Ktla ・・・・・・・・・
(6) As is clear from the comparison of equations (4) and (6) obtained in this way, the torque T generated at startup is twice that of unipolar drive, which is sufficient to ensure smooth startup. Achieves high steady rotation speed in a short time. Furthermore, as is clear from the comparison of equations (3) and (5), when the maximum rotational speed is reached and the generated torque is sufficiently small, the motor rotates at twice the rotational speed as in bipolar drive.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図ないし第3図(a)、 
 (b)、  (c)に基づいて詳細に説明する。
Embodiments of the present invention are shown in FIGS. 1 to 3(a),
This will be explained in detail based on (b) and (c).

ここで、第1図は実施例に係る3相直流モータの制御回
路を示す回路図、第2図は実施例に係る3相直流モータ
の概略構成を示す説明図、第3図(a)、  (b)、
  (c)はそれぞれ巻線の結線状態と電流の流れを示
す説明図である。
Here, FIG. 1 is a circuit diagram showing a control circuit of a three-phase DC motor according to an embodiment, FIG. 2 is an explanatory diagram showing a schematic configuration of a three-phase DC motor according to an embodiment, and FIG. (b),
(c) is an explanatory diagram showing the connection state of the windings and the flow of current, respectively.

第2図に示すように、3相直流モータlは12臘のステ
ータ2と8鴇のロータ3とからなり、ステータ2には巻
線L+ 、Lx 、L3が巻回され、第3図(a)〜(
c)に示すようにYifi!線されている。ロータ3は
、S極とN極が交互に磁化されて形成された永久磁石か
らなり、このロータ3はステータ2の外周に回転自在に
配されている。実施例は、3相直流モータ1が120度
通電される場合で、ロータ3の直下にステータ2の2相
毎に機械的に60度即ち電気角で120度の間隔で3個
のホール素子Hu 、Hv、Hwが配設されている。
As shown in Fig. 2, the three-phase DC motor 1 consists of a 12-piece stator 2 and an 8-piece rotor 3, and the stator 2 is wound with windings L+, Lx, and L3. )~(
As shown in c) Yifi! It is lined. The rotor 3 is made of a permanent magnet formed by alternately magnetizing S and N poles, and is rotatably arranged around the outer periphery of the stator 2. In the example, a three-phase DC motor 1 is energized at 120 degrees, and three Hall elements Hu are installed directly below the rotor 3 for each two phases of the stator 2 at an interval of 60 degrees mechanically, that is, 120 degrees in electrical angle. , Hv, and Hw are provided.

−mに、3相直流モータの駆動に際しては、ボール素子
Hu 、Hv 、Hwの出力が、図示せぬ駆動回路に入
力されて所定の信号処理が行なわれ、駆動回路の出力端
子h1□、hv、h、から巻線L1.LZ、L3に駆動
電流が供給される。この駆動電流によって巻vAL1の
U端子、巻線L2の■端子、巻線り、のW端子が、位相
角360”(1周′M)ごとに信号の論理値“0”の状
態、0PEN状態、信号の論理値“1”の状態、0PE
N状態を繰り返す。このために、U端子−■端子間、U
端子−W端子間、■端子−W端子間において、60°ご
とに励磁極の切換が行われ、形成される【は界によって
ロータ3が回転する。
-m, when driving the three-phase DC motor, the outputs of the ball elements Hu, Hv, Hw are input to a drive circuit (not shown) and predetermined signal processing is performed, and the output terminals h1□, hv of the drive circuit are , h, to winding L1. A drive current is supplied to LZ and L3. This drive current causes the U terminal of the winding vAL1, the ■ terminal of the winding L2, and the W terminal of the winding to be in the logic value "0" state and 0PEN state at every phase angle of 360" (one round 'M). , the state of the logical value “1” of the signal, 0PE
Repeat N state. For this reason, between the U terminal and the
The excitation pole is switched every 60 degrees between the terminal and the W terminal, and between the terminal and the W terminal, and the rotor 3 is rotated by the field formed.

実施例においては、第3図(a)に示すように、各相の
巻線L+ 、L! 、Lsの共通接続端子部に共通端子
Cが設けられ、第1図に示すように駆動回路の出力端子
hu、hv、h、と巻線Ll。
In the embodiment, as shown in FIG. 3(a), the windings L+, L! of each phase are connected to each other. , Ls are provided with a common terminal C, and as shown in FIG. 1, the output terminals hu, hv, h of the drive circuit and the winding Ll.

Lt、L3のU端子、■端子、W端子間に、アナログス
イッチ5とトランジスタのスイッチ回路とからなる制御
回路が接続されている。すなわち、出力端子hu、hv
、h、がアナログスイッチ5を介して、それぞれトラン
ジスタ6.7.8のベースに接続され、トランジスタ6
.7.8のコレクタは、それぞれ巻線L+ 、Lt 、
L、sのU端子。
A control circuit consisting of an analog switch 5 and a transistor switch circuit is connected between the U terminal, ■ terminal, and W terminal of Lt and L3. That is, the output terminals hu, hv
, h, are connected to the bases of transistors 6, 7, and 8, respectively, via analog switch 5, and
.. 7.8 collectors have windings L+, Lt, respectively.
U terminal of L, s.

V 3:N子、W端子に接続されている。V3: N terminal, connected to W terminal.

また、共通端子Cがトランジスタ9のエミッタに接続さ
れ、このトランジスタ9のコレクタと前述のトランジス
タG、7.8のエミッタには所定のバイアス電圧VCC
が印加されている。そして、トランジスタ6.7.8の
コレクタが、ぞれぞれトランジスタ10.11.12の
コレクタに!2続され、トランジスタ10,11.12
のエミッタはアースされている。
Further, a common terminal C is connected to the emitter of a transistor 9, and a predetermined bias voltage VCC is applied to the collector of this transistor 9 and the emitters of the aforementioned transistors G and 7.8.
is applied. And the collectors of transistors 6, 7, and 8 become the collectors of transistors 10, 11, and 12, respectively! 2 connected, transistors 10, 11, 12
The emitter of is grounded.

このような構成の第1図に示す制御回路において、3相
直流モータの起動時にはトランジスタ9はOFFとなっ
ているが、起動後3相直流モータの回転数が所定の回転
数(例えば1800rpm)に達すると、図示せぬ検出
器がこれを検出してトランジスタ9のベースに端子t4
から切換信号が入力され、トランジスタ9がONとなる
ようになっている。また、アナログスイッチ5によって
、トランジスタ6.7.8の一つが選択されてONとな
り、これに同期して端子Ll+  j!+  i3の一
つにON信号が入力されることにより、トランジスタ1
0,11.12の一つが選択されてONとなるようにな
っている。
In the control circuit shown in FIG. 1 having such a configuration, the transistor 9 is OFF when the three-phase DC motor is started, but after the start, the rotation speed of the three-phase DC motor reaches a predetermined rotation speed (for example, 1800 rpm). When this reaches the terminal t4, a detector (not shown) detects this and connects the base of the transistor 9 to the terminal t4.
A switching signal is input from the transistor 9, and the transistor 9 is turned on. Further, one of the transistors 6, 7, 8 is selected and turned on by the analog switch 5, and in synchronization with this, the terminal Ll+ j! + By inputting an ON signal to one of i3, transistor 1
One of 0, 11, and 12 is selected and turned ON.

起動時において、トランジスタ6とトランジスタ11が
ONとなると、トランジスタ9はOFFなので、巻線L
+、Ltに巻線電流が流れて励磁極が形成される。同様
にして、トランジスタ6とトランジスタ12がONとな
ると、巻線り、、L3で励磁極が形成され、トランジス
タ7とトランジスタ12がONになると、巻線Lt、L
iで励磁極が形成される。また、トランジスタ7とトラ
ンジスタ10がONになると、巻線り、、L、により、
トランジスタ8とトランジスタ10がONになると、巻
’1aLs 、Ltにより、トランジスタ8とトランジ
スタ11がONとなると、巻its。
At startup, when transistor 6 and transistor 11 are turned on, transistor 9 is turned off, so winding L
A winding current flows through + and Lt to form an excitation pole. Similarly, when transistor 6 and transistor 12 are turned on, an excitation pole is formed by windings Lt and L3, and when transistor 7 and transistor 12 are turned on, windings Lt and L3 are formed.
An excitation pole is formed at i. Moreover, when transistor 7 and transistor 10 are turned on, due to the winding, L,
When transistor 8 and transistor 10 are turned on, winding '1aLs and Lt cause winding '1aLs and Lt to turn on, and when transistor 8 and transistor 11 are turned on, winding 'its'.

L、によりそれぞれ励磁極が形成される。L, respectively, form excitation poles.

次に、3相直流モータの回転数が例えば1800rpm
に達したことが検出器で検出されると、切換信号によっ
てトランジスタ9がONとなるので、トランジスタ10
がONになると、巻線L1で励磁極が形成され、トラン
ジスタ11がONになると、巻線Lmで励磁極が形成さ
れ、トランジスタ12がONになると、巻線り、で励磁
極が形成される。
Next, the rotation speed of the three-phase DC motor is, for example, 1800 rpm.
When the detector detects that the switching signal has reached the transistor 10, the switching signal turns on the transistor 9.
When turned ON, an excitation pole is formed by the winding L1, when the transistor 11 is turned ON, an excitation pole is formed by the winding Lm, and when the transistor 12 is turned ON, an excitation pole is formed by the winding Lm. .

3相直流モータの起動時においては、巻&’iLI。When starting a three-phase DC motor, the volume &'iLI.

L、、L3の巻線抵抗をr、とすると、回転数Ωと発生
トルクTは、(1)(2)式から、すでに求めたように
(3)式及び(4)式で与えられる。
If the winding resistance of L, , L3 is r, the rotational speed Ω and the generated torque T are given by equations (3) and (4) as already obtained from equations (1) and (2).

3相直流モータの回転数が、起動後予め設定された回転
数180Orpmに達すると、第1図のトランジスタ9
がONとなるので、巻線L++  LztL、は第3図
(C)に示すようになり、3相直流モータはバイポーラ
駆動からユニポーラ駆動に切換えられる。この場合の3
相直流モータの回転数Ω′と発生トルクT′は、(1)
、  (2)式を用いてすでに求めたように、(5)式
及び(6)のようになる。
When the rotational speed of the three-phase DC motor reaches a preset rotational speed of 180 Orpm after starting, the transistor 9 in FIG.
is turned on, the winding L++ LztL becomes as shown in FIG. 3(C), and the three-phase DC motor is switched from bipolar drive to unipolar drive. 3 in this case
The rotational speed Ω' of the phase-DC motor and the generated torque T' are (1)
, as already obtained using equation (2), as shown in equations (5) and (6).

このようにして得られた(4)式と(6)式から、T−
27’が得られ、バイポーラ駆動される起動時には、ユ
ニポーラ駆動時の2倍の発生トルクが生じ、充分な起動
力で円滑に起動し短時間で回転数が高くなる。
From equations (4) and (6) obtained in this way, T-
27' is obtained, and when bipolar drive is started, twice as much torque as in unipolar drive is generated, and the engine starts smoothly with sufficient starting force, increasing the rotational speed in a short time.

また、(3)式と(5)の比較で明らかなように、3相
直流モータの回転数Ωが最高回転数に達し、発生トルク
が充分に小さくなると、(3)。
Furthermore, as is clear from the comparison between equations (3) and (5), when the rotational speed Ω of the three-phase DC motor reaches the maximum rotational speed and the generated torque becomes sufficiently small, (3).

(5)式で第1項に対して第2項が無視され、定常時に
は従来よりも2倍の回転数Ω’−360Orpmが得ら
れる。
In equation (5), the second term is ignored with respect to the first term, and in steady state, a rotational speed Ω'-360Orpm, which is twice that of the conventional one, is obtained.

このように、実施例によると少ない消費電力によって、
起動時のトルクを充分大きく取って円滑に起動し、短時
間で高い定常回転数に到達するように、3相直流モータ
を駆動することが出来る。
In this way, according to the embodiment, with low power consumption,
It is possible to drive a three-phase DC motor so that the torque at startup is sufficiently large to smoothly start up and reach a high steady rotation speed in a short time.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によると少ない消費
電力で、起動時に充分なトルクを発生し、短時間で高い
定常回転数に達することが出来る。
As described in detail above, according to the present invention, sufficient torque can be generated at startup with low power consumption, and a high steady-state rotation speed can be reached in a short time.

【図面の簡単な説明】 図は全て本発明の詳細な説明するためのもので、第1図
は3相直流モータの制御回路を示す回路図、第2図は実
施例に係る3相直流モータの概略構成を示す説明図、第
3図(a)(b)(c)はそれぞれjI!!線の結線状
態と電流の流れを示す説明図である。 l・・・・・・・・・3相直流モータ、2・・・・・・
・・・ステータ、3・・・・・・・・・ロータ、5・・
・・・・・・・アナログスイッチ、6〜12・・・・・
・・・・トランジスタ、L+ 、Lm、La・・・・・
・・・・巻線。 第1図 第2図 ヂS w
[BRIEF DESCRIPTION OF THE DRAWINGS] All the figures are for explaining the present invention in detail. Fig. 1 is a circuit diagram showing a control circuit of a three-phase DC motor, and Fig. 2 is a circuit diagram showing a control circuit of a three-phase DC motor according to an embodiment. 3(a), (b), and (c) are explanatory diagrams showing the schematic configuration of jI!, respectively. ! FIG. 3 is an explanatory diagram showing the connection state of wires and the flow of current. l...3-phase DC motor, 2...
...Stator, 3...Rotor, 5...
・・・・・・Analog switch, 6 to 12・・・・・・
...transistor, L+, Lm, La...
...winding wire. Figure 1 Figure 2 もS w

Claims (1)

【特許請求の範囲】[Claims] 3相の巻線が施されたステータと、このステータの励磁
相の切り換えに応じて回転するロータとを備えた3相直
流モータの駆動方法において、前記3相の巻線の共通接
続端部に共通端子を設け、前記3相直流モータの起動時
には、2相の巻線に通電を行なうバイポーラ駆動を行な
い、前記3相直流モータが予め設定された回転数に達す
ると、前記共通端子を用いて1相の巻線に通電してユニ
ポーラ駆動を行なうことを特徴とする3相直流モータの
駆動方法。
In a method for driving a three-phase DC motor comprising a stator having three-phase windings and a rotor that rotates in accordance with switching of the excitation phase of the stator, a common connection end of the three-phase windings is A common terminal is provided, and when the three-phase DC motor is started, bipolar drive is performed in which the two-phase windings are energized, and when the three-phase DC motor reaches a preset rotation speed, the common terminal is used to drive the three-phase DC motor. A method for driving a three-phase DC motor, characterized in that unipolar drive is performed by energizing one-phase winding.
JP88110371A 1988-05-09 1988-05-09 Driving method for 3-phase dc motor Pending JPH01283090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP88110371A JPH01283090A (en) 1988-05-09 1988-05-09 Driving method for 3-phase dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP88110371A JPH01283090A (en) 1988-05-09 1988-05-09 Driving method for 3-phase dc motor

Publications (1)

Publication Number Publication Date
JPH01283090A true JPH01283090A (en) 1989-11-14

Family

ID=14534103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP88110371A Pending JPH01283090A (en) 1988-05-09 1988-05-09 Driving method for 3-phase dc motor

Country Status (1)

Country Link
JP (1) JPH01283090A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471353A (en) * 1992-12-18 1995-11-28 Western Digital (Sea), Pte., Ltd. Disk drive employing multi-mode spindle drive system
JP2001271759A (en) * 2000-03-24 2001-10-05 Tokico Ltd Air compressor and its control method
JP2009095170A (en) * 2007-10-10 2009-04-30 Denso Corp Rotary electric machine
WO2009127471A2 (en) * 2008-04-15 2009-10-22 Continental Teves Ag & Co. Ohg Motor pump aggregate for motor vehicle brake regulation systems
US8053915B2 (en) 2007-08-31 2011-11-08 Denso Corporation On-vehicle rotary electric machine operating on two modes of rectification

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471353A (en) * 1992-12-18 1995-11-28 Western Digital (Sea), Pte., Ltd. Disk drive employing multi-mode spindle drive system
US5650886A (en) * 1992-12-18 1997-07-22 Western Digital Corporation Disk drive spindle motor start up using an additional motor winding upon startup failure
JP2001271759A (en) * 2000-03-24 2001-10-05 Tokico Ltd Air compressor and its control method
US8053915B2 (en) 2007-08-31 2011-11-08 Denso Corporation On-vehicle rotary electric machine operating on two modes of rectification
JP2009095170A (en) * 2007-10-10 2009-04-30 Denso Corp Rotary electric machine
JP4609474B2 (en) * 2007-10-10 2011-01-12 株式会社デンソー Rotating electrical machine equipment
US8040096B2 (en) 2007-10-10 2011-10-18 Denso Corporation Rotary electric system with star-connected multiphase stator windings
WO2009127471A2 (en) * 2008-04-15 2009-10-22 Continental Teves Ag & Co. Ohg Motor pump aggregate for motor vehicle brake regulation systems
WO2009127471A3 (en) * 2008-04-15 2010-02-25 Continental Teves Ag & Co. Ohg Motor pump aggregate for motor vehicle brake regulation systems

Similar Documents

Publication Publication Date Title
JPS59149780A (en) Drive device for motor
JP2004521586A (en) System and method for enabling high torque / high speed brushless DC motors
JPS6158461A (en) Brushless dc motor
JPS6335158A (en) Single-phase brushless motor
JPH01283090A (en) Driving method for 3-phase dc motor
JPH08191591A (en) Device for controlling drive of brushless motor
US5043641A (en) Circuit for and method of controlling 4-phase brushless DC motors
JPH11346497A (en) Dc brushless motor and control method therefor
JPH01283088A (en) Driving method for 3-phase dc motor
JP2545797B2 (en) Brushless motor device
JPH0336237Y2 (en)
JPH0795789A (en) Motor
JP3105557B2 (en) Motor device
JPS62141992A (en) Drive unit for brushless motor
JPH03285595A (en) Rotation driving device
JP2001112219A (en) Dc electric motor
JPH06315293A (en) Driving equipment for permanent magnet type motor
JPH0670578A (en) Brushless motor control circuit
JPS6013491A (en) Dc brushless motor
JPS61258696A (en) Starter of magnet rotary type motor
JP2884580B2 (en) Brushless DC motor
JPH01264590A (en) Forward and reverse rotation drive method of three-phase dc motor
JPS5863064A (en) Four-pole dc motor
JP2002199769A (en) Drive method for switched reluctance motor
JPS61244257A (en) Stepping motor