JPH0467439B2 - - Google Patents

Info

Publication number
JPH0467439B2
JPH0467439B2 JP60072722A JP7272285A JPH0467439B2 JP H0467439 B2 JPH0467439 B2 JP H0467439B2 JP 60072722 A JP60072722 A JP 60072722A JP 7272285 A JP7272285 A JP 7272285A JP H0467439 B2 JPH0467439 B2 JP H0467439B2
Authority
JP
Japan
Prior art keywords
excitation
current
winding
windings
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60072722A
Other languages
Japanese (ja)
Other versions
JPS61231898A (en
Inventor
Koji Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pulse Motor Co Ltd
Original Assignee
Nippon Pulse Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pulse Motor Co Ltd filed Critical Nippon Pulse Motor Co Ltd
Priority to JP7272285A priority Critical patent/JPS61231898A/en
Publication of JPS61231898A publication Critical patent/JPS61231898A/en
Publication of JPH0467439B2 publication Critical patent/JPH0467439B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/14Arrangements for controlling speed or speed and torque

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は5相ステツピングモータのペンタゴン
チヨツパ駆動方法に関するものである。 (従来技術) 5箇の励磁巻線(以下巻線と云う)が巻かれた
ステータと、永久磁石極を備えたロータとよりな
る5相ステツピングモータの駆動方法として、従
来ペンタゴンチヨツパ駆動方法が用いられてい
る。この駆動方法は第1図に示すように5箇の巻
線1と2の巻終り相互を接続し、巻線2と3の
「●」で示す巻始め相互を接続し、巻線3と4の
巻終り相互を接続し、巻線4と5の巻始め相互を
接続し、巻線5の巻終りと巻線1の巻始め相互を
接続して、巻線を1,2,3,4,5の順序で直
列ペンタゴン接続する。そしてこれらの巻線を10
箇のトランジスタスイツチング素子Tr1〜Tr10
用いて第2図に示す励磁シーケンスのもとに、各
巻線に励磁ステツプ毎に第3図a〜jを1周期と
する励磁電流をそれぞれ流して駆動を行うもので
ある。 即ちロータを第2図のCW方向に廻すときに
は、第1に第1図のようにエミツタが電源Vの正
極性端子に接続されたスイツチング素子Tr9
Tr7、Tr3のオン、コレクタが電源Vの負極性端
子に接続されたスイツチTr2、Tr6のオンによ
り、第3図aに示す「○」点を電位(励磁電流
の流入点)として、「●」点を負電位(励磁電流
の流出点)として4箇の巻線2,3,4,5に図
中矢印方向の電流を流す。次にスイツチング素子
Tr9、Tr3、Tr8、Tr6、Tr2をオンとして4箇の巻
線1,3,4,5に第3図bの矢印方向の電流を
流す。次に巻線1,2,4,5に第3図cに示す
矢印方向の電流、巻線1,2,3,5に第3図d
の矢印方向の電流を流し、以下第3図e→q→…
の順序で電流を流したのち最後に第1図のスイツ
チTr7、Tr3とTr10、Tr6、Tr2をオンとして、第3
図jに示す矢印方向の電流を4箇の巻線1,2,
3,4に流す励磁順序をとつて駆動するもので、
電流流出入ポイントA,B,C,D,Eの電位関
係をまとめると第1表のようになる。
(Field of Industrial Application) The present invention relates to a method for driving a pentagon jumper of a five-phase stepping motor. (Prior art) As a driving method for a 5-phase stepping motor, which consists of a stator wound with five excitation windings (hereinafter referred to as windings) and a rotor equipped with permanent magnet poles, a conventional pentagon chopper drive is used. method is used. As shown in Fig. 1, this driving method connects the ends of five windings 1 and 2, connects the beginnings of windings 2 and 3 indicated by "●", and connects the ends of windings 3 and 4. Connect the ends of windings 4 and 5, connect the ends of winding 5 and the beginning of winding 1, and connect the windings 1, 2, 3, 4. , 5 are connected in series in the order of pentagons. and these windings as 10
Using the transistor switching elements T r1 to T r10 , an excitation current having one cycle of a to j in Fig. 3 is passed through each winding for each excitation step under the excitation sequence shown in Fig. 2. It is used for driving. That is, when rotating the rotor in the CW direction of FIG. 2, firstly, as shown in FIG. 1, the switching element T r9 whose emitter is connected to the positive terminal of the power supply V,
By turning on T r7 and T r3 and turning on the switches T r2 and T r6 whose collectors are connected to the negative terminal of the power supply V, the point "○" shown in Figure 3a is set to a potential (point of inflow of excitation current). , a current is caused to flow in the direction of the arrow in the figure through the four windings 2, 3, 4, and 5 with the point "●" at a negative potential (the outflow point of the excitation current). Next, the switching element
T r9 , T r3 , T r8 , T r6 , and T r2 are turned on to flow current in the direction of the arrow in FIG. 3b through the four windings 1, 3, 4, and 5. Next, windings 1, 2, 4, and 5 receive current in the direction of the arrow shown in Figure 3 c, and windings 1, 2, 3, and 5 receive current in the direction of the arrow shown in Figure 3 d.
A current is passed in the direction of the arrow, as shown in Figure 3 e → q →...
After passing the current in the order shown in Figure 1, the switches T r7 , T r3 , T r10 , T r6 , and T r2 are turned on, and the third switch is turned on.
The current in the direction of the arrow shown in Figure J is passed through the four windings 1, 2,
It is driven by determining the order of excitation to be applied to 3 and 4.
Table 1 summarizes the potential relationships at the current inflow and outflow points A, B, C, D, and E.

【表】 このペンタゴン駆動方式では常に5相のうち4
相の巻線に電流を流す4相励磁、即ち4−4φフ
ルステツプ励磁であるため常に最大出力が発揮さ
れる。しかも第3図中に示すように各励磁ステツ
プ毎に電流流入点(図中「○」点)または電流流
出点(図中「●」点)が5相のうちの異なる1相
の両端に必ず位置することになる。 従つて例えば第3図aのように電流流入点が両
端に作られた「×」で示す巻線1においては、ス
イツチング素子Tr7、Tr9のオンにより短絡され
た状態になるかまた第3図bのように電流の流出
点が作られた場合には、巻線2の両端が短絡さ
れ、1周期において巻線1,2,3,4,5の順
序で短絡状態になる。このためこのとき巻線に生
じた誘起電圧の短絡により、ロータを制御する方
向の電流を流して周知の発電制動が行われる。従
つてフイードバツク制御を行うことなしにすぐれ
たダンピングをロータにきかせて共振現象を効果
的に消し去るすぐれた利点がある。またこれに加
えて他の駆動方式例えばスタンダード駆動方式の
場合制御用トランジスタスイツチング素子が第4
図に示すように原理的に20箇必要であるに対し、
第1図に示すように1/2の10箇ですむ回路構成上
のすぐれた利点が得られる。 (従来技術の問題点) しかしその反面前記したように電源の入出力ポ
イントが5箇所であるにもかかわらず、必ず各励
磁ステツプ過程において異なる1相の巻線の両端
を同電位として短絡状態にすることから4−4φ
励磁に限定され、例えばスタンダード方式のよう
にハーフ励磁のための所謂4−5φ励磁を行うこ
とができない不利がある。またこのような駆動方
法を採用した場合、例えば第3図中aに示すよう
に2相分の電流を流すポイント(図中A,B,
E)と1相分の電流しか流さないポイント(図中
C,D)があり、しかも2相分または1相分の電
流を流すポイントは第3図a〜jに示すように励
磁過程において次々と変化する。このため制御回
路の構成が複雑になると同時に大きい電源容量を
必要とするなど、他の駆動方式に比して経済的な
不利がある。これに加えて電流流出入ポイントに
おける電位の変化を励磁シーケンスに沿つて見る
と、制御用トランジスタスイツチング素子は前記
第1表のようにH−L−H−Lの急激な電位変化
をオフタイムをもつことなく頻繁に繰返し受ける
ため、トランジスタは過酷な条件で使用されるこ
とになる。従つてトランジスタの破損を回避する
ための工夫が必要となり、上記電流の供給上の回
路の複雑化と併せて回路構成を著しく複雑にす
る。このため使用条件によつては、他の駆動方式
にまさることが明らかであるにもかかわらず、殆
ど実用化されていないのが現状である。 本発明は上記の如きペンタゴン駆動方式のもつ
諸欠点の一層を目的としてなされたものである。 (問題点を解決するための本発明の手段および作
用) 本発明はペンタゴン接続された各相に流される
電流の極性および短絡状態とされる巻線が各励磁
ステツプ段階において従来方式と同一となり、か
つ電流の流される巻線が必ず2相宛直列接続され
た2組になるように、5箇の巻線の接続と電流流
入点と電流流出点を選定して、前記したペンタゴ
ン駆動方式の諸欠点の一層を図つたものである。 即ち第5図a,bに示す4−4φ励磁方式にお
ける従来方式と本発明の結線の対比図から明らか
なように、従来のものが第5図aのように巻線が
1→2→3→4→5の順序で接続され、かつ巻線
1,2が巻終り同士(図「●」点でない点)、2,
3が巻始め同士(図中「●」点)、3,4が巻終
り同士、4,5が巻始め同士、5,1が巻始め巻
終り端がそれぞれ直列に接続されている。 これに対し本発明においては、第5図bのよう
に巻線を2→4→1→3→5または1→3→5→
2→4の順序で接続し、かつ巻線2,4が巻始め
と巻終り、4,1が巻始め同士、1,3が巻終り
と巻始め、3,5が巻終りと巻始め、5,2が巻
終り同士がそれぞれ直列に接続されてペンタゴン
接続されると共に、励磁巻線の各接続点に電流流
入流出点を設け、この電流流入流出点は励磁ステ
ツプ動作時に、第2表に示すように連続3ステツ
プ電流が流入し(第2表中H)、ついで2ステツ
プ休止し、ついで連続3ステツプ電流を流出させ
る(第2表中L)基本シーケンスで駆動され、励
磁ステツプを励磁巻線1,2,3,4,5の順序
で短絡状態にしながら、励磁電流の流される励磁
巻線が各励磁ステツプ段階において、2相宛直列
接続された2組となり、かつ短絡状態とされた励
磁巻線以外の励磁巻線に、回転のための所要極性
の励磁電流をそれぞれ流すようにスイツチング素
子をオンオフ制御して電流流入点「○」と電流流
出点「●」を選定することを特徴とするものであ
る。 即ち第6図aのように電流流入点をポイントC
に選定し、流出点をポイントA,Eに選定するこ
とにより、巻線5,3の直列回路と2,4の直列
回路に電流を流して、各巻線5,3,2,4に第
3図aに示す従来方式と同一極性の電流を流し、
巻線1の両端を同一負電位として短絡状態(図中
×印)にする。次に第6図bのように電流流入を
ポイントCとDに選定し、流出点をポイントAに
選定することにより、各巻線に従来方式を示す第
3図bと同一極性の電流をそれぞれ流すと同時
に、巻線2を短絡状態(図中×印)にする。以下
第6図c〜jに示すように電流の流入出点を選定
することにより、第3図a〜jの従来方式に対応
する電流を各相に流して駆動を行うようにしたも
のである。 (発明の効果) 以上のように本発明では従来のものが電流流入
出ポイントが5箇所であるに対し3箇所であるの
で、それだけ制御回路が簡単になる。また必ず2
つの相が直列になつた回路に共通に電流が流さ
れ、従来のように或るポイントでは2相分、或る
ポイントでは1相分の電流が流入出することがな
くなる。従つて電流のバランスがよくなるばかり
か、電流容量などが1/2になり、トランジスタの
損失の減少による効率の上昇と発熱の低下を図り
うる。しかも本発明では従来と同様各励磁ステツ
プ毎に短絡相を有するためロータの制動に効果を
発揮して共振現象を抑圧できる。また本発明では
巻線が直列になるため従来の駆動方法に比べて電
流の立上りに悪影響を及ぼして高速回転ができな
くなるように考えられ勝ちであるが、本発明では
直列となる2相の既にオンしている相の励磁切換
時に生ずる逆起電力により直列となつた新たな相
が励磁されるので、従来方式と同等またはこれを
上廻るものとなる。 即ち本発明では例えば第6図a→bのステツプ
においてEポイントがオフになつたとき、即ち巻
線の切換時巻線4から逆起電力が発生するが、こ
れはそのまま巻線1に加えられるため立上りは悪
化しない。またオフする巻線2のコイルからの逆
起電力も巻線4に加算的に働くと同時に、巻線2
の短絡電流はロータに最適な制動効果を示すよう
に働く。また第6図b→cのステツプではCポイ
ントがオフとなり、これにより発生した逆起電力
はそのまま巻線2に投入され、またこのときオフ
となつた巻線3に発生した逆起電力も巻線5に加
算的に働くと同時に、巻線3の短絡電流はロータ
に最適な効果を示すように働く。従つて電流の立
上りは従来と同等またはそれ以上になり、短絡相
にもとづく制動効果も向上されて共振現象の発生
を効果的に防ぐことができる。 また更に本発明では第6図a〜jの各ステツプ
における各ポイントA,B,C,D,Eの電位変
化、即ち電流の流入流出点A,B,C,D,Eに
おける電流の流入出状況は第2表のようになる。
例えばポイントAにおける電位変化を見た場合、
[Table] In this pentagon drive system, 4 of the 5 phases are always
Maximum output is always produced because it is four-phase excitation, that is, 4-4φ full-step excitation, in which current flows through the phase windings. Moreover, as shown in Figure 3, the current inflow point (point "○" in the diagram) or current outflow point (point "●" in the diagram) is always located at both ends of a different one of the five phases for each excitation step. will be located. Therefore, for example, as shown in FIG. 3a, in the winding 1 indicated by an "X" where the current inflow points are made at both ends, the switching elements T r7 and T r9 are turned on, and the winding 1 is short-circuited or the third When a current outflow point is created as shown in FIG. b, both ends of the winding 2 are short-circuited, and the windings 1, 2, 3, 4, and 5 are short-circuited in this order in one cycle. For this reason, due to the short circuit of the induced voltage generated in the windings at this time, a current flows in a direction to control the rotor, thereby performing well-known dynamic braking. Therefore, there is an excellent advantage of applying excellent damping to the rotor and effectively eliminating resonance phenomena without performing feedback control. In addition to this, in the case of other drive systems, such as the standard drive system, the control transistor switching element is the fourth
As shown in the figure, 20 pieces are required in principle, but
As shown in Fig. 1, an excellent advantage in terms of the circuit configuration can be obtained by requiring only 10 parts, which is 1/2. (Problems with the prior art) On the other hand, as mentioned above, even though the power supply has five input/output points, in each excitation step, both ends of the windings of different phases are always set to the same potential and short-circuited. 4-4φ
It has the disadvantage that it is limited to excitation and cannot perform so-called 4-5φ excitation for half excitation as in the standard method, for example. In addition, when such a driving method is adopted, for example, as shown in a in Fig. 3, there are points where current for two phases flows (A, B in the figure,
E) and points (C and D in the figure) where only one phase's worth of current flows, and points where two or one phase's worth of current flows one after another during the excitation process as shown in Figure 3 a to j. and changes. For this reason, the configuration of the control circuit becomes complicated and at the same time it requires a large power supply capacity, which is economically disadvantageous compared to other drive systems. In addition, if we look at the changes in potential at the current inflow and outflow points along the excitation sequence, we can see that the control transistor switching element detects the sudden change in potential of H-L-H-L during the off-time as shown in Table 1 above. The transistors are used under harsh conditions because they are subjected to frequent repeated exposures without any damage. Therefore, it is necessary to take measures to avoid damage to the transistors, which, together with the complication of the circuit for supplying the current, significantly complicates the circuit configuration. For this reason, although it is clear that this drive method is superior to other drive methods depending on the conditions of use, it is currently hardly put into practical use. The present invention has been made to further alleviate the various drawbacks of the pentagon drive system as described above. (Means and effects of the present invention for solving the problems) The present invention provides that the polarity of the current flowing through each phase connected to the pentagon and the windings that are shorted are the same as in the conventional system at each excitation step, In addition, the connections of the five windings, the current inflow points, and the current outflow points are selected so that the windings through which the current flows are always two sets connected in series for two phases, and the various aspects of the pentagon drive method described above are selected. This is an attempt to make the shortcomings even worse. That is, as is clear from the comparison diagram of the conventional system and the connection of the present invention in the 4-4φ excitation system shown in FIG. → Connected in the order of 4 → 5, and windings 1 and 2 are connected at the end of each winding (points other than the "●" points in the diagram), 2,
3 and 4 are connected in series with each other at the beginning of the winding (point "●" in the figure), 3 and 4 are connected in series with each other at the end of the winding, 4 and 5 are the beginnings of each winding, and 5 and 1 are connected in series between the beginning and the end of the winding. On the other hand, in the present invention, the windings are changed from 2→4→1→3→5 or 1→3→5→
Connect in the order of 2 → 4, and windings 2 and 4 are the beginning and end of winding, 4 and 1 are the beginnings of winding, 1 and 3 are the end of winding and the beginning of winding, 3 and 5 are the end of winding and the beginning of winding, The winding ends of windings 5 and 2 are connected in series and pentagonally connected, and current inflow and outflow points are provided at each connection point of the excitation winding, and these current inflow and outflow points are shown in Table 2 during the excitation step operation. As shown, it is driven in the basic sequence in which a continuous 3-step current flows in (H in Table 2), then a 2-step pause, and then a continuous 3-step current flows out (L in Table 2), and the excitation step is changed to the excitation winding. While wires 1, 2, 3, 4, and 5 were short-circuited in the order, the excitation windings through which the excitation current was passed became two sets connected in series for two phases at each excitation step stage, and the wires were short-circuited. The feature is that the current inflow point "○" and the current outflow point "●" are selected by controlling the switching elements on and off so that the excitation current of the required polarity for rotation flows through the excitation windings other than the excitation winding. That is. That is, as shown in Figure 6a, the current inflow point is set to point C.
By selecting the outflow points at points A and E, current is passed through the series circuit of windings 5 and 3 and the series circuit of windings 2 and 4, and the third A current of the same polarity as the conventional method shown in figure a is passed,
Both ends of the winding 1 are set to the same negative potential and short-circuited (marked with an x in the figure). Next, as shown in Figure 6b, by selecting points C and D for current inflow and point A for outflow, currents of the same polarity as in Figure 3b, which shows the conventional method, flow through each winding. At the same time, the winding 2 is short-circuited (marked with an x in the figure). By selecting the current inflow and outflow points as shown in Fig. 6 c to j below, the current corresponding to the conventional method shown in Fig. 3 a to j is applied to each phase for driving. . (Effects of the Invention) As described above, in the present invention, the number of current inflow and outflow points is three, compared to five in the conventional system, so the control circuit is simplified accordingly. Also definitely 2
Current is commonly passed through a circuit in which two phases are connected in series, and the current for two phases does not flow in or out at a certain point or for one phase at a certain point, as in the conventional case. Therefore, not only is the current balance improved, but the current capacity is halved, and efficiency can be increased and heat generation can be reduced by reducing transistor loss. Moreover, in the present invention, since a short circuit phase is provided for each excitation step as in the prior art, it is possible to effectively damp the rotor and suppress the resonance phenomenon. In addition, in the present invention, since the windings are connected in series, it is likely that this will have a negative effect on the rise of the current and make it impossible to rotate at high speed compared to conventional drive methods. Since the new phase connected in series is excited by the back electromotive force generated when switching the excitation of the phase that is on, this method is equivalent to or superior to the conventional method. That is, in the present invention, for example, when the E point is turned off in the steps from a to b in FIG. Therefore, the start-up will not deteriorate. In addition, the back electromotive force from the coil of winding 2 that is turned off also acts additively on winding 4, and at the same time
The short-circuit current of acts on the rotor to show an optimal braking effect. Further, in the step from b to c in Fig. 6, point C is turned off, and the back electromotive force generated thereby is directly applied to winding 2, and the back electromotive force generated in winding 3, which is turned off at this time, is also applied to winding 2. At the same time as acting additively on wire 5, the short-circuit current in winding 3 acts with optimal effect on the rotor. Therefore, the rise of the current is equal to or higher than that of the conventional one, and the damping effect based on the shorted phase is improved, so that the occurrence of resonance phenomenon can be effectively prevented. Furthermore, in the present invention, the potential changes at each point A, B, C, D, and E in each step of FIG. The situation is as shown in Table 2.
For example, when looking at the potential change at point A,

【表】 ステツプ第6図a,b,cにおいてはLレベ
ル、即ち、電流の流出、ステツプ第6図d,eに
おいてはオフ即ち電流の流入流出の休止、f,
g,hにおいてはHレベル、即ち電流の流入、ス
テツプ第5図i,jにおいてはオフとなるよう
に、各ポイントB,C,D,EについてもLとH
の間には必ずオフの期間が入る。このため前記従
来方式のように各ポイントにおけるトランジスタ
スイツチング素子は過酷な動作を強いられること
がなく、その結果トランジスタスイツチング素子
の保護回路を必要としなくなるので、前記電流流
出点の減少と共に回路は簡単化される。従つて回
路の複雑化にもとづく実用化への阻害は排除され
る。 また以上では4−4φ励磁について説明したが、
本発明によれば4−5φ励磁が可能となりハーフ
駆動を行うことができる。即ち電流が巻終りから
巻始め方向に流れる時を+(プラス)、巻始めから
巻終り方向に流れる電流を−(マイナス)とし、
トルクを発生させる巻線を1,3,5,2,4で
示すと、第7図aのように4−4φ励磁を示す第
6図と同様に最初電流流入出点をポイントC,
A,Eに選定すれば、aは(+2)(+3)(+
4)(+5)となつてトルクは加算的に働く。次
に第7図a1のように電流流入点をポイントC、流
出点をポイントAに選定することにより、巻線
5,3の直列回路と巻線2,4,1の直列回路を
形成して5相全部に所要励磁極性の電流を流せば
a1は(+2)(+3)(+4)(+5)(−1)とな
つてトルクは加算的に働く。次に第7図bのよう
に電流流入出点を第6図bと同様に短絡相2以外
の4相に電流を流せば、第7図bは(+3)(+
4)(+5)(−1)となつてトルクは加算的に働
き、次に第7図b1のように電流の流入出点をD,
Aに選定して巻線2,5,3の直列かい巻線4,
1の直列回路を形成して5相全部に電流を流せば
b1は(+3)(+4)(+5)(−1)(−2)とな
つてトルクは加算的に働き、以下第7図cから
は、cは(+4)(+5)(−1)(−2)、c1
(+4)(+5)(−1)(−2)(−3)、dは(+
5)(−1)(−2)(−3)、d1は(+5)(−1)
(−2)(−3)(−4)、eは(−1)(−2)(−
3)(−4)、e1は(−1)(−2)(−3)(−4)
(−5)となり、5相の巻線を第5図bの通りと
したことによりトルクを常に加算するそれぞれ所
要極性の電流を4φ→5φ→4φ→5φの順序で流すこ
とができる。従つて、4−5φ励磁を可能として
ハーフ駆動を実現できる。またこのときの電流流
入出点の電位変化は第3表のようになり、4−
4φ励磁と同様にHレベルとLレベルの間に必ず
オフタイムが存在することから、トランジスタの
保護回路を不要とする。従つて前記従来方式の諸
欠点を一掃した実用的なバイポーラペンタゴンチ
ヨツパ駆動方法を実現できる。
[Table] Steps a, b, and c in Fig. 6 are at L level, that is, current flows out, steps d and e in Fig. 6 are OFF, that is, current inflow and outflow are stopped, f,
At each point B, C, D, and E, the L and H levels are set so that the current flows at H level at points g and h, and is off at steps i and j in Fig. 5.
There is always an off period in between. Therefore, unlike the conventional method, the transistor switching elements at each point are not forced to operate harshly, and as a result, there is no need for a protection circuit for the transistor switching elements. Simplified. Therefore, obstacles to practical application due to circuit complexity are eliminated. In addition, although we have explained 4-4φ excitation above,
According to the present invention, 4-5φ excitation is possible and half drive can be performed. In other words, when the current flows from the end of the winding to the start of the winding, it is + (plus), and when the current flows from the beginning of the winding to the end of the winding, it is - (minus).
When the windings that generate torque are shown as 1, 3, 5, 2, and 4, the initial current inflow and outflow points are set at point C, as in Fig. 7a, which shows 4-4φ excitation, as in Fig. 6, which shows 4-4φ excitation.
If A and E are selected, a becomes (+2) (+3) (+
4) (+5), and the torque acts additively. Next, as shown in Figure 7a1 , by selecting the current inflow point as point C and the current outflow point as point A, a series circuit of windings 5 and 3 and a series circuit of windings 2, 4 and 1 are formed. If current with the required excitation polarity is passed through all five phases,
a 1 becomes (+2) (+3) (+4) (+5) (-1), and the torque acts additively. Next, as shown in Fig. 7b, if current flows through the four phases other than short-circuited phase 2 at the current inflow and outflow points as in Fig. 6b, Fig. 7b becomes (+3) (+
4) (+5) (-1), and the torque acts additively. Next, as shown in Figure 7b1 , the current inflow and outflow points are D,
A is selected and windings 2, 5, 3 are connected in series with winding 4,
If a series circuit of 1 is formed and current flows through all 5 phases,
b 1 becomes (+3) (+4) (+5) (-1) (-2), and the torque acts additively, and from Figure 7 c below, c is (+4) (+5) (-1). (-2), c 1 is (+4) (+5) (-1) (-2) (-3), d is (+
5) (-1) (-2) (-3), d 1 is (+5) (-1)
(-2) (-3) (-4), e is (-1) (-2) (-
3) (-4), e 1 is (-1) (-2) (-3) (-4)
(-5), and by arranging the five-phase winding as shown in FIG. 5b, it is possible to flow currents of each required polarity in the order of 4φ→5φ→4φ→5φ, which always adds torque. Therefore, half drive can be realized by enabling 4-5φ excitation. Also, the potential changes at the current inflow and outflow points at this time are as shown in Table 3, and 4-
Similar to 4φ excitation, there is always an off time between H level and L level, so a protection circuit for the transistor is not required. Therefore, it is possible to realize a practical bipolar pentagon chopper driving method that eliminates the various drawbacks of the conventional method.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図a〜jおよび第4図は
従来方式の説明図であつて、このうち第1図は巻
線接続図、第2図は励磁シーケンス図、第3図は
各ステツプ毎の励磁状態図、第4図はスタンダー
ド方式のスイツチ回路図である。第5図a,bは
従来と本発明における巻線接続の対比図、第6図
a〜jは4−4φ励磁における各ステツプ毎の励
磁状態図、第7図は4−5φ励磁における各ステ
ツプ毎の励磁状態図である。 1,2,3,4,5……巻線、Tr1〜Tr10……
制御用トランジスタスイツチング素子、A,B,
C,D,E……電流流入または流出点。
Figures 1, 2, 3 a to 4, and 4 are explanatory diagrams of the conventional system, of which Figure 1 is a winding connection diagram, Figure 2 is an excitation sequence diagram, and Figure 3 is an excitation sequence diagram. is an excitation state diagram for each step, and FIG. 4 is a standard type switch circuit diagram. Figures 5a and b are comparison diagrams of winding connections in the conventional and the present invention, Figures 6a to j are excitation state diagrams for each step in 4-4φ excitation, and Figure 7 is diagrams for each step in 4-5φ excitation. FIG. 1, 2, 3, 4, 5...Winding, T r1 ~ T r10 ...
Control transistor switching element, A, B,
C, D, E... Current inflow or outflow points.

Claims (1)

【特許請求の範囲】 1 励磁巻線を1,2,3,4,5の順序で順次
短絡状態にしながら、他の4相の励磁巻線に回転
に必要な所要極性の励磁電流を流すようにした5
相ステツピングモータのペンタゴンチヨツパ駆動
方法において、 前記励磁巻線2の巻始めと励磁巻線4の巻終わ
り相互を接続し、励磁巻線4と1の巻始め相互を
接続し、励磁巻線1の巻終わりと励磁巻線3の巻
始め相互を接続し、励磁巻線3の巻終わりと励磁
巻線5の巻始め相互を接続し、励磁巻線5と2の
巻終わりを相互を接続して、励磁巻線2,3,
1,4,5の順序でペンタゴン接続すると共に、
励磁巻線の各接続点に電流流入流出点を設け、こ
の電流流入流出点は励磁ステツプ動作時に連続3
ステツプ電流が流入し、ついで2ステツプ休止
し、ついで連続3ステツプ電流を流出させる基本
シーケンスで駆動され、励磁ステツプを励磁巻線
1,2,3,4,5の順序で短絡状態にしなが
ら、励磁電流の流される励磁巻線が各励磁ステツ
プ段階において、2相宛直列接続された2組とな
り、かつ短絡状態とされた励磁巻線以外の励磁巻
線に、回転のための所要極性の励磁電流をそれぞ
れ流すように、各励磁ステツプにおける励磁電流
の流入点と流出点を選定して、4−4相励磁を行
うことを特徴とする5相ステツピングモータのペ
ンタゴンチヨツパ駆動方法。
[Claims] 1. While short-circuiting the excitation windings in the order of 1, 2, 3, 4, and 5, an excitation current of the required polarity necessary for rotation is caused to flow through the excitation windings of the other four phases. I made it to 5
In the pentagonal stepper driving method of a phase stepping motor, the beginning of the excitation winding 2 and the end of the excitation winding 4 are connected to each other, the beginnings of the excitation windings 4 and 1 are connected to each other, and the excitation winding is connected to the end of the excitation winding 4. Connect the end of wire 1 and the beginning of excitation winding 3, connect the end of excitation winding 3 and the beginning of excitation winding 5, and connect the ends of excitation windings 5 and 2 to each other. Connect the excitation windings 2, 3,
Connect the Pentagon in the order of 1, 4, 5, and
A current inflow and outflow point is provided at each connection point of the excitation winding, and this current inflow and outflow point is continuous three times during excitation step operation.
It is driven in a basic sequence in which a step current flows in, then pauses for 2 steps, and then 3 consecutive step currents flow out. At each excitation step stage, the excitation windings through which current flows are connected in series into two sets for two phases, and the excitation windings other than the short-circuited excitation windings are supplied with an excitation current of the required polarity for rotation. A method for driving a pentagon chopper of a five-phase stepping motor, characterized in that 4-4 phase excitation is performed by selecting an inflow point and an outflow point of an excitation current in each excitation step so that the excitation current flows respectively.
JP7272285A 1985-04-08 1985-04-08 Pentagon chopper driving method for 5-phase stepping motor Granted JPS61231898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7272285A JPS61231898A (en) 1985-04-08 1985-04-08 Pentagon chopper driving method for 5-phase stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7272285A JPS61231898A (en) 1985-04-08 1985-04-08 Pentagon chopper driving method for 5-phase stepping motor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP3050529A Division JPH0697876B2 (en) 1991-02-22 1991-02-22 Pentagon chopper driving method for 5-phase stepping motor
JP24853093A Division JPH06319294A (en) 1993-09-10 1993-09-10 Five-phase stepping motor

Publications (2)

Publication Number Publication Date
JPS61231898A JPS61231898A (en) 1986-10-16
JPH0467439B2 true JPH0467439B2 (en) 1992-10-28

Family

ID=13497529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7272285A Granted JPS61231898A (en) 1985-04-08 1985-04-08 Pentagon chopper driving method for 5-phase stepping motor

Country Status (1)

Country Link
JP (1) JPS61231898A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577241B2 (en) * 1988-03-22 1997-01-29 株式会社メレック Small angle drive circuit for stepping motor and its small angle drive method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150655A (en) * 1984-12-22 1986-07-09 Oriental Motor Kk Drive circuit of multilayer stepping motor
JPS61185056A (en) * 1985-02-06 1986-08-18 Meretsuku:Kk 4-5 phase drive system of pentagon wirings of 5-phase pulse motor
JPS6347049A (en) * 1986-08-08 1988-02-27 Toshiba Corp Machining method for diamond member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150655A (en) * 1984-12-22 1986-07-09 Oriental Motor Kk Drive circuit of multilayer stepping motor
JPS61185056A (en) * 1985-02-06 1986-08-18 Meretsuku:Kk 4-5 phase drive system of pentagon wirings of 5-phase pulse motor
JPS6347049A (en) * 1986-08-08 1988-02-27 Toshiba Corp Machining method for diamond member

Also Published As

Publication number Publication date
JPS61231898A (en) 1986-10-16

Similar Documents

Publication Publication Date Title
US4500824A (en) Method of commutation and converter circuit for switched reluctance motors
US5173651A (en) Electrical drive systems
US5254894A (en) Dual-stator induction synchronous motor
EP0206212A2 (en) Improvements in or relating to electrical drive systems
Pollock et al. A unipolar converter for a switched reluctance motor
KR19990088419A (en) Operation of switched reluctance machines
JPS60131096A (en) 2-phase 90 degree motor
JP2000201461A (en) Magneto brush-less electric motor
US6323574B1 (en) Polyphase motor and polyphase motor system for driving the same
US5780949A (en) Reluctance machine with auxiliary field excitations
JPH0337400B2 (en)
WO2017081900A1 (en) Winding count switchable electric machine
JPH10126993A (en) Switching device of winding for motor in machine tool
US4678972A (en) Self-starting single-phase brushless DC motor and control therefor
JPH0467439B2 (en)
JPH069440B2 (en) Driving method for 5-phase stepping motor
JP2003134765A (en) Electric rotating machine for vehicle
KR0182647B1 (en) Single phase induction motor for pole-change
JP2762100B2 (en) Electric motor device
JP2876738B2 (en) Series-parallel switching rotary electric machine
JPH06319294A (en) Five-phase stepping motor
JPH05219787A (en) Driving device for three-phase variable reluctance motor
JPS5914975B2 (en) step motor
GB2208456A (en) Reluctance motor drive circuit
JPH0697876B2 (en) Pentagon chopper driving method for 5-phase stepping motor