JPH04217263A - Electrophotosensitive material - Google Patents

Electrophotosensitive material

Info

Publication number
JPH04217263A
JPH04217263A JP41162690A JP41162690A JPH04217263A JP H04217263 A JPH04217263 A JP H04217263A JP 41162690 A JP41162690 A JP 41162690A JP 41162690 A JP41162690 A JP 41162690A JP H04217263 A JPH04217263 A JP H04217263A
Authority
JP
Japan
Prior art keywords
layer
charge generation
charge
photoreceptor
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41162690A
Other languages
Japanese (ja)
Inventor
Minoru Umeda
実 梅田
Tatsuya Niimi
達也 新美
Mitsuru Hashimoto
充 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP41162690A priority Critical patent/JPH04217263A/en
Publication of JPH04217263A publication Critical patent/JPH04217263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain a laminated electrophotosensitive material which has high sensitivity equal to the initial period even relating to fatigue by repeated use to suppress a rise of residual potential further with small fluctuation. CONSTITUTION:In an electrophotosensitive material formed by laminating a charge generation layer and a charge transport layer on a conductive substrate, quantum efficiency of the sensitive material is set to quantum efficiency or more of the charge generation single layer. Accordingly, carrier generation efficiency of the laminated sensitive material is increased and sensitized more than the case of the single charge generation layer by presence of the charge transport layer. In a result thus obtained, that is, a light carrier in this laminated sensitive material is suggested generated between a charge generation material and a charge transport material, accordingly to increase very high also carrier injection.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電子写真感光体、詳しく
は繰り返し使用による疲労に対しても初期と同等の高感
度を有し、残留電位上昇の抑制された電子写真感光体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photoreceptor, and more particularly to an electrophotographic photoreceptor that has a high sensitivity equivalent to that of the initial state even when fatigued due to repeated use, and an increase in residual potential is suppressed.

【0002】0002

【従来の技術】近年、複写機、プリンター、ファクシミ
リ等に使用される電子写真感光体は、無機系の感光材料
に代わり、有機系の感光材料を用いたものが、安価、大
量生産性、無公害性等を利点として、使用され始めてい
る。有機系の電子写真感光体には、ポリビニルカルバゾ
ール(PVK)に代表される光導電性樹脂、PVK−T
NF(2,4,7トリニトロフルオレノン)に代表され
る電荷移動錯体型、フタロシアニン−バインダーに代表
される顔料分散型、電荷発生物質と電荷輸送物質を組合
せて用いる機能分離型の感光体などが知られており、特
に機能分離型の感光体が無機感光体に匹敵する高感度・
高速応答性を生かして、実用化の中心にある。しかし、
有機系の電子写真感光体の場合には、上記のいずれかの
感光体を用いても、繰返し使用による感光体特性の経時
変化が避けられず、とりわけ残留電位の上昇が感光体の
寿命を決定してしまい、機能分離型の感光体も例外では
なく、改善が強く望まれていた。有機感光体における、
くり返し使用時の残留電位上昇は感光体の寿命を決定す
る重要な因子である。この点を図8、図9を用いて無機
感光体の場合と比較しながら説明する。図8はセレン、
セレン合金、アモルファス・シリコン等に代表される無
機感光体のくり返し使用時の残留電位変動を示す模式図
である。くり返し使用によって残留電位が発生するが、
使用を中断すると残留電位は使用初期値まで低減(回復
)する。一方、有機感光体については、図9に示される
ように、くり返し使用によって残留電位が上昇し、使用
の中断を経ても単調増加する。これが寿命を決定する所
以である。このような有機感光体の残留電位上昇機構は
、若干の仮説はあるものの、未だ明らかでなく、従って
、図9の傾きを小さく設計する指針は皆無であった。 ところで、積層感光体の表面電位の光減衰は電荷発生層
中での光キャリア発生、電荷発生層−電荷輸送層界面で
のキャリア注入、電荷輸送層中のキャリア移動という各
過程を経て生じるところから、電荷発生材料と電荷輸送
材料の両者に依存する。しかるに積層感光体の高感度化
は、電荷発生材料と電荷輸送材料の経験による組み合わ
せから行なわれてきていた。以上のように、これまで積
層感光体の感度と残留電位は独立の特性としてあつかわ
れ、各々の関連性について検討されることがなかった。
[Prior Art] In recent years, electrophotographic photoreceptors used in copiers, printers, facsimile machines, etc. have been made using organic photosensitive materials instead of inorganic photosensitive materials due to their low cost, mass productivity, and ease of use. It is beginning to be used due to its advantages such as being less polluting. Organic electrophotographic photoreceptors include photoconductive resins such as polyvinylcarbazole (PVK) and PVK-T.
There are charge transfer complex type photoreceptors represented by NF (2,4,7 trinitrofluorenone), pigment dispersion types represented by phthalocyanine binders, and functionally separated type photoreceptors that use a combination of a charge generation substance and a charge transport substance. It is known that functionally separated photoreceptors have high sensitivity and are comparable to inorganic photoreceptors.
Taking advantage of its high-speed response, it is at the center of practical application. but,
In the case of organic electrophotographic photoreceptors, even if one of the above photoreceptors is used, changes in photoreceptor characteristics over time due to repeated use cannot be avoided, and in particular, the increase in residual potential determines the lifespan of the photoreceptor. Functionally separated photoreceptors are no exception, and improvements have been strongly desired. In organic photoreceptors,
The increase in residual potential during repeated use is an important factor determining the lifespan of a photoreceptor. This point will be explained using FIGS. 8 and 9 and comparing it with the case of an inorganic photoreceptor. Figure 8 shows selenium,
FIG. 2 is a schematic diagram showing residual potential fluctuations during repeated use of an inorganic photoreceptor typified by selenium alloy, amorphous silicon, and the like. Residual potential is generated due to repeated use,
When use is discontinued, the residual potential decreases (recovers) to the initial value of use. On the other hand, as for the organic photoreceptor, as shown in FIG. 9, the residual potential increases with repeated use and increases monotonically even after discontinuation of use. This is the reason for determining the lifespan. Although there are some hypotheses, the mechanism for increasing the residual potential of such an organic photoreceptor is still not clear, and therefore, there is no guideline for designing the slope shown in FIG. 9 to be small. By the way, photoattenuation of the surface potential of a laminated photoreceptor occurs through the following processes: photocarrier generation in the charge generation layer, carrier injection at the charge generation layer-charge transport layer interface, and carrier movement in the charge transport layer. , depends on both the charge-generating material and the charge-transporting material. However, increasing the sensitivity of laminated photoreceptors has been achieved through experience-based combinations of charge-generating materials and charge-transporting materials. As described above, the sensitivity and residual potential of a laminated photoreceptor have been treated as independent characteristics, and the relationship between them has not been studied.

【0003】0003

【発明が解決しようとする課題】本発明は上記従来技術
の問題を解決し、くり返し使用しても高感度を維持し、
かつ、残留電位が上昇し難い電子写真感光体を提供しよ
うとするものである。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems of the prior art, maintains high sensitivity even after repeated use, and
Moreover, it is an object of the present invention to provide an electrophotographic photoreceptor in which the residual potential does not easily increase.

【0004】0004

【課題を解決するための手段】本発明者らは従来と同様
の各材料を使用しながらも、積層感光体の高感度化技術
を積極的に検討したところ、驚くべきことに積層感光体
の量子効率が、該積層感光体を構成する電荷発生層単層
の量子効率を上回る場合に、従来より残留電位上昇が抑
制された高感度積層感光体が得られることを見出し、本
発明を完成するに到った。本発明によれば導電性基体上
に電荷発生層と電荷輸送層を積層して成る電子写真感光
体において、該感光体の量子効率が、該電荷発生層単層
の量子効率以上であることを特徴とする電子写真感光体
が提供される。電子写真感光体の高感度化と、残留電位
上昇の抑制との間の因果関係を説明できる確たるものは
ないが、本発明における積層感光体の高感度化と残留電
位上昇の抑制に関しては次のような説明ができる。図3
は本発明の実施例1の積層感光体の量子効率と、該積層
感光体に用いたものと同じ電荷発生層単層の量子効率を
同時に示しているが、明らかに積層感光体の量子効率が
電荷発生層単層のそれを上廻っている。一般に積層感光
体の量子効率(φD)と、単層感光体の量子高率(φS
)は各々、式(1)、式(2)で与えられる。 φD=φg×φi×φt        (1)φS=
φg×φt             (2)ここで、 φgはキャリア発生効率、 φiはキャリア注入効率、 φtはキャリア輸送効率を表わす。 露光強度が大きくなく、キャリア輸送が律速にならない
程度(emissionlimitedという)の条件
下ではφt=1と仮定できるため、式(1)、式(2)
は各々、式(3)、式(4)で表わせる。 φD=φg×φi      (3) φS=φg           (4)ここにキャリ
ア注入効率φiは0と1の間の値しかとり得ないため、
図3の積層感光体と電荷発生層の量子効率の結果を式(
3)、式(4)の関係から考えると、明らかに φg(積層感光体)>>φg(電荷発生層単層)である
ことが分かる。換言すれば、実施例1の積層感光体のキ
ャリア発生効率は電荷輸送層の存在によって、電荷発生
層単独の場合より引き上げられ、増感されていることが
分かる。このような結果は、とりもなおさずこの積層感
光体における光キャリアの発生が電荷発生材料と電荷輸
送材料との間で生ずることを示唆しており、従って、キ
ャリア注入も非常に高いと推測される。即ち、この積層
感光体における電荷発生層から電荷輸送層へのキャリア
注入に際して、電荷発生層内に停滞あるいは蓄積するキ
ャリア数は非常に少ないと考えられる。一方、残留電位
の発生原因としては、積層感光体に表面電荷を中和する
能力がない場合、あるいは感光層中にキャリアが蓄積す
る場合が挙げられる。電荷発生層から電荷輸送層へのキ
ャリア注入効率が劣ると、表面電荷を中和する能力が劣
ったり、また、感光層内に電荷が蓄積する可能性が十分
にあり、残留電位を生ずると考えられる。このように積
層感光体における高感度化と残留電位の低減とは電荷発
生層から、電荷輸送層へのキャリア注入効率の良し悪し
で同時に説明がつきそうである。本発明者らは導電性基
体上に電荷発生層と電荷輸送層を積層して成る電子写真
感光体において、該感光体の量子効率が、該電荷発生層
単層の量子効率以上であることを特徴とする電子写真感
光体が、高感度を示し、かつ、残留電位の発生が抑制さ
れた、二つの特性を同じに満足することを経験的に見出
し本発明を完成したが、その理由は上述したように、電
荷発生層から電荷輸送層へのキャリア注入が効率よく生
じ、電荷発生層内でのキャリアの停滞・蓄積がない(少
ない)ことに起因すると考えられる。次に量子効率の測
定方法について述べる。量子効率とは光子1個で除去さ
れた表面電荷数として定義されるが、いくつかの測定方
法が提案されており、その中でも予めコロナ帯電した感
光体に光照射を行ない表面電位の光減衰速度から量子効
率を求める方法が、最も簡便かつ再現性に優れているた
め、種々の研究においても多用されている。この方法は
例えば、フォトケミストリー  アンド  フォトバイ
オロジー誌第8巻、429頁から440頁に記載されて
おり、次の式(5)
[Means for Solving the Problems] The present inventors actively investigated technology for increasing the sensitivity of laminated photoreceptors while using the same materials as before, and surprisingly found that The present invention has been completed by discovering that a highly sensitive laminated photoreceptor with a suppressed increase in residual potential than before can be obtained when the quantum efficiency exceeds the quantum efficiency of a single charge generation layer constituting the laminated photoreceptor. reached. According to the present invention, in an electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer laminated on a conductive substrate, the quantum efficiency of the photoreceptor is greater than or equal to the quantum efficiency of a single layer of the charge generation layer. An electrophotographic photoreceptor with features is provided. Although there is no certainty that can explain the causal relationship between increasing the sensitivity of an electrophotographic photoreceptor and suppressing an increase in residual potential, the following explanation can be given regarding increasing the sensitivity of a laminated photoreceptor and suppressing an increase in residual potential in the present invention. I can explain something like this. Figure 3
shows simultaneously the quantum efficiency of the laminated photoreceptor of Example 1 of the present invention and the quantum efficiency of the single charge generation layer used in the laminated photoreceptor, but it is clear that the quantum efficiency of the laminated photoreceptor is This exceeds that of a single charge generation layer. In general, the quantum efficiency (φD) of a laminated photoconductor and the quantum height (φS) of a single layer photoconductor are
) are given by equations (1) and (2), respectively. φD=φg×φi×φt (1)φS=
φg×φt (2) Here, φg represents carrier generation efficiency, φi represents carrier injection efficiency, and φt represents carrier transport efficiency. Under conditions where the exposure intensity is not large and carrier transport is not rate-limiting (referred to as emission limited), it can be assumed that φt = 1, so Equations (1) and (2)
can be expressed by equations (3) and (4), respectively. φD=φg×φi (3) φS=φg (4) Since the carrier injection efficiency φi can only take a value between 0 and 1,
The results of the quantum efficiency of the laminated photoreceptor and charge generation layer in Figure 3 are expressed by the formula (
3) Considering the relationship of equation (4), it is clear that φg (multilayer photoconductor) >> φg (single charge generation layer). In other words, it can be seen that the carrier generation efficiency of the laminated photoreceptor of Example 1 is increased and sensitized due to the presence of the charge transport layer than in the case of only the charge generation layer. These results suggest that the generation of photocarriers in this laminated photoreceptor occurs between the charge-generating material and the charge-transporting material, and it is therefore assumed that carrier injection is also very high. Ru. That is, when carriers are injected from the charge generation layer to the charge transport layer in this laminated photoreceptor, it is considered that the number of carriers that stagnate or accumulate in the charge generation layer is very small. On the other hand, the residual potential may be caused by the laminated photoreceptor not having the ability to neutralize surface charges, or the accumulation of carriers in the photosensitive layer. It is thought that if the carrier injection efficiency from the charge generation layer to the charge transport layer is poor, the ability to neutralize surface charges will be poor, and there is a good possibility that charges will accumulate in the photosensitive layer, resulting in residual potential. It will be done. In this way, the higher sensitivity and lower residual potential in a laminated photoreceptor seem to be simultaneously explained by the efficiency of carrier injection from the charge generation layer to the charge transport layer. The present inventors have demonstrated that in an electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer laminated on a conductive substrate, the quantum efficiency of the photoreceptor is greater than or equal to the quantum efficiency of a single layer of the charge generation layer. The present invention was completed by empirically discovering that the electrophotographic photoreceptor exhibits high sensitivity and suppresses the generation of residual potential, and completed the present invention. This is considered to be due to the fact that carrier injection from the charge generation layer to the charge transport layer occurs efficiently as described above, and there is no (few) stagnation or accumulation of carriers within the charge generation layer. Next, the method for measuring quantum efficiency will be described. Quantum efficiency is defined as the number of surface charges removed by a single photon, and several measurement methods have been proposed. Among them, a photoreceptor charged with corona is irradiated with light and the rate of light decay of the surface potential is measured. The method of determining quantum efficiency from is the simplest and most reproducible method, and is therefore frequently used in various studies. This method is described, for example, in Photochemistry and Photobiology, Vol. 8, pages 429 to 440, and the following formula (5)

【数1】 によって算出される。ここで、 Cは積層感光体ないしは電荷発生層単層の単位面積当り
の静電容量、 eは電子の素電荷、 Iは光子の吸収速度、 Vは表面電位、 tは時間、 Eは電界である。 量子効率の測定は、上記文献に記載の装置に準拠したも
のによることが好ましいが、市販の静電複写紙試験装置
や、特開昭60−100167号公報に開示されている
装置等を用いても良好に測定できる。なお測定時の入射
光は像露光に使用する領域の波長の単色光が、キャリア
移動律速を生じせしめないような比較的弱い露光量で用
いられる。また、積層感光体の量子効率を測定するに際
して、該感光体を実際に使用しうる電界範囲を含む領域
で測定することが望ましい。具体的には、1×105V
・cm−1から3×105V・cm−1、更に好ましく
は5×104V・cm−1から5×105V・cm−1
を含む電界領域で測定することが望まれる。但し、ここ
に言う電界は感光体にかかる平均値のことであり、表面
電位を感光体膜厚で割った値である。電荷発生層単層の
量子効率も積層感光体の場合と同様の測定から式(5)
によって算出されるが、電荷発生層単層の測定において
は、その膜厚に注意が払われるべきである。即ち、その
膜厚は対応する積層感光体の電荷発生層の厚さと一致す
べきであり、その理由は、電荷発生層中のキャリアの移
動過程を外乱(ノイズ)として混入させないところにあ
る。この他にも電荷発生層単層への光照射を、対応する
積層感光体への光照射と同じ条件で行なうことが好まし
い。次に本発明の電子写真感光体の構成を図面にそって
説明する。図2、図3は本発明の電子写真感光体を表わ
す断面図であり、導電性基体11上に、電荷発生層13
と電荷輸送層15が積層された構成をとっている。導電
性基体11としては、体積抵抗1010Ωcm以下の導
電性を示すもの、例えば、アルミニウム、ニッケル、ク
ロム、ニクロム、銅、銀、金、白金などの金属、酸化ス
ズ、酸化インジウムなどの金属酸化物を、蒸着又はスパ
ッタリングにより、フィルム状もしくは円筒状のプラス
チック、紙に被覆したもの、あるいは、アルミニウム、
アルミニウム合金、ニッケル、ステンレス等の板および
それらをD.I.,I.I.,押出し、引抜き等の工法
で素管化後、切削、超仕上げ、研摩等  で表面処理し
た管等を使用することができる。電荷発生層13は電荷
発生物質を主成分とする層であり、必要に応じてバイン
ダー樹脂を併用することができる。バインダー樹脂とし
ては、ポリアミド、ポリウレタン、ポリエステル、エポ
キシ樹脂、ポリケトン、ポリカーボネート、シリコーン
樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニ
ルホルマール、ポリビニルケトン、ポリスチレン、ポリ
−N−ビニルカルバゾール、ポリアクリルアミドなどが
用いられる。電荷発生物質として、フタロシアニン系顔
料、ナフタロシアニン系顔料、ペリレン系顔料、ペリノ
ン系顔料、キナクリドン系顔料、キノン系縮合多環化合
物、スクアリック酸系染料、アズレニウム系染料、アゾ
顔料等が挙げられ、これらの電荷発生物質は単独で、あ
るいは2種以上併用して用いられる。バインダー樹脂は
、電荷発生物質100重量部に対して0〜100重量部
用いるのが適当であり、好ましくは0〜50重量部であ
る。電荷発生層は、電荷発生物質を必要ならばバインダ
ー樹脂とともに、テトラヒドロフラン、シクロヘキサン
、ジオキサン、ジクロルエタン等の溶媒を用いてボール
ミル、アトライター、サンドミルなどにより分散し、分
散液を適度に希釈して塗布することにより形成できる。 塗布は、浸漬塗工法やスプレーコート、ビードコート法
などを用いて行なうことができる。また、昇華性のある
電荷発生材料については、真空蒸着法をはじめとする真
空薄膜作製法により設けることができ、好ましく使用で
きる。電荷発生層の膜厚は、0.01〜5μm程度が適
当であり、好ましくは0.1〜2μmである。電荷輸送
層22は、電荷輸送物質およびバインダー樹脂を適当な
溶剤に溶解ないし分散し、これを電荷発生層上に塗布、
乾燥することにより形成できる。また、必要により可塑
剤やレベリング剤等を添加することもできる。電荷輸送
層15は電荷輸送物質とバインダー又は高分子電荷輸送
物質とから構成される。電荷輸送物質には、正孔輸送物
質と電子輸送物質とがある。電子輸送物質としては、例
えば、クロルアニル、ブロムアニル、テトラシアノエチ
レン、テトラシアノキノンジメタン、2,4,7−トリ
ニトロ−9−フルオレノン、2,4,5,7−テトラニ
トロ−9−フルオレノン、2,4,5,7−テトラニト
ロキサントン、2,4,8−トリニトロチオキサントン
、2,6,8−トリニトロ−4H−インデノ[1,2−
b]チオフェン−4−オン、1,3,7−トリニトロジ
ベンゾチオフェン−5,5−ジオキサイドなどの電子受
容性物質が挙げられる。正孔輸送物質としては、ポリ−
N−ビニルカルバゾールおよびその誘導体、ポリ−γ−
カルバゾリルエチルグルタメートおよびその誘導体、ピ
レン−ホルムアルデヒド縮合物およびその誘導体、ポリ
ビニルピレン、ポリビニルフェナントレン、オキサゾー
ル誘導体、オキサジアゾール誘導体、イミダゾール誘導
体、モノアリールアミン誘導体、ジアリールアミン誘導
体、トリアリールアミン誘導体、スチルベン誘導体、α
−フェニルスチルベン誘導体、ベンジジン誘導体、ジア
リールメタン誘導体、トリアリールメタン誘導体、9−
スチリルアントラセン誘導体、ピラゾリン誘導体、ジビ
ニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導
体、ブタジエン誘導体などその他公知の材料が挙げられ
用いられる。これらの電荷輸送物質は、単独又は、2種
以上混合して用いられる。バインダー樹脂としてはポリ
スチレン、スチレン−アクリロニトリル共重合体、スチ
レン−ブタジエン共重合体、スチレン−無水マレイン酸
共重合体、ポリエスチル、ポリ塩化ビニル、塩化ビニル
−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニ
リデン、ポリアクリレート樹脂、フェノキシ樹脂、ポリ
カーボネート、酢酸セルロース樹脂、エチルセルロース
樹脂、ポリビニルブチラール、ポリビニルホルマール、
ポリビニルトルエン、ポリ−N−ビニルカルバゾール、
アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミ
ン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹
脂等の熱可塑性または熱硬化性樹脂が挙げられる。これ
らのバインダー樹脂の中でもとりわけビスフェノールA
、ビスフェノールC、ビスフェノールZをビスフェノー
ル成分としたポリカーボネートが好適に使用できる。溶
剤としては、テトラヒドロフラン、ジオキサン、トルエ
ン、モノクロルベンゼン、ジクロルエタン、塩化メチレ
ンなどが用いられる。電荷輸送層の厚さは、5〜50μ
m程度が適当である。本発明において電荷輸送層中に可
塑剤やレベリング剤を添加してもよい。可塑剤としては
、ジブチルフタレート、ジオクチルフタレートなど一般
の樹脂の可塑剤として使用されているものがそのまま使
用でき、その使用量は、バインダー樹脂に対して0〜3
0重量%程度が適当である。レベリング剤としては、ジ
メチルシリコーンオイル、メチルフェニルシリコーンオ
イルなどのシリコーンオイル類や、側鎖にパーフルオロ
アルキル基を有するポリマーあるいはオリゴマーが使用
され、その使用量はバインダー樹脂に対して、0〜1重
量%が適当である。本発明の電子写真感光体には、導電
性支持体11と感光層との間に下引層を設けることがで
きる。下引層は一般には樹脂を主成分とするが、これら
の樹脂はその上に感光層を溶剤で塗布することを考える
と、一般の有機溶剤に対して耐溶剤性の高い樹脂である
ことが望ましい。このような樹脂としては、ポリビニル
アルコール、カゼイン、ポリアクリル酸ナトリウム等の
水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロ
ン等のアルコール可溶性樹脂、ポリウレタン、メラミン
樹脂、フェノール樹脂、アルキッド−メラミン樹脂、エ
ポキシ樹脂等、三次元網目構造を形成する硬化型樹脂な
どが挙げられる。また下引層にはモアレ防止、残留電位
の低減等のために酸化チタン、シリカ、アルミナ、酸化
ジルコニウム、酸化スズ、酸化インジウム等で例示でき
る金属酸化物の微粉末顔料を加えてもよい。これらの下
引層は前述の感光層の如く適当な溶媒、塗工法を用いて
形成することができる。更に本発明の下引層として、シ
ランカップリング剤、チタンカップリング剤、クロムカ
ップリング剤等を使用することもできる。この他本発明
の下引層にはAl2O3を陽極酸化にて設けたものや、
ポリパラキシリレン(パリレン)等の有機物や、SiO
、SnO2、TiO2、ITO、CeO2等の無機物を
真空薄膜作成法にて設けたものも良好に使用できる。下
引層の膜厚は0〜5μmが適当である。本発明の電子写
真感光体には、感光層保護の目的で保護層が感光層の上
に設けられることもある。これに使用される材料として
はABS樹脂、ACS樹脂、オレフィン〜ビニルモノマ
ー共重合体、塩素化ポリエーテル、アリル樹脂、フェノ
ール樹脂、ポリアセタール、ポリアミド、ポリアミドイ
ミド、ポリアクリレート、ポリアリルスルホン、ポリブ
チレン、ポリブチレンテレフタレート、ポリカーボネー
ト、ポリエーテルスルホン、ポリエチレン、ポリエチレ
ンテレフタレート、ポリイミド、アクリル樹脂、ポリメ
チルペンテン、ポリプロピレン、ポリフェニレンオキシ
ド、ポリスルホン、ポリスチレン、AS樹脂、ブタジエ
ン−スチレン共重合体、ポリウレタン、ポリ塩化ビニル
、ポリ塩化ビニリデン、エポキシ樹脂等の樹脂が挙げら
れる。保護層にはその他、耐摩耗性を向上する目的でポ
リテトラフルオロエチレンのような弗素樹脂、シリコー
ン樹脂及びこれら樹脂に酸化チタン、酸化錫、チタン酸
カリウム等の無機材料を分散したもの等を添加すること
ができる。保護層の形成法としては通常の塗布法が採用
される。なお、保護層の厚さは0.5〜10μm程度が
適当である。また、以上のほかに真空薄膜作成法にて形
成したi−C、a−SiCなど公知の材料も保護層とし
て用いることができる。本発明においては感光層と保護
層との間に別の中間層を設けることも可能である。中間
層には一般にバインダー樹脂を主成分として用いる。 これら樹脂としてはポリアミド、アルコール可溶性ナイ
ロン樹脂、水溶性ポリビニルブチラール樹脂、ポリビニ
ルブチラール、ポリビニルアルコールなどが挙げられる
。中間層の形成法としては前述のごとく通常の塗布法が
採用される。なお、中間層の厚さは0.05〜2μm程
度が適当である。また、本発明の電子写真感光体におい
ては、耐環境性の改善のため、とりわけ、感度低下、酸
化環境に基づく残留電位の上昇を防止する目的で、酸化
防止剤を添加することができる。酸化防止剤は、有機物
を含む層ならばいずれに添加してもよいが、電荷輸送物
質を含む層に添加すると良好な結果が得られる。本発明
に用いることができる酸化防止剤として、公知の材料が
使用できるが、とりわけ、ゴム、プラスチック、油脂類
等の市販品を使用することができる。
It is calculated by [Equation 1]. Here, C is the capacitance per unit area of a laminated photoreceptor or a single charge generation layer, e is the elementary charge of electrons, I is the absorption rate of photons, V is the surface potential, t is time, and E is the electric field. be. The quantum efficiency is preferably measured using a device based on the device described in the above-mentioned document, but it is also possible to measure the quantum efficiency by using a commercially available electrostatic copying paper test device, a device disclosed in Japanese Patent Application Laid-open No. 100167/1986, etc. can also be measured well. Incidentally, the incident light during measurement is monochromatic light having a wavelength in the region used for imagewise exposure, and is used at a relatively weak exposure amount so as not to cause rate-determining of carrier movement. Furthermore, when measuring the quantum efficiency of a laminated photoreceptor, it is desirable to measure in a region that includes an electric field range in which the photoreceptor can actually be used. Specifically, 1×105V
・cm-1 to 3×105V·cm−1, more preferably 5×104V·cm−1 to 5×105V·cm−1
It is desirable to measure in an electric field region that includes However, the electric field referred to here is an average value applied to the photoreceptor, and is a value obtained by dividing the surface potential by the photoreceptor film thickness. The quantum efficiency of a single charge generation layer can also be calculated from equation (5) using the same measurements as in the case of a laminated photoreceptor.
However, when measuring a single charge generation layer, attention should be paid to its thickness. That is, the film thickness should match the thickness of the charge generation layer of the corresponding laminated photoreceptor, and the reason for this is to prevent the movement process of carriers in the charge generation layer from being mixed in as disturbance (noise). In addition, it is preferable that the single charge generation layer be irradiated with light under the same conditions as those for the corresponding laminated photoreceptor. Next, the structure of the electrophotographic photoreceptor of the present invention will be explained with reference to the drawings. 2 and 3 are cross-sectional views showing the electrophotographic photoreceptor of the present invention, in which a charge generation layer 13 is formed on a conductive substrate 11.
It has a structure in which a charge transport layer 15 and a charge transport layer 15 are laminated. As the conductive substrate 11, materials exhibiting conductivity with a volume resistance of 1010 Ωcm or less, for example, metals such as aluminum, nickel, chromium, nichrome, copper, silver, gold, and platinum, and metal oxides such as tin oxide and indium oxide are used. , coated on film or cylindrical plastic or paper by vapor deposition or sputtering, or aluminum,
D. plates of aluminum alloy, nickel, stainless steel, etc. I. ,I. I. It is possible to use pipes that have been made into blank pipes using methods such as , extrusion, and drawing, and then have their surfaces treated by cutting, superfinishing, polishing, etc. The charge generation layer 13 is a layer containing a charge generation substance as a main component, and a binder resin can be used in combination as necessary. As the binder resin, polyamide, polyurethane, polyester, epoxy resin, polyketone, polycarbonate, silicone resin, acrylic resin, polyvinyl butyral, polyvinyl formal, polyvinyl ketone, polystyrene, poly-N-vinylcarbazole, polyacrylamide, etc. are used. Examples of charge generating substances include phthalocyanine pigments, naphthalocyanine pigments, perylene pigments, perinone pigments, quinacridone pigments, quinone condensed polycyclic compounds, squaric acid dyes, azulenium dyes, azo pigments, etc. These charge generating substances may be used alone or in combination of two or more. The binder resin is suitably used in an amount of 0 to 100 parts by weight, preferably 0 to 50 parts by weight, based on 100 parts by weight of the charge generating substance. The charge generation layer is prepared by dispersing a charge generation substance together with a binder resin if necessary using a ball mill, attritor, sand mill, etc. using a solvent such as tetrahydrofuran, cyclohexane, dioxane, dichloroethane, etc., diluting the dispersion liquid appropriately and applying it. It can be formed by Application can be performed using a dip coating method, a spray coating method, a bead coating method, or the like. Further, a charge generating material having sublimation property can be provided by a vacuum thin film production method such as a vacuum evaporation method, and can be preferably used. The thickness of the charge generation layer is suitably about 0.01 to 5 .mu.m, preferably 0.1 to 2 .mu.m. The charge transport layer 22 is prepared by dissolving or dispersing a charge transport substance and a binder resin in a suitable solvent, and coating the solution on the charge generation layer.
It can be formed by drying. Moreover, a plasticizer, a leveling agent, etc. can also be added if necessary. The charge transport layer 15 is composed of a charge transport material and a binder or a polymeric charge transport material. Charge transport materials include hole transport materials and electron transport materials. Examples of electron transport substances include chloranil, bromoanil, tetracyanoethylene, tetracyanoquinone dimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 2, 4,5,7-tetranitroxanthone, 2,4,8-trinitrothioxanthone, 2,6,8-trinitro-4H-indeno[1,2-
b] Electron accepting substances such as thiophen-4-one and 1,3,7-trinitrodibenzothiophene-5,5-dioxide. As a hole transport material, poly-
N-vinylcarbazole and its derivatives, poly-γ-
Carbazolylethyl glutamate and its derivatives, pyrene-formaldehyde condensate and its derivatives, polyvinylpyrene, polyvinylphenanthrene, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, monoarylamine derivatives, diarylamine derivatives, triarylamine derivatives, stilbenes derivative, α
-Phenylstilbene derivatives, benzidine derivatives, diarylmethane derivatives, triarylmethane derivatives, 9-
Other known materials such as styryl anthracene derivatives, pyrazoline derivatives, divinylbenzene derivatives, hydrazone derivatives, indene derivatives, and butadiene derivatives can be used. These charge transport substances may be used alone or in combination of two or more. Binder resins include polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, polyester, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, and polychloride. Vinylidene, polyacrylate resin, phenoxy resin, polycarbonate, cellulose acetate resin, ethyl cellulose resin, polyvinyl butyral, polyvinyl formal,
polyvinyltoluene, poly-N-vinylcarbazole,
Examples include thermoplastic or thermosetting resins such as acrylic resins, silicone resins, epoxy resins, melamine resins, urethane resins, phenolic resins, and alkyd resins. Among these binder resins, especially bisphenol A
, bisphenol C, and bisphenol Z as bisphenol components can be suitably used. As the solvent, tetrahydrofuran, dioxane, toluene, monochlorobenzene, dichloroethane, methylene chloride, etc. are used. The thickness of the charge transport layer is 5 to 50μ
A value of about m is appropriate. In the present invention, a plasticizer or a leveling agent may be added to the charge transport layer. As the plasticizer, those used as plasticizers for general resins such as dibutyl phthalate and dioctyl phthalate can be used as they are, and the amount used is 0 to 3
Approximately 0% by weight is appropriate. As the leveling agent, silicone oils such as dimethyl silicone oil and methylphenyl silicone oil, and polymers or oligomers having perfluoroalkyl groups in the side chains are used, and the amount used is 0 to 1 weight by weight based on the binder resin. % is appropriate. In the electrophotographic photoreceptor of the present invention, a subbing layer can be provided between the conductive support 11 and the photosensitive layer. The undercoat layer generally has a resin as its main component, but considering that the photosensitive layer is coated on top of it with a solvent, these resins need to be highly solvent resistant to common organic solvents. desirable. Examples of such resins include water-soluble resins such as polyvinyl alcohol, casein, and sodium polyacrylate, alcohol-soluble resins such as copolymerized nylon, and methoxymethylated nylon, polyurethane, melamine resins, phenolic resins, alkyd-melamine resins, and epoxy resins. Examples include curable resins that form a three-dimensional network structure, such as resins. In addition, fine powder pigments of metal oxides such as titanium oxide, silica, alumina, zirconium oxide, tin oxide, and indium oxide may be added to the undercoat layer to prevent moire and reduce residual potential. These subbing layers can be formed using a suitable solvent and coating method like the photosensitive layer described above. Furthermore, a silane coupling agent, a titanium coupling agent, a chromium coupling agent, etc. can also be used as the subbing layer of the present invention. In addition, the undercoat layer of the present invention may be provided with Al2O3 by anodic oxidation,
Organic substances such as polyparaxylylene (parylene) and SiO
, SnO 2 , TiO 2 , ITO, CeO 2 , and other inorganic materials formed by a vacuum thin film forming method can also be used satisfactorily. The thickness of the undercoat layer is suitably 0 to 5 μm. In the electrophotographic photoreceptor of the present invention, a protective layer may be provided on the photosensitive layer for the purpose of protecting the photosensitive layer. Materials used for this are ABS resin, ACS resin, olefin-vinyl monomer copolymer, chlorinated polyether, allyl resin, phenol resin, polyacetal, polyamide, polyamideimide, polyacrylate, polyallyl sulfone, polybutylene, poly Butylene terephthalate, polycarbonate, polyethersulfone, polyethylene, polyethylene terephthalate, polyimide, acrylic resin, polymethylpentene, polypropylene, polyphenylene oxide, polysulfone, polystyrene, AS resin, butadiene-styrene copolymer, polyurethane, polyvinyl chloride, polychloride Examples include resins such as vinylidene and epoxy resins. In addition, fluororesins such as polytetrafluoroethylene, silicone resins, and dispersions of inorganic materials such as titanium oxide, tin oxide, and potassium titanate in these resins are added to the protective layer for the purpose of improving wear resistance. can do. A normal coating method is adopted as a method for forming the protective layer. Note that the thickness of the protective layer is suitably about 0.5 to 10 μm. In addition to the above, known materials such as i-C and a-SiC formed by a vacuum thin film forming method can also be used as the protective layer. In the present invention, it is also possible to provide another intermediate layer between the photosensitive layer and the protective layer. The intermediate layer generally contains a binder resin as a main component. Examples of these resins include polyamide, alcohol-soluble nylon resin, water-soluble polyvinyl butyral resin, polyvinyl butyral, and polyvinyl alcohol. As a method for forming the intermediate layer, the usual coating method as described above is employed. Note that the thickness of the intermediate layer is suitably about 0.05 to 2 μm. Further, in the electrophotographic photoreceptor of the present invention, an antioxidant can be added for the purpose of improving environmental resistance, particularly for the purpose of preventing a decrease in sensitivity and an increase in residual potential due to an oxidizing environment. The antioxidant may be added to any layer containing an organic substance, but good results are obtained when it is added to a layer containing a charge transport substance. As the antioxidant that can be used in the present invention, known materials can be used, and in particular, commercially available products such as rubber, plastics, oils and fats can be used.

【0005】[0005]

【実施例】次に実施例を示すが、実施例は本発明を詳し
く説明するためのものであり、本発明が実施例によって
制約されるものではない。なお、実施例中の部はすべて
重量部である。
[Examples] Next, examples will be shown, but the examples are for explaining the present invention in detail, and the present invention is not limited by the examples. Note that all parts in the examples are parts by weight.

【0006】実施例1 厚さ0.2mmのアルミ板上に、下記組成の電荷発生層
塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各々
0.2μm厚の電荷発生層、23μm厚の電荷輸送層を
形成した。 電荷発生層塗工液     下記構造のアゾ顔料            
                         
       3部
Example 1 A charge generation layer coating liquid and a charge transport layer coating liquid having the following compositions were sequentially applied and dried on an aluminum plate with a thickness of 0.2 mm to form a charge generation layer with a thickness of 0.2 μm. , a charge transport layer having a thickness of 23 μm was formed. Charge generation layer coating liquid Azo pigment with the following structure

Part 3

【化1】     ポリビニルブチラール(電気化学工業(株)製
デンカブチラール  #4000−1)       
                         
                2部    シクロ
ヘキサノン                    
                        8
0部    2−ブタノン             
                         
          70部  電荷輸送層塗工液     下記構造の電荷輸送物質          
                         
     7部
[Chemical 1] Polyvinyl butyral (Denka Butyral #4000-1 manufactured by Denki Kagaku Kogyo Co., Ltd.)

Part 2 Cyclohexanone
8
0 parts 2-butanone

70 parts Charge transport layer coating liquid Charge transport substance having the following structure

7th part

【化2】     ポリカーボネート(帝人化成(株)製パンライ
トL−1250)    9部    テトラヒドロフ
ラン                       
                   85部実施例
1の積層感光体及び同じに作製した同じ基体上に同一条
件の電荷発生層だけを設けたサンプルの量子効率測定を
、静電複写紙試験装置(川口電気製作所製SP−428
)を用いて行なった。露光は700nmの単色光、2μ
w/cm2に設定した。測定結果を図3に示す。実施例
1の積層感光体は高い量子効率を示しており、高感度で
あることが分かるとともに、積層感光体の量子効率が、
同じ電荷発生層単層の量子効率を大きく上回っているこ
とが明らかである。次に外径80mmのアルミニウムシ
リンダー上に実施例1と同じ積層感光体を設け、これを
現像直前の表面電位が測定できるよう表面電位計端子を
挿入した複写機リコピーFT4820に搭載した。そし
て、5000枚連続複写を行ない、その前後の感光体上
の露光部と非露光部の表面電位を計測した。結果を表1
に示す。
[Chemical formula 2] Polycarbonate (Teijin Kasei Ltd. Panlite L-1250) 9 parts Tetrahydrofuran
85 parts The quantum efficiency measurement of the laminated photoreceptor of Example 1 and a sample prepared in the same manner with only a charge generation layer under the same conditions was carried out using an electrostatic copying paper tester (SP-428 manufactured by Kawaguchi Electric Manufacturing Co., Ltd.).
) was used. Exposure is 700nm monochromatic light, 2μ
It was set at w/cm2. The measurement results are shown in Figure 3. The laminated photoreceptor of Example 1 shows high quantum efficiency, indicating high sensitivity, and the quantum efficiency of the laminated photoreceptor is
It is clear that the quantum efficiency greatly exceeds the quantum efficiency of the same single charge generation layer. Next, the same laminated photoreceptor as in Example 1 was placed on an aluminum cylinder with an outer diameter of 80 mm, and this was mounted on a copying machine, Recopy FT4820, into which a surface electrometer terminal was inserted so that the surface potential could be measured immediately before development. Then, 5,000 sheets were continuously copied, and the surface potentials of the exposed and non-exposed areas on the photoreceptor were measured before and after copying. Table 1 shows the results.
Shown below.

【0007】実施例2 厚さ0.2mmのアルミ板上に、下記組成の各塗工液を
塗布・乾燥して1.5μm厚の下引層、0.2μm厚の
電荷発生層、27μm厚の電荷輸送層を順次設けた。   下引層塗工液     TiO2粉末(石原産業(株)製、タイペーク
R−670)       15部    アルコール
可溶性ナイロン(東レ製アミランCM−4000)  
    6部    メタノール          
                         
               50部    エタノ
ール                       
                         
100部  電荷発生層塗工液     下記構造のアゾ顔料            
                         
       4部
Example 2 Coating liquids having the following compositions were coated on an aluminum plate with a thickness of 0.2 mm and dried to form a subbing layer of 1.5 μm thickness, a charge generation layer of 0.2 μm thickness, and a charge generation layer of 27 μm thickness. charge transport layers were sequentially provided. Undercoat layer coating liquid TiO2 powder (manufactured by Ishihara Sangyo Co., Ltd., Tipeque R-670) 15 parts Alcohol-soluble nylon (Amiran CM-4000, manufactured by Toray Industries)
6 parts methanol

50 parts ethanol

100 parts Charge generation layer coating liquid Azo pigment with the following structure

4th part

【化3】     シクロヘキサノン             
                         
    100部    テトラヒドロフラン    
                         
             40部  電荷輸送層塗工
液     下記構造の電荷輸送物質          
                         
   10部
[Chemical formula 3] Cyclohexanone

100 parts tetrahydrofuran

40 parts Charge transport layer coating liquid Charge transport substance having the following structure

10 copies

【化4】     ポリカーボネートZ樹脂(三菱瓦斯化学(株)
製)              12部    トル
エン                       
                         
    90部
[Chemical formula 4] Polycarbonate Z resin (Mitsubishi Gas Chemical Co., Ltd.)
(manufactured by) 12 parts toluene

90 copies

【0008】実施例3 厚さ0.2mmのアルミ板上に、下記組成の電荷発生層
塗工液、電荷輸送層塗工液を順次、塗布・乾燥して、各
々0.3μm厚の電荷発生層および29μm厚の電荷輸
送層を形成した。   電荷発生層塗工液     下記構造のアゾ顔料            
                         
       5部
Example 3 A charge generation layer coating liquid and a charge transport layer coating liquid having the following compositions were sequentially coated and dried on an aluminum plate having a thickness of 0.2 mm to form a charge generation layer having a thickness of 0.3 μm. A charge transport layer of 29 μm thickness was formed. Charge generation layer coating liquid Azo pigment with the following structure

5th part

【化5】     ポリエステル(東洋紡製バイロン200)  
                      4部 
   テトラヒドロフラン             
                         
    90部    2−ブタノン        
                         
               70部  電荷輸送層
塗工液     下記構造の電荷輸送物質          
                         
   10部
[Chemical formula 5] Polyester (Toyobo Byron 200)
4th part
Tetrahydrofuran

90 parts 2-butanone

70 parts Charge transport layer coating liquid Charge transport substance having the following structure

10 copies

【化6】     ポリカーボネート(帝人化成(株)製パンライ
トK−1300)  11部    ジクロロメタン 
                         
                    90部
[Chemical formula 6] Polycarbonate (Panlite K-1300 manufactured by Teijin Kasei Ltd.) 11 parts Dichloromethane

90 copies

【0
009】比較例1 厚さ0.2mmのアルミ板上に、下記組成の電荷発生層
塗工液、電荷輸送層塗工液を順次、塗布・乾燥して、各
々0.4μm厚の電荷発生層、28μm厚の電荷輸送層
を設けた。   電荷発生層塗工液     X型無金属フタロシアニン         
                         
    5部    ポリビニルブチラール(積水化学
工業(株)製エスレックBL−1)3部    シクロ
ヘキサノン                    
                        8
0部    2−ブタノン             
                         
          30部  電荷輸送層塗工液     下記構造の電荷輸送物質          
                         
     7部
0
Comparative Example 1 A charge generation layer coating liquid and a charge transport layer coating liquid having the following compositions were sequentially applied and dried on an aluminum plate with a thickness of 0.2 mm to form a charge generation layer with a thickness of 0.4 μm. , a charge transport layer with a thickness of 28 μm was provided. Charge generation layer coating liquid X-type metal-free phthalocyanine

5 parts Polyvinyl butyral (Sekisui Chemical Co., Ltd. S-LEC BL-1) 3 parts Cyclohexanone
8
0 parts 2-butanone

30 parts Charge transport layer coating liquid Charge transport substance having the following structure

7th part

【化7】     ポリカーボネート(実施例1に同じ)    
                      11部
    テトラヒドロフラン            
                         
     80部
[Chemical 7] Polycarbonate (same as Example 1)
11 parts Tetrahydrofuran

80 copies

【0010】比較例2 厚さ0.2mmのアルミ板上に、下記組成の下引き層塗
工液、電荷発生層塗工液、電荷輸送層塗工液を順次、塗
布・乾燥して、各々0.2μm厚の下引き層、0.25
μm厚の電荷発生層および24μm厚の電荷輸送層を設
けた。   下引き層塗工液     メタノール                
                         
         80部    n−ブタノール  
                         
                   20部   
 アルコール可溶性ナイロン(アラミンCM−8000
,東レ製)    3部上記組成のメタノール/n−ブ
タノール混合溶媒にアルコール可溶性ナイロンを溶解し
、下引き層塗工液を作製した。   電荷発生層塗工液     下記構造のアゾ顔料            
                         
       7部
Comparative Example 2 On an aluminum plate with a thickness of 0.2 mm, a subbing layer coating liquid, a charge generation layer coating liquid, and a charge transport layer coating liquid having the following compositions were sequentially applied and dried. 0.2 μm thick subbing layer, 0.25
A .mu.m thick charge generation layer and a 24 .mu.m thick charge transport layer were provided. Undercoat layer coating liquid methanol

80 parts n-butanol

20 copies
Alcohol-soluble nylon (Alamine CM-8000
(manufactured by Toray Industries) 3 parts Alcohol-soluble nylon was dissolved in a methanol/n-butanol mixed solvent having the above composition to prepare an undercoat layer coating solution. Charge generation layer coating liquid Azo pigment with the following structure

7th part

【化8】     ポリエステル(東洋紡製バイロン200)  
                  0.5部   
 テトラヒドロフラン               
                         
100部    メチルイソブチルケトン      
                         
       60部  電荷輸送層塗工液     下記構造の電荷輸送物質          
                         
     9部
[Chemical formula 8] Polyester (Toyobo Byron 200)
0.5 part
Tetrahydrofuran

100 parts methyl isobutyl ketone

60 parts Charge transport layer coating liquid Charge transport substance having the following structure

9th part

【化9】     ポリカーボネートZ樹脂(実施例2に同じ) 
                   10部   
 ジオキサン                   
                         
      85部実施例2、3、比較例1、2の各感
光体と、それに対応する電荷発生層単層(ただし、実施
例2と比較例2に対応するサンプルには下引き層も設け
てある)の量子効率を実施例1の場合と同様にして測定
した。ただし、露光条件は表2に示したとおりである。   量子効率の測定結果を図4〜図7に示す。図4から
実施例2の積層感光体の量子効率は電荷発生層単層のそ
れを上廻っていることが明らかである。図5には実施例
3の積層感光体の量子効率を電荷発生層単層のサンプル
は、全く光減衰を生じないため、量子効率=0とみなせ
る。従って、この場合も積層感光体の量子効率が電荷発
生層単層のそれを上廻っている。比較例1、2の結果を
各々、図6、図7に示すが、いずれも積層感光体の量子
効率は電荷発生層単層のそれより低いことが分かる。次
に実施例2、3および比較例1、2の各積層感光体を外
径80mmのアルミシリンダー上に設け、実施例1の場
合同様にして複写機による試験を行ない、その結果を表
3に示す。表  3
[Chemical formula 9] Polycarbonate Z resin (same as Example 2)
10 copies
dioxane

85 parts Each of the photoreceptors of Examples 2 and 3 and Comparative Examples 1 and 2 and a single layer of the corresponding charge generation layer (However, the samples corresponding to Example 2 and Comparative Example 2 were also provided with an undercoat layer. ) was measured in the same manner as in Example 1. However, the exposure conditions are as shown in Table 2. The measurement results of quantum efficiency are shown in FIGS. 4 to 7. It is clear from FIG. 4 that the quantum efficiency of the laminated photoreceptor of Example 2 exceeds that of the single charge generation layer. FIG. 5 shows the quantum efficiency of the laminated photoconductor of Example 3. Since the sample with a single charge generation layer does not cause any optical attenuation, the quantum efficiency can be regarded as 0. Therefore, in this case as well, the quantum efficiency of the laminated photoreceptor exceeds that of a single charge generation layer. The results of Comparative Examples 1 and 2 are shown in FIGS. 6 and 7, respectively, and it can be seen that in both cases, the quantum efficiency of the laminated photoreceptor is lower than that of a single charge generation layer. Next, each of the laminated photoreceptors of Examples 2 and 3 and Comparative Examples 1 and 2 was placed on an aluminum cylinder with an outer diameter of 80 mm, and a test using a copying machine was conducted in the same manner as in Example 1. The results are shown in Table 3. show. Table 3

【0011】[0011]

【発明の効果】本発明によれば、積層感光体の量子効率
が、同一の電荷発生層単層の量子効率以上の場合、残留
電位上昇が抑制され、かつ変動の少ない積層型電子写真
感光隊が提供される。即ち、ポジ−ポジ現像においては
地肌部の汚れを防ぎ、ネガ−ポジ現像においては画像濃
度低下を防止できる。
According to the present invention, when the quantum efficiency of the laminated photoreceptor is higher than the quantum efficiency of the same single charge generation layer, the increase in residual potential is suppressed and the laminated electrophotographic photoreceptor exhibits little fluctuation. is provided. That is, in positive-positive development, it is possible to prevent staining of the background area, and in negative-positive development, it is possible to prevent a decrease in image density.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】[Figure 1]

【図2】本発明の電子写真感光体の層構の例を示す断面
の模式図、
FIG. 2 is a schematic cross-sectional diagram showing an example of the layer structure of the electrophotographic photoreceptor of the present invention;

【図3】[Figure 3]

【図4】[Figure 4]

【図5】[Figure 5]

【図6】[Figure 6]

【図7】各実施例及び比較例で説明した電子写真感光体
とその比較用サンプルについて電界と量子効率の関係を
示すグラフ、
FIG. 7 is a graph showing the relationship between electric field and quantum efficiency for the electrophotographic photoreceptor and its comparative sample explained in each example and comparative example;

【図8】無機感光体のくり返し使用回数と残留電位の関
係を示す
[Figure 8] Shows the relationship between the number of repeated uses and residual potential of an inorganic photoreceptor

【図9】従来の有機感光体のくり返し使用回数と残留電
位の関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the number of repeated uses and residual potential of a conventional organic photoreceptor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  導電性基体上に電荷発生層と電荷輸送
層を積層して成る電子写真感光体において、該感光体の
量子効率が、該電荷発生層単層の量子効率以上であるこ
とを特徴とする電子写真感光体。
Claim 1: In an electrophotographic photoreceptor comprising a charge generation layer and a charge transport layer laminated on a conductive substrate, the quantum efficiency of the photoreceptor is greater than or equal to the quantum efficiency of a single layer of the charge generation layer. Characteristic electrophotographic photoreceptor.
JP41162690A 1990-12-19 1990-12-19 Electrophotosensitive material Pending JPH04217263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41162690A JPH04217263A (en) 1990-12-19 1990-12-19 Electrophotosensitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41162690A JPH04217263A (en) 1990-12-19 1990-12-19 Electrophotosensitive material

Publications (1)

Publication Number Publication Date
JPH04217263A true JPH04217263A (en) 1992-08-07

Family

ID=18520597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41162690A Pending JPH04217263A (en) 1990-12-19 1990-12-19 Electrophotosensitive material

Country Status (1)

Country Link
JP (1) JPH04217263A (en)

Similar Documents

Publication Publication Date Title
JP3224649B2 (en) Electrophotographic photoreceptor
JP3198987B2 (en) Electrophotographic photoreceptor
JP3398765B2 (en) Electrophotographic photoreceptor
JP3917224B2 (en) Electrophotographic photoreceptor
JPH04217263A (en) Electrophotosensitive material
JPH0566577A (en) Electrophotographic sensitive body
JP3816163B2 (en) Electrophotographic photoreceptor
JP3333825B2 (en) Electrophotographic photoreceptor
JPH07181703A (en) Electrophotographic photoreceptor and method for electrophotography
JPH0580544A (en) Electrophotographic sensitive material
JP3883320B2 (en) Photoconductor, organic pigment dispersion and method for producing photoconductor using the same, electrophotographic method, and electrophotographic apparatus
JP3745751B2 (en) Electrophotographic photoreceptor
JPH0553336A (en) Electrophotographic sensitive body
JP4141489B2 (en) Electrophotographic photoreceptor
JP2580162B2 (en) Electrophotographic photoreceptor
JPH04217262A (en) Electrophotosensitive material
JPH06148914A (en) Electrophotographic sensitive body
JP3976827B2 (en) Electrophotographic photoreceptor
JP3721177B2 (en) Electrophotographic photoreceptor
JP3496085B2 (en) Electrophotographic photoreceptor
JPH0511463A (en) Electrophotographic sensitive body
JP3768495B2 (en) Electrophotographic photoreceptor
JP3100394B2 (en) Electrophotographic photoreceptor
JPH05265232A (en) Electrophotographic photoreceptor
JP2583422B2 (en) Electrophotographic photoreceptor