JPH04216492A - Reactor for deep sea surveying ship - Google Patents

Reactor for deep sea surveying ship

Info

Publication number
JPH04216492A
JPH04216492A JP2402271A JP40227190A JPH04216492A JP H04216492 A JPH04216492 A JP H04216492A JP 2402271 A JP2402271 A JP 2402271A JP 40227190 A JP40227190 A JP 40227190A JP H04216492 A JPH04216492 A JP H04216492A
Authority
JP
Japan
Prior art keywords
reactor
gas
pressure shell
heat exchanger
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2402271A
Other languages
Japanese (ja)
Other versions
JP2500390B2 (en
Inventor
Akira Otsubo
大坪 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP2402271A priority Critical patent/JP2500390B2/en
Publication of JPH04216492A publication Critical patent/JPH04216492A/en
Application granted granted Critical
Publication of JP2500390B2 publication Critical patent/JP2500390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To provide a reactor suitable for a power source of a deep sea surveying ship which has superior anti-pressure performance and avoid water quality control by containing all structure parts in an anti-pressure shell without projection and eliminating the use of light water in the reactor body. CONSTITUTION:In an anti-pressure shell 1 of leak tight cylinder shape, provided are a reactor body 2 consisting of a high temperature fast reactor or a high temperature gas reactor, a heat exchanger 3, a turbine 4, a generator 5 driven by the turbine, a compressor 6 and a gas cooler 8 placed along the inner surface of the anti-pressure shell and using the inner surface of the anti-pressure shell as the heat transfer surface. The primary coolant of the reactor body is circulated between the reactor body and the heat exchanger. The secondary system gas coolant is circulated from the heat exchanger, turbine, gas cooler, compressor to the heat exchanger. This power generation system is a closed Braiton cycle using the secondary gas coolant as a working fluid.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、深海に潜水して各種
の調査を行うための深海調査船の動力源として好適な、
特に耐圧性能に優れた原子炉に関するものである。
[Industrial Application Field] This invention is suitable as a power source for a deep-sea research vessel for diving into the deep sea and conducting various surveys.
In particular, it relates to nuclear reactors with excellent pressure resistance.

【0002】0002

【従来の技術】この種の深海調査船用原子炉は未だ実用
化されているものはないが、その構造についてはいくつ
かの提案がなされている。その一例としては、PWRや
BWRのごとき軽水炉からなる原子炉本体、蒸気発生器
、タービン、発電機、コンデンサ冷却器等を円筒状の耐
圧殻内部に配設し、この耐圧殻を海水注に水没させるよ
うにした構造の深海調査船用原子炉が提案されている(
迫淳ら,“深海炉DSRの設計検討(1) 原子炉プラ
ントの概念”,日本原子力学会「1990年会」(19
90年4月 2〜4 日、於東京大学)予稿集,180
 頁参照)。
2. Description of the Related Art Although this type of nuclear reactor for deep-sea research vessels has not yet been put into practical use, several proposals have been made regarding its structure. One example is a light water reactor such as a PWR or BWR, in which the reactor body, steam generator, turbine, generator, condenser cooler, etc. are placed inside a cylindrical pressure shell, and the pressure shell is submerged in seawater. A nuclear reactor for deep-sea research vessels has been proposed with a structure that allows
Atsushi Sako et al., “Design study of deep sea reactor DSR (1) Reactor plant concept”, Atomic Energy Society of Japan “1990 Annual Meeting” (19
April 2-4, 1990, University of Tokyo) Proceedings, 180
(see page).

【0003】0003

【発明が解決しようとする課題】しかしながら従来提案
されている上述した原子炉構造においては、凝縮器やヒ
ートパイプ式冷却器が耐圧殻の外部に配設されていて、
耐圧殻を貫通して外部へ伸長させた配管によって接続す
る構造となっている。このように配管を耐圧殻外部に伸
長させる構造は、例えば水深6500 mの深海での約
 650気圧といった水圧下においてはかならずしも満
足しうる耐圧性能をもたらすか否か疑問がある。
[Problems to be Solved by the Invention] However, in the above-mentioned nuclear reactor structures that have been proposed in the past, the condenser and heat pipe type cooler are disposed outside the pressure shell.
It has a structure in which it is connected by piping that penetrates the pressure shell and extends to the outside. There is a question as to whether such a structure in which the piping is extended outside the pressure shell will necessarily provide satisfactory pressure resistance under water pressure of about 650 atm in deep sea, for example at a depth of 6500 m.

【0004】さらに原子炉本体として軽水炉を使用する
場合には、一次冷却水の炉水および給水についての不純
物濃度等を基準値以下にしなけらばならず、特に深海で
長期間にわたって運転しなければならない深海調査船用
の原子炉としては一次冷却水の水質管理が問題となり、
取り扱いが複雑となる。
Furthermore, when a light water reactor is used as the reactor main body, the impurity concentration of the primary cooling water and feed water must be kept below standard values, especially if the reactor is not operated for a long period of time in deep sea. Water quality management of the primary cooling water is an issue for a nuclear reactor for a deep-sea research vessel.
Handling becomes complicated.

【0005】そこでこの発明は、配管等を介して耐圧殻
外部に設置しなければならない冷却器や凝縮器を用いる
ことなく、従って深海の圧力に対する耐圧性能をより一
層高めることができ、しかも一次冷却水の水質管理の必
要のない改良された深海調査船用原子炉を提供すること
を目的としてなされたものである。
[0005] Therefore, the present invention can further improve pressure resistance against deep sea pressure without using a cooler or condenser that must be installed outside the pressure shell via piping, etc. The purpose was to provide an improved nuclear reactor for deep-sea research vessels that does not require water quality control.

【0006】[0006]

【課題を解決するための手段】すなわちこの発明の深海
調査船用原子炉は、高温高速炉または高温ガス炉からな
る原子炉本体、この原子炉本体からの一次冷却材を循環
させる熱交換器、タービン、このタービンにより駆動さ
れる発電機、および二次系ガス冷却材を圧縮するコンプ
レッサを海水に水没させた密閉円筒状の耐圧殻内部に配
設し、前記耐圧殻の内面を伝熱面とするガス冷却器を耐
圧殻内面に沿って配設し、二次系ガス冷却材を前記の熱
交換器、タービン、ガス冷却器およびコンプレッサに流
通させて熱交換器へ循環させる二次系ガス冷却材循環路
を設けたことを特徴とするもので
[Means for Solving the Problems] That is, the nuclear reactor for a deep-sea research vessel of the present invention includes a reactor body consisting of a high-temperature fast reactor or a high-temperature gas reactor, a heat exchanger for circulating the primary coolant from the reactor body, and a turbine. A generator driven by this turbine and a compressor that compresses the secondary gas coolant are arranged inside a closed cylindrical pressure shell submerged in seawater, and the inner surface of the pressure shell is used as a heat transfer surface. A secondary gas coolant in which a gas cooler is arranged along the inner surface of the pressure shell, and the secondary gas coolant is circulated through the heat exchanger, turbine, gas cooler, and compressor to the heat exchanger. It is characterized by having a circulation path.

【0007】ある。[0007] Yes.

【作用】原子炉本体で高温に加熱された一次冷却材は熱
交換器へ導かれ、再び原子炉本体へ循環される。一方、
二次系ガス冷却材循環路を流通するガスは熱交換器にお
いて加熱されたのちタービンへ導かれてこれを駆動させ
る。タービンが発電機を駆動させることにより発電がな
される。タービンを出た高温ガスは次いで耐圧殻内面に
沿って配設されたガス冷却器へ入り、ここで高温ガスか
ら耐圧殻内表面へ伝えられた熱量は、比較的肉厚な耐圧
殻内を熱伝導で耐圧殻外表面へ伝えられ、さらに周囲の
海水へ除去されることによって冷却さる。冷却されて密
度が大きくなったガスはコンプレッサへ導かれて圧縮さ
れ、再び熱交換器へ循環される。
[Operation] The primary coolant heated to a high temperature in the reactor body is led to the heat exchanger and circulated back to the reactor body. on the other hand,
The gas flowing through the secondary gas coolant circuit is heated in a heat exchanger and then guided to a turbine to drive it. Power is generated by the turbine driving a generator. The high-temperature gas that exits the turbine then enters the gas cooler installed along the inner surface of the pressure shell, where the amount of heat transferred from the high-temperature gas to the inner surface of the pressure shell causes heat to flow through the relatively thick pressure shell. It is transferred to the outer surface of the pressure shell by conduction, and is further cooled by being removed into the surrounding seawater. The cooled and denser gas is led to the compressor, compressed, and circulated again to the heat exchanger.

【0008】上述のようにこの発明においては、二次系
ガス冷却材の冷却器を円筒状耐圧殻の内面に沿って設け
たから、従来のように耐圧殻外部に凝縮器や冷却器を配
置して耐圧殻を貫通する配管で接続するといった複雑な
構造にする必要がなく、その結果、従来のものと比較し
て原子炉の耐圧性能を高めることができる。
As described above, in this invention, since the cooler for the secondary gas coolant is provided along the inner surface of the cylindrical pressure shell, the condenser and cooler are not disposed outside the pressure shell as in the conventional case. There is no need for a complicated structure in which the reactor is connected with piping that penetrates the pressure shell, and as a result, the pressure resistance of the reactor can be improved compared to conventional reactors.

【0009】比較的肉厚の耐圧殻内を熱伝導で廃熱が効
率よく海水へ除去されるためには、耐圧殻内外表面の温
度差が少なくても50℃以上、好ましくは100℃近く
あることが必要となる。そのためこの発明では、原子炉
本体の炉容器出口での一次冷却材温度約 700℃近く
を得られる高温高速炉あるいは高温ガス炉を使用する必
要がある。軽水炉や,炉容器出口での一次冷却材温度が
550 ℃程度と低い通常の高速炉は,この発明で用い
る原子炉本体として不適である。また、原子炉本体の一
次冷却材出口温度を 700℃近くにできる原子炉本体
を使用したために、この発明におけるような二次系ガス
冷却材を作動流体とするクローズド・ブレイトン・サイ
クルあるいはスターリング・エンジン・システムを発電
系として採用することが可能となる。
[0009] In order for waste heat to be efficiently removed to seawater by heat conduction within the relatively thick pressure shell, the temperature difference between the inside and outside surfaces of the pressure shell must be at least 50°C or more, preferably close to 100°C. This is necessary. Therefore, in this invention, it is necessary to use a high-temperature fast reactor or a high-temperature gas reactor that can obtain a primary coolant temperature of approximately 700° C. at the reactor vessel outlet of the reactor body. Light water reactors and ordinary fast reactors whose primary coolant temperature at the exit of the reactor vessel is as low as about 550°C are unsuitable as the reactor body used in this invention. In addition, since the reactor body is capable of raising the primary coolant outlet temperature to nearly 700°C, it is possible to use a closed Brayton cycle or Stirling engine using a secondary gas coolant as the working fluid, as in the present invention.・The system can be used as a power generation system.

【0010】0010

【実施例】図1はこの発明の深海調査船用原子炉の構造
を説明するものであり、外形の形状的特徴は、円筒状耐
圧殻1の外側に設置しなくてはならない構成部材が1つ
もなく、すべての構成部材が耐圧殻1内部に収納されて
いる点である。
[Embodiment] Fig. 1 illustrates the structure of a nuclear reactor for a deep-sea research vessel according to the present invention, and its external shape is characterized by the fact that there is no component that must be installed outside the cylindrical pressure shell 1. However, all the structural members are housed inside the pressure shell 1.

【0011】耐圧殻1は、マルテンサイト系ステンレス
鋼あるいはTi合金からなる楕円形の縦断面を有する円
筒により作製することができ、その頂部開口は着脱可能
な蓋1aで密閉されている。耐圧殻1内の下部には原子
炉本体2が設置され、その上方に設けた熱交換器3との
間で一次冷却材循環路Aが形成される。耐圧殻1内の上
部にはタービン4、発電機5およびコンプレッサ6が配
設され、タービン4の回転軸7により発電機5およびコ
ンプレッサ6が駆動するように連設されている。さらに
耐圧殻1の内面の主要部分については、この内面に沿っ
てかつこの内面から一定間隔を置いて鋼板を配設するこ
とによって密封空間を形成し、これをガス冷却器8とし
て機能させている。ガス冷却器8内には必要に応じてフ
ィン8aを取り付けることにより、冷却効果を向上させ
ることができる。そして各部材を配管接続することによ
って、熱交換器3→タービン4→ガス冷却器8→コンプ
レッサ6→熱交換器3という二次系ガス冷却材循環路B
が形成される。
The pressure shell 1 can be made of a cylinder made of martensitic stainless steel or Ti alloy and has an elliptical longitudinal section, and its top opening is sealed with a removable lid 1a. A reactor main body 2 is installed in the lower part of the pressure shell 1, and a primary coolant circulation path A is formed between the reactor main body 2 and a heat exchanger 3 provided above. A turbine 4 , a generator 5 , and a compressor 6 are disposed in the upper part of the pressure shell 1 , and are connected to each other so that the generator 5 and the compressor 6 are driven by a rotating shaft 7 of the turbine 4 . Further, regarding the main part of the inner surface of the pressure shell 1, a sealed space is formed by arranging steel plates along this inner surface and at regular intervals from this inner surface, and this space functions as a gas cooler 8. . By attaching fins 8a inside the gas cooler 8 as necessary, the cooling effect can be improved. Then, by connecting each member with piping, a secondary gas coolant circulation path B of heat exchanger 3 → turbine 4 → gas cooler 8 → compressor 6 → heat exchanger 3 is created.
is formed.

【0012】なお、二次系ガス冷却材循環路Bのコンプ
レッサ6→熱交換器3の間のガス流路とタービン4→ガ
ス冷却器8の間のガス流路とを熱交換的に通過させるエ
コノマイザ9を設けることにより、エネルギ収支を向上
させることができる。さらに、原子炉本体2と熱交換器
3との間に放射線遮蔽材10を配置することにより、タ
ービン4などが放射線の影響で劣化するのを防止するこ
とができる。また、耐圧殻1の外部近傍の海水中にスク
リュウ11を配設して耐圧殻1外表面に接触する海水が
絶えず流れるようにすれば、耐圧殻を伝熱面とするガス
冷却器8の冷却効率を高めることができるため好ましい
Note that the gas flow path between the compressor 6 and the heat exchanger 3 in the secondary gas coolant circulation path B and the gas flow path between the turbine 4 and the gas cooler 8 are passed through for heat exchange. By providing the economizer 9, energy balance can be improved. Furthermore, by arranging the radiation shielding material 10 between the reactor body 2 and the heat exchanger 3, it is possible to prevent the turbine 4 and the like from deteriorating due to the influence of radiation. In addition, if the screw 11 is disposed in the seawater near the outside of the pressure shell 1 so that the seawater in contact with the outer surface of the pressure shell 1 constantly flows, it is possible to cool the gas cooler 8 using the pressure shell as a heat transfer surface. This is preferable because efficiency can be increased.

【0013】一次冷却材循環路Aおよび二次系ガス冷却
材循環路Bをわかりやすく示した図2を参照してこの発
明の原子炉の動作を説明する。原子炉本体2で高温とな
った一次冷却材は循環路Aにより熱交換器3へ導かれ、
ここで二次系ガス冷却材と熱交換した後、原子炉本体2
へ循環される。一次冷却材としては、高温高速炉の場合
はナトリウムまたはリチウムなどの液体金属、高温ガス
炉の場合は炭酸ガス、ヘリウム、窒素などのガスが一般
に用いられる。
The operation of the nuclear reactor of the present invention will be explained with reference to FIG. 2, which clearly shows the primary coolant circulation path A and the secondary gas coolant circulation path B. The primary coolant that has reached a high temperature in the reactor body 2 is guided to the heat exchanger 3 through the circulation path A.
After exchanging heat with the secondary gas coolant, the reactor main body 2
It is circulated to As the primary coolant, liquid metals such as sodium or lithium are generally used in high-temperature fast reactors, and gases such as carbon dioxide, helium, and nitrogen are generally used in high-temperature gas reactors.

【0014】熱交換器3内で熱交換により高温とされた
二次系ガス冷却材は、循環路Bによりタービン4へ導か
れてこれを駆動させた後、エコノマイザ9を経てガス冷
却器8へ導入される。ガス冷却器8内では、耐圧殻1を
介する熱伝導により周囲の低温海水に熱が除去されるこ
とによってガスが冷却される。冷却されて密度が大きく
なったガスはガス冷却器の下部から取り出されてコンプ
レッサ6へ導かれ、ここで圧縮された後エコノマイザ9
を経て再び熱交換器3へ送られて、一次冷却材との熱交
換により高温ガスとされる。エコノマイザ9では、ター
ビン4から排出される比較的高温のガスによって低温の
ガスが温められる。二次系ガス冷却材としては、Heや
He(60%)  +Xe(40%) の混合ガスなど
が使用できる。
The secondary gas coolant heated to a high temperature by heat exchange in the heat exchanger 3 is led to the turbine 4 through the circulation path B to drive it, and then passes through the economizer 9 to the gas cooler 8. be introduced. In the gas cooler 8, the gas is cooled by heat being removed to the surrounding low-temperature seawater by heat conduction through the pressure shell 1. The cooled gas whose density has increased is taken out from the lower part of the gas cooler and guided to the compressor 6, where it is compressed and then sent to the economizer 9.
The gas is then sent to the heat exchanger 3 again, where it is converted into a high-temperature gas by heat exchange with the primary coolant. In the economizer 9, the relatively high temperature gas discharged from the turbine 4 warms the low temperature gas. As the secondary gas coolant, He or a mixed gas of He (60%) + Xe (40%) can be used.

【0015】耐圧殻を比較的厚く、例えば約10cmの
マルテンサイト系ステンレス鋼とした場合、ガス冷却器
の耐圧殻内外表面の温度差は 100℃近くあることが
必要となる。この発明においては、原子炉本体に高温高
速炉あるいは高温ガス炉を用いることまた発電系にガス
系のクローズド・ブレイトン・サイクルを用いることに
よって、耐圧殻内外表面の温度差を約 100℃程度に
することができる。すなわち、例えば高温高速炉の炉容
器出口での一次冷却材温度は約 700℃となり、この
とき二次系ガス冷却材を用いるクローズド・ブレイトン
・サイクルにおける排熱時の平均ガス温度は約 180
℃となる。ガス冷却器内でのガス中の温度降下を70℃
、海水中での耐圧殻外表面と海水との間の温度差を5℃
、海水の温度を5℃とすると、耐圧殻内外表面の温度差
ΔTは次のように計算できる。 ΔT=180 −70−5−5=100(℃) 従って
必要な耐圧殻内外表面の温度差を与えることができ、十
分な冷却効率をもたらすことができる。
[0015] When the pressure shell is relatively thick, for example about 10 cm, made of martensitic stainless steel, the temperature difference between the inner and outer surfaces of the pressure shell of the gas cooler needs to be close to 100°C. In this invention, by using a high-temperature fast reactor or a high-temperature gas reactor for the reactor body and by using a gas-based closed Brayton cycle for the power generation system, the temperature difference between the inside and outside surfaces of the pressure shell is made approximately 100°C. be able to. That is, for example, the temperature of the primary coolant at the outlet of the reactor vessel in a high-temperature fast reactor is approximately 700°C, and at this time, the average gas temperature during exhaust heat in a closed Brayton cycle using a secondary gas coolant is approximately 180°C.
℃. The temperature drop in the gas inside the gas cooler is 70℃
, the temperature difference between the pressure shell outer surface and the seawater in seawater is 5℃.
, assuming that the temperature of seawater is 5°C, the temperature difference ΔT between the inner and outer surfaces of the pressure shell can be calculated as follows. ΔT=180 −70−5−5=100 (° C.) Therefore, the required temperature difference between the inner and outer surfaces of the pressure shell can be provided, and sufficient cooling efficiency can be provided.

【0016】一方、軽水炉を原子炉本体とすると二次系
冷却材には水を使用することになる。この場合にこの発
明におけるようなガス冷却器8を用いると、耐圧殻内面
で水蒸気が凝縮することになる。このときの凝縮温度は
35〜45℃となるから、耐圧殻内外表面の温度差ΔT
は ΔT=(35〜45)−5−5=25〜35 (℃) 
となり、上記したこの発明におけるΔTの値の 1/4
〜1/3 となってしまう。このことは冷却器の伝熱面
積が4〜3倍必要であること、従って耐圧殻自体の大き
さを4〜3倍にしなければならないことを意味し、深海
調査船用の小型原子炉を提供することは実際上不可能と
なる。
On the other hand, if a light water reactor is used as the reactor body, water will be used as the secondary coolant. In this case, if the gas cooler 8 as in the present invention is used, water vapor will condense on the inner surface of the pressure shell. Since the condensation temperature at this time is 35 to 45°C, the temperature difference ΔT between the inner and outer surfaces of the pressure shell
is ΔT=(35~45)-5-5=25~35 (℃)
, which is 1/4 of the value of ΔT in this invention described above.
It becomes ~1/3. This means that the heat transfer area of the cooler needs to be 4 to 3 times larger, and therefore the size of the pressure shell itself has to be 4 to 3 times larger, providing a small nuclear reactor for deep-sea research vessels. This becomes practically impossible.

【0017】[0017]

【発明の効果】以上の説明からわかるようにこの発明の
深海調査船用原子炉によれば、ガス冷却器を耐圧殻内面
に沿って配設し、さらにガスを作動流体とするクローズ
ド・ブレイトン・サイクルを発電系として採用したから
、発電系の作動流体であるガスをガス冷却器で効率よく
冷却することができるとともに、冷却器や凝縮器を配管
等を介して耐圧殻外部に設置する必要がなくなるため深
海の水圧に対する耐圧性能を向上させることができる。
[Effects of the Invention] As can be seen from the above description, according to the nuclear reactor for deep sea research vessels of the present invention, a gas cooler is disposed along the inner surface of the pressure shell, and the reactor is a closed Brayton cycle in which gas is used as the working fluid. Since it is adopted as a power generation system, gas, which is the working fluid of the power generation system, can be efficiently cooled with a gas cooler, and there is no need to install a cooler or condenser outside the pressure shell via piping, etc. Therefore, it is possible to improve pressure resistance against deep sea water pressure.

【0018】さらに、原子炉本体として軽水炉でなく高
温高速炉あるいは高温ガス炉を使用するため、軽水炉を
用いる場合のような水質管理を行う必要がない。
Furthermore, since a high-temperature fast reactor or a high-temperature gas reactor is used as the reactor body instead of a light water reactor, there is no need to perform water quality control as in the case of using a light water reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の深海調査船用原子炉の好ましい実施
例を示す説明図である。
FIG. 1 is an explanatory diagram showing a preferred embodiment of a nuclear reactor for a deep-sea research vessel according to the present invention.

【図2】図1の原子炉における一次冷却材循環路および
二次系ガス冷却材循環路を示す説明図である。 1…耐圧殻、  2…原子炉本体、  3…熱交換器、
  4…タービン、5…発電機、  6…コンプレッサ
、  8…ガス冷却器、A…一次冷却材循環路、  B
…二次系ガス冷却材循環路。
FIG. 2 is an explanatory diagram showing a primary coolant circulation path and a secondary gas coolant circulation path in the nuclear reactor of FIG. 1; 1...Pressure shell, 2...Reactor body, 3...Heat exchanger,
4... Turbine, 5... Generator, 6... Compressor, 8... Gas cooler, A... Primary coolant circulation path, B
...Secondary gas coolant circulation path.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高温高速炉または高温ガス炉からなる原子
炉本体、該原子炉本体からの一次冷却材を循環させる熱
交換器、タービン、該タービンにより駆動される発電機
、および二次系ガス冷却材を圧縮するコンプレッサを海
水に水没させた密閉円筒状の耐圧殻内部に配設し、該耐
圧殻の内面を伝熱面とするガス冷却器を該耐圧殻内面に
沿って配設し、二次系ガス冷却材を該熱交換器、該ター
ビン、該ガス冷却器および該コンプレッサに流通させて
該熱交換器へ循環させる二次系ガス冷却材循環路を設け
たことを特徴とする深海調査船用原子炉。
Claims 1: A reactor body consisting of a high-temperature fast reactor or a high-temperature gas reactor, a heat exchanger for circulating primary coolant from the reactor body, a turbine, a generator driven by the turbine, and a secondary gas system. A compressor for compressing the coolant is disposed inside a closed cylindrical pressure shell submerged in seawater, and a gas cooler with the inner surface of the pressure shell as a heat transfer surface is disposed along the inner surface of the pressure shell, A deep sea system characterized by having a secondary gas coolant circulation path for circulating the secondary gas coolant through the heat exchanger, the turbine, the gas cooler, and the compressor to the heat exchanger. Research vessel nuclear reactor.
【請求項2】前記二次系ガス冷却材循環路にエコノマイ
ザを配設し、前記コンプレッサからのガスを該エコノマ
イザに流通させたのち前記熱交換器へ供給し、前記ター
ビンからのガスを該エコノマイザに流通させたのち前記
ガス冷却器へ循環させるようにした請求項1記載の深海
調査船用原子炉。
2. An economizer is disposed in the secondary gas coolant circulation path, gas from the compressor is passed through the economizer and then supplied to the heat exchanger, and gas from the turbine is passed through the economizer. 2. A nuclear reactor for a deep-sea research vessel according to claim 1, wherein the reactor is circulated to said gas cooler after being circulated to said gas cooler.
【請求項3】前記耐圧殻外部近傍の海水中にスクリュウ
を配設した請求項1記載の深海調査船用原子炉。
3. The nuclear reactor for a deep-sea research vessel according to claim 1, wherein a screw is disposed in seawater near the outside of the pressure shell.
JP2402271A 1990-12-14 1990-12-14 Deep sea research vessel reactor Expired - Lifetime JP2500390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2402271A JP2500390B2 (en) 1990-12-14 1990-12-14 Deep sea research vessel reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2402271A JP2500390B2 (en) 1990-12-14 1990-12-14 Deep sea research vessel reactor

Publications (2)

Publication Number Publication Date
JPH04216492A true JPH04216492A (en) 1992-08-06
JP2500390B2 JP2500390B2 (en) 1996-05-29

Family

ID=18512092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2402271A Expired - Lifetime JP2500390B2 (en) 1990-12-14 1990-12-14 Deep sea research vessel reactor

Country Status (1)

Country Link
JP (1) JP2500390B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173570A (en) * 1992-12-02 1994-06-21 Power Reactor & Nuclear Fuel Dev Corp Sea bottom mineral resource mining system
US20140321590A1 (en) * 2010-01-29 2014-10-30 Advanced Reactor Concepts LLC Small, fast neutron spectrum nuclear power plant with a long refueling interval
JP2015092161A (en) * 2009-06-01 2015-05-14 アドバンスト・リアクター・コンセプツ・エルエルシー Particulate metal fuels used in power generation, recycling systems, and small modular reactors
CN105270595A (en) * 2015-10-10 2016-01-27 杜善骥 Nuclear transporting ship
CN109192330A (en) * 2018-11-01 2019-01-11 中国原子能科学研究院 A kind of heat pipe type double mode nuclear reactor for space reactor core using radial hydrogen runner
CN109817354A (en) * 2018-12-29 2019-05-28 中国原子能科学研究院 A kind of underwater nuclear reactor power supply of multikilowatt
US10424415B2 (en) 2014-04-14 2019-09-24 Advanced Reactor Concepts LLC Ceramic nuclear fuel dispersed in a metallic alloy matrix
CN111584101A (en) * 2020-04-29 2020-08-25 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Cooling device of deep sea nuclear energy system
GB2612836A (en) * 2021-11-15 2023-05-17 Bae Systems Plc Heat engine system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173570A (en) * 1992-12-02 1994-06-21 Power Reactor & Nuclear Fuel Dev Corp Sea bottom mineral resource mining system
JP2015092161A (en) * 2009-06-01 2015-05-14 アドバンスト・リアクター・コンセプツ・エルエルシー Particulate metal fuels used in power generation, recycling systems, and small modular reactors
US20140321590A1 (en) * 2010-01-29 2014-10-30 Advanced Reactor Concepts LLC Small, fast neutron spectrum nuclear power plant with a long refueling interval
US9640283B2 (en) * 2010-01-29 2017-05-02 Advanced Reactor Concepts LLC Small, fast neutron spectrum nuclear power plant with a long refueling interval
US10424415B2 (en) 2014-04-14 2019-09-24 Advanced Reactor Concepts LLC Ceramic nuclear fuel dispersed in a metallic alloy matrix
CN105270595A (en) * 2015-10-10 2016-01-27 杜善骥 Nuclear transporting ship
CN109192330A (en) * 2018-11-01 2019-01-11 中国原子能科学研究院 A kind of heat pipe type double mode nuclear reactor for space reactor core using radial hydrogen runner
CN109192330B (en) * 2018-11-01 2024-05-14 中国原子能科学研究院 Heat pipe type dual-mode space nuclear reactor core adopting radial hydrogen flow channel
CN109817354A (en) * 2018-12-29 2019-05-28 中国原子能科学研究院 A kind of underwater nuclear reactor power supply of multikilowatt
CN111584101A (en) * 2020-04-29 2020-08-25 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Cooling device of deep sea nuclear energy system
GB2612836A (en) * 2021-11-15 2023-05-17 Bae Systems Plc Heat engine system
WO2023084202A1 (en) * 2021-11-15 2023-05-19 Bae Systems Plc Heat engine system

Also Published As

Publication number Publication date
JP2500390B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
US3968653A (en) Apparatus for the removal of after heat in a sodium-cooled fast reactor
JP2014525046A (en) Power generation by decay heat for cooling and monitoring of spent nuclear fuel pool
CN101630931B (en) Combined power-generation device of nuclear power and alkali metal thermoelectricity conversion device
Peterson Multiple-reheat Brayton cycles for nuclear power conversion with molten coolants
JP2003028975A (en) Reactor
CN111627576A (en) Power supply system of Stirling power generation nuclear reactor for marine application
CN103928064A (en) Thermally-operated conversion system
JP2500390B2 (en) Deep sea research vessel reactor
CN108122623A (en) A kind of deep-sea nuclear power apparatus
FR2296248A1 (en) Nuclear reactor fuelled by eutectic salt mixture - with integral primary cooling system
Zohuri et al. Heat-pipe heat exchangers for salt-cooled fission and fusion reactors to avoid salt freezing and control tritium: a review
US4050252A (en) Ocean nuclear power equipment
US4257846A (en) Bi-brayton power generation with a gas-cooled nuclear reactor
Wang et al. Structural stress analysis of hybrid heat exchangers in the S-CO2 power cycle for marine waste heat recovery
CA1245718A (en) System of generating electricity using a swimming pool type nuclear reactor
JP5886030B2 (en) Optimum configuration of fast reactor
JPH10319169A (en) Helium cooled fast breeder reactor
JP2009115571A (en) Renewed abwr adapted to combined power generation
Sienicki et al. Power optimization in the STAR-LM modular natural convection reactor system
JP2001330692A (en) Direct cycle fast reactor
Dostal et al. Medium-power lead-alloy fast reactor balance-of-plant options
JP2006010330A (en) High-density storage system for spent fuel
Forsberg et al. Maximizing temperatures of delivered heat from the advanced high-temperature reactor
CA2084202A1 (en) Process for using energy potentials, in particular with small temperature differences
GB849308A (en) Improvements in or relating to nuclear reactors