JPH04215887A - Flocculation and separation apparatus - Google Patents

Flocculation and separation apparatus

Info

Publication number
JPH04215887A
JPH04215887A JP2402561A JP40256190A JPH04215887A JP H04215887 A JPH04215887 A JP H04215887A JP 2402561 A JP2402561 A JP 2402561A JP 40256190 A JP40256190 A JP 40256190A JP H04215887 A JPH04215887 A JP H04215887A
Authority
JP
Japan
Prior art keywords
water
treated
membrane
chamber
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2402561A
Other languages
Japanese (ja)
Inventor
Seiji Izumi
清司 和泉
Masashi Moro
正史 師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2402561A priority Critical patent/JPH04215887A/en
Publication of JPH04215887A publication Critical patent/JPH04215887A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To provide the title apparatus capable of reducing an installation space and energy consumption. CONSTITUTION:A plurality of chambers 3 are formed in a water treatment tank 1 and allowed to communicate with each other to form a circulating flow path in series. A supply pipe 17 for water to be treated and a flocculant supply pipe 18 are provided to one chamber 3 and a submerged stirring blade 16 is also provided to form a mixing tank while a membrane module 6 is arranged to the other proper chamber 3 so that the membrane surface thereof is provided along the flow direction of water 24 to be treated. The water stream generated by the submerged stirring blade for stirring and mixing a flocculant and water to be treated can be utilized in the washing of a separation membrane and it is unnecessary to separately use power in order to wash the membrane surface and energy consumption can be reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高濃度有機性廃液など
の下廃水を処理する凝集分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coagulation separation apparatus for treating sewage water such as highly concentrated organic waste liquid.

【0002】0002

【従来の技術】従来、有機物を高濃度に含有する下廃水
を生物学的に消化し、さらに固液分離する処理施設にお
いては、始めに被処理水を混和槽に供給し、混和槽にお
いて被処理水に凝集剤を添加しながら攪拌し、混和槽に
連通して設けられたポンプ槽から循環ポンプによってク
ロスフロー内圧型膜分離装置に圧送し、クロスフロー内
圧型膜分離装置によって固液分離していた。このクロス
フロー内圧型膜分離装置は、流路が狭いために圧力損失
が大きく、高揚程で小流量のポンプによって被処理水を
速い膜面流速と高い圧力をもって圧送していた。
[Prior Art] Conventionally, in treatment facilities that biologically digest sewage water containing a high concentration of organic matter and further separate solid-liquid, the water to be treated is first supplied to a mixing tank, and the water is mixed in the mixing tank. The treated water is stirred while adding a flocculant, and is then pressure-fed from a pump tank connected to the mixing tank to a cross-flow internal pressure membrane separator using a circulation pump, where it is separated into solids and liquids. was. This cross-flow internal pressure type membrane separator has a narrow flow path, resulting in a large pressure loss, and uses a pump with a high head and small flow rate to pump the water to be treated at a high membrane surface flow rate and high pressure.

【0003】0003

【発明が解決しようとする課題】しかし、上記した従来
の構成によれば、混和槽およびポンプ槽さらには膜分離
装置をそれぞれ別途に設けているので設置スペースが大
きくなるとともに、混和槽における攪拌装置とクロスフ
ロー内圧型膜分離装置に被処理水を供給する循環ポンプ
とを必要とし、駆動装置の兼用を図ることができず、消
費エネルギーの節約を図ることが出来ない問題があった
[Problems to be Solved by the Invention] However, according to the above-mentioned conventional configuration, the mixing tank, the pump tank, and the membrane separation device are each provided separately, so the installation space becomes large, and the stirring device in the mixing tank is This method requires a circulation pump for supplying water to be treated to the cross-flow internal pressure type membrane separation device, and there is a problem in that it is not possible to use the drive device for both purposes, and it is not possible to save energy consumption.

【0004】本発明は、上記課題を解決するもので、設
置スペースの削減と消費エネルギーの低減を図ることが
できる凝集分離装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a coagulation separation device that can reduce installation space and energy consumption.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明の凝集分離装置は、処理水槽内に複数室を形成
するとともに、隣接する各室を連通して直列状に循環す
る流路を形成し、一室に被処理水供給管および凝集剤供
給管を設けるとともに、水中攪拌翼を設けて混和槽を形
成し、他の適当室に膜モジュールを膜面が被処理水の流
れ方向に沿うように配置した構成としたものである。
[Means for Solving the Problems] In order to solve the above problems, the coagulation separation device of the present invention has a plurality of chambers formed in a treated water tank, and a flow path that communicates each adjacent chamber and circulates in series. A water supply pipe and a flocculant supply pipe are installed in one chamber, and an underwater stirring blade is installed to form a mixing tank, and a membrane module is installed in another appropriate chamber so that the membrane surface is in the flow direction of the water to be treated. The structure is arranged along the following lines.

【0006】[0006]

【作用】上記した構成により、被処理水供給管から一室
に被処理水を供給するとともに、凝集剤供給管から凝集
剤を被処理水に添加し、水中攪拌翼によって被処理水お
よび凝集剤を攪拌混合する。このとき、水中攪拌翼によ
って生じる水流は処理水槽内の各室を通って循環し、各
室において膜モジュールの膜面に対して平行に流れ、分
離膜を通して固液分離されるとともに、膜面に付着する
ケーキ層にせん断力を与えて膜面からケーキ層を除去す
る。また、水流は流路断面の各位置において均一となり
、膜モジュールの膜面が均一に洗浄される。したがって
、攪拌混合するための水中攪拌翼によって生じる水流を
分離膜の洗浄に利用することができ、膜面洗浄のために
別途に動力を使用する必要がない。
[Operation] With the above configuration, the water to be treated is supplied from the water supply pipe to one chamber, the flocculant is added to the water from the flocculant supply pipe, and the water to be treated and the flocculant are added by the underwater stirring blade. Stir to mix. At this time, the water flow generated by the underwater stirring blade circulates through each chamber in the treated water tank, flows parallel to the membrane surface of the membrane module in each chamber, and is separated into solid and liquid through the separation membrane. A shearing force is applied to the adhering cake layer to remove it from the membrane surface. Further, the water flow becomes uniform at each position in the cross section of the flow path, and the membrane surface of the membrane module is uniformly cleaned. Therefore, the water flow generated by the underwater stirring blade for stirring and mixing can be used for cleaning the separation membrane, and there is no need to use additional power for cleaning the membrane surface.

【0007】[0007]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1から図4において、処理水槽1の内部は仕
切壁2によって複数の室3に区分されており、隣接する
各室3は仕切壁2に形成された上部開口4もしくは下部
開口5を通して交互に連通し、各室3を直列状に循環す
る流路が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 to 4, the inside of the treated water tank 1 is divided into a plurality of chambers 3 by a partition wall 2, and each adjacent chamber 3 is opened alternately through an upper opening 4 or a lower opening 5 formed in the partition wall 2. A flow path is formed that communicates with each other and circulates through each chamber 3 in series.

【0008】そして、各室3には膜モジュール6が浸漬
配置されており、膜モジュール6は複数の膜エレメント
7を枠組8の内部に適当間隔αをあけて平行に配置して
形成され、膜エレメント7の膜面が水流の流れ方向(本
実施例では鉛直方向)に沿うように配置されている。こ
の膜エレメント7は平板な濾板9の表裏に分離膜10を
貼着するとともに、濾板9と分離膜10の間に間隙形成
部材11を介装して形成されており、濾板9には透過液
流路12が形成されている。さらに、各膜エレメント7
の透過液流路12に連通して集液管13が設けられてお
り、集液管13の途中には吸引ポンプ14が介装されて
いる。
A membrane module 6 is immersed in each chamber 3, and the membrane module 6 is formed by arranging a plurality of membrane elements 7 in parallel inside a framework 8 at an appropriate interval α. The membrane surface of the element 7 is arranged along the flow direction of the water flow (vertical direction in this embodiment). This membrane element 7 is formed by pasting a separation membrane 10 on the front and back sides of a flat filter plate 9 and interposing a gap forming member 11 between the filter plate 9 and the separation membrane 10. A permeate flow path 12 is formed. Furthermore, each membrane element 7
A liquid collection pipe 13 is provided in communication with the permeate flow path 12, and a suction pump 14 is interposed in the middle of the liquid collection pipe 13.

【0009】そして、膜モジュール6が配置されていな
い一室3には駆動モータに15に連動連結された水中攪
拌翼16が配置されるとともに、被処理水供給管17と
凝集剤供給管18およびpH調整剤供給管19が開口し
ている。また、前記室3にはpH計20および水位計2
1が設けられている。さらに、最下流位置の室3には汚
泥引抜管22が連通しており、汚泥引抜管22には汚泥
ポンプ23が介装されている。
In one room 3 where the membrane module 6 is not placed, an underwater stirring blade 16 connected in conjunction with a drive motor 15 is placed, and a water supply pipe 17 to be treated, a flocculant supply pipe 18 and The pH adjuster supply pipe 19 is open. In addition, the chamber 3 includes a pH meter 20 and a water level meter 2.
1 is provided. Furthermore, a sludge drawing pipe 22 is connected to the chamber 3 at the most downstream position, and a sludge pump 23 is interposed in the sludge drawing pipe 22.

【0010】以下、上記構成における作用について説明
する。被処理水24を被処理水供給管17から最上流位
置の室3、つまり混和槽に供給する。このとき、水位を
水位計21で計測し、膜モジュール6が浸漬するととも
に、上部開口4を被処理水24が流通可能な水位を維持
する。そして、凝集剤供給管18から凝集剤を被処理水
24に添加するとともに、pH調整剤供給管19からp
H調整剤を添加し、駆動モータ15により水中攪拌翼1
6を回転駆動して被処理水24および凝集剤を攪拌混合
する。このとき、水中攪拌翼16によって生じる水流は
下部開口5を通って隣接する室3に流入し、以後上部開
口4および下部開口5を越流することによって処理水槽
1の各室3を通って循環する。
[0010] The operation of the above configuration will be explained below. The water to be treated 24 is supplied from the water to be treated supply pipe 17 to the chamber 3 at the most upstream position, that is, the mixing tank. At this time, the water level is measured by the water level gauge 21 to maintain the water level at which the membrane module 6 is immersed and the water to be treated 24 can flow through the upper opening 4. Then, the flocculant is added to the water to be treated 24 from the flocculant supply pipe 18, and p
After adding the H regulator, the underwater stirring blade 1 is driven by the drive motor 15.
6 is rotated to stir and mix the water to be treated 24 and the flocculant. At this time, the water flow generated by the underwater stirring blade 16 flows into the adjacent chamber 3 through the lower opening 5, and thereafter circulates through each chamber 3 of the treated water tank 1 by overflowing the upper opening 4 and the lower opening 5. do.

【0011】そして、各室3の膜モジュール6の分離膜
10の膜面に対して平行に被処理水24が流れる状態に
おいて、吸引ポンプ14を駆動して被処理水24を固液
分離する。このとき、分離膜10を透過した透過液は透
過液流路12を通って集液管13から取り出され、懸濁
物が膜面にケーキ槽となって付着する。しかし、水流が
膜面と平行に流れることにより、ケーキ層にせん断力が
加えられ、ケーキ層が膜面から除去される。また、水流
は流路断面の各位置において均一となり、膜モジュール
6の膜面が均一に洗浄される。したがって、攪拌混合す
るための水中攪拌翼16によって生じる水流を分離膜1
0の洗浄に利用することができ、膜面洗浄のために別途
に動力を使用する必要がない。
[0011] Then, while the water to be treated 24 flows parallel to the membrane surface of the separation membrane 10 of the membrane module 6 in each chamber 3, the suction pump 14 is driven to separate the water to be treated 24 into solid and liquid. At this time, the permeated liquid that has passed through the separation membrane 10 is taken out from the liquid collection tube 13 through the permeated liquid channel 12, and suspended matter adheres to the membrane surface in the form of a cake tank. However, when the water stream flows parallel to the membrane surface, a shearing force is applied to the cake layer and the cake layer is removed from the membrane surface. Further, the water flow becomes uniform at each position in the cross section of the flow path, and the membrane surface of the membrane module 6 is uniformly cleaned. Therefore, the water flow generated by the underwater stirring blade 16 for stirring and mixing is transferred to the separation membrane 1.
0 cleaning, and there is no need to use separate power for cleaning the membrane surface.

【0012】尚、水中攪拌翼16によって作りだす水流
は上向流もしくは下向流のどちらでも良い。
The water flow generated by the underwater stirring blades 16 may be either an upward flow or a downward flow.

【0013】[0013]

【発明の効果】以上述べたように本発明によれば、水中
攪拌翼によって生じる水流は処理水槽内の各室を通って
循環し、膜面に付着するケーキ層にせん断力を与えて膜
面からケーキ層を除去するので、攪拌混合するための水
中攪拌翼によって生じる水流を分離膜の洗浄に利用する
ことができ、膜面洗浄のために別途に動力を使用する必
要がなく消費エネルギーの低減を図ることができる。ま
た、処理水槽の一室に混和槽を形成することにより、設
置スペースの削減を図ることができる。
As described above, according to the present invention, the water flow generated by the underwater stirring blade circulates through each chamber in the treated water tank, applies shear force to the cake layer adhering to the membrane surface, and improves the membrane surface. Since the cake layer is removed from the membrane, the water flow generated by the underwater stirring blade for stirring and mixing can be used to clean the separation membrane, and there is no need to use separate power to clean the membrane surface, reducing energy consumption. can be achieved. Further, by forming the mixing tank in one room of the treated water tank, the installation space can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の凝集分離装置の全体縦断面図である。FIG. 1 is an overall vertical cross-sectional view of a coagulation separation apparatus of the present invention.

【図2】同実施例における凝集分離装置の全体平面図で
ある。
FIG. 2 is an overall plan view of the coagulation separation device in the same embodiment.

【図3】同実施例における膜モジュールの全体縦断面図
である。
FIG. 3 is an overall vertical cross-sectional view of the membrane module in the same example.

【図4】同実施例における膜エレメントの縦断面図であ
る。
FIG. 4 is a longitudinal cross-sectional view of the membrane element in the same example.

【符号の説明】[Explanation of symbols]

1    処理水槽 3    室 6    膜モジュール 16    水中攪拌翼 1        treatment water tank 3 Room 6 Membrane module 16 Underwater stirring blade

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  処理水槽内に複数室を形成するととも
に、隣接する各室を連通して直列状に循環する流路を形
成し、一室に被処理水供給管および凝集剤供給管を設け
るとともに、水中攪拌翼を設けて混和槽を形成し、他の
適当室に膜モジュールを膜面が被処理水の流れ方向に沿
うように配置したことを特徴とする凝集分離装置。
Claim 1: A plurality of chambers are formed in the treated water tank, and each adjacent chamber is connected to form a flow path that circulates in series, and one chamber is provided with a water supply pipe and a flocculant supply pipe. A coagulation separation apparatus characterized in that an underwater stirring blade is provided to form a mixing tank, and a membrane module is arranged in another appropriate chamber so that the membrane surface is along the flow direction of the water to be treated.
JP2402561A 1990-12-17 1990-12-17 Flocculation and separation apparatus Pending JPH04215887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2402561A JPH04215887A (en) 1990-12-17 1990-12-17 Flocculation and separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2402561A JPH04215887A (en) 1990-12-17 1990-12-17 Flocculation and separation apparatus

Publications (1)

Publication Number Publication Date
JPH04215887A true JPH04215887A (en) 1992-08-06

Family

ID=18512359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2402561A Pending JPH04215887A (en) 1990-12-17 1990-12-17 Flocculation and separation apparatus

Country Status (1)

Country Link
JP (1) JPH04215887A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999203A (en) * 1995-10-04 1997-04-15 Nippon Solid Co Ltd Treatment of rain water and/or waste water
KR20000006691A (en) * 1999-10-19 2000-02-07 김동하 Membrane Separation Apparatus Using Cartridge Filter Type Micro Filteration Membrane
US6375848B1 (en) 1998-11-23 2002-04-23 Zenon Environmental Inc. Water filtration using immersed membranes
WO2003095371A1 (en) * 2002-05-08 2003-11-20 Passavant-Roediger Umwelttechnik Gmbh Water treatment method and water treatment system
KR100443423B1 (en) * 2002-04-04 2004-08-09 주식회사 청우네이처 Ultra Filtration Wastewater Reusing System Using Hydraulic Pressure
JP2006167604A (en) * 2004-12-16 2006-06-29 Daicel Chem Ind Ltd Water treatment apparatus and water treatment method
JP2009028616A (en) * 2007-07-26 2009-02-12 Daicen Membrane Systems Ltd Wastewater treatment method
JP2019115877A (en) * 2017-12-26 2019-07-18 オルガノ株式会社 Membrane filtration device
WO2022009833A1 (en) * 2020-07-06 2022-01-13 株式会社クボタ Method of administering coagulant

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999203A (en) * 1995-10-04 1997-04-15 Nippon Solid Co Ltd Treatment of rain water and/or waste water
US6375848B1 (en) 1998-11-23 2002-04-23 Zenon Environmental Inc. Water filtration using immersed membranes
US6899812B2 (en) 1998-11-23 2005-05-31 Zenon Environmental Inc. Water filtration using immersed membranes
US7025885B2 (en) 1998-11-23 2006-04-11 Zenon Environmental Inc. Water filtration using immersed membranes
KR20000006691A (en) * 1999-10-19 2000-02-07 김동하 Membrane Separation Apparatus Using Cartridge Filter Type Micro Filteration Membrane
KR100443423B1 (en) * 2002-04-04 2004-08-09 주식회사 청우네이처 Ultra Filtration Wastewater Reusing System Using Hydraulic Pressure
WO2003095371A1 (en) * 2002-05-08 2003-11-20 Passavant-Roediger Umwelttechnik Gmbh Water treatment method and water treatment system
JP2006167604A (en) * 2004-12-16 2006-06-29 Daicel Chem Ind Ltd Water treatment apparatus and water treatment method
JP2009028616A (en) * 2007-07-26 2009-02-12 Daicen Membrane Systems Ltd Wastewater treatment method
JP2019115877A (en) * 2017-12-26 2019-07-18 オルガノ株式会社 Membrane filtration device
WO2022009833A1 (en) * 2020-07-06 2022-01-13 株式会社クボタ Method of administering coagulant
CN115803292A (en) * 2020-07-06 2023-03-14 株式会社久保田 Coagulant feeding method

Similar Documents

Publication Publication Date Title
US6284135B1 (en) Membrane filter apparatus with gas discharge cleaning means
JP3446399B2 (en) Immersion type membrane separation device and membrane separation method using the same
KR100225776B1 (en) Membrane device and membrane treating device
JPH09220569A (en) Solid-liquid separator
JPH1076264A (en) Sewage treatment apparatus using immersion type membrane separator
JPH04215887A (en) Flocculation and separation apparatus
US6224766B1 (en) Membrane treatment method and membrane treatment apparatus
JPH07963A (en) Pretreatment of ultrahigh treatment of water and device therefor
JP2001170631A (en) Method and device for stirring membrane type reaction vessel
JPH10151480A (en) Wastewater treatment apparatus and operation method
JP2001047046A (en) Membrane separation type water treatment apparatus
JP2004337787A (en) Membrane separation activated sludge treatment tank
JP3281161B2 (en) Water purification equipment
JPH0775782A (en) Membrane separator
JPS63104610A (en) Method and device for treating membrane
KR0157379B1 (en) Evolved all flocs screening basin (efsb)
CN216890418U (en) Sewage agitating unit that sewage treatment plant used
JP4544765B2 (en) Reaction tank structure
SU929598A1 (en) Displacing aerotank
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JPH0647258A (en) Filter
JPH03284396A (en) Device for treating organic waste water
JPH11300168A (en) Membrane treatment and membrane treating apparatus
JP3432363B2 (en) Sludge concentration method
JP2000334212A (en) Solid-liquid separation device