JPH0421585A - Pulling of single crystal - Google Patents

Pulling of single crystal

Info

Publication number
JPH0421585A
JPH0421585A JP2127824A JP12782490A JPH0421585A JP H0421585 A JPH0421585 A JP H0421585A JP 2127824 A JP2127824 A JP 2127824A JP 12782490 A JP12782490 A JP 12782490A JP H0421585 A JPH0421585 A JP H0421585A
Authority
JP
Japan
Prior art keywords
single crystal
pulling
crucible
melt
pulled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2127824A
Other languages
Japanese (ja)
Inventor
Tsutomu Kajimoto
梶本 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Original Assignee
KYUSHU ELECTRON METAL CO Ltd
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU ELECTRON METAL CO Ltd, Osaka Titanium Co Ltd filed Critical KYUSHU ELECTRON METAL CO Ltd
Priority to JP2127824A priority Critical patent/JPH0421585A/en
Publication of JPH0421585A publication Critical patent/JPH0421585A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To pull up plural kinds of single crystals having different resistivity and diameters, by dividing the surface of melt in a crucible into an inside zone and an outside zone with a cylindrical partition wall. CONSTITUTION:Plural supporting pieces 9b uprightly stood in the peripheral direction of a main body part 9a of a cylindrical partition wall 9 are engaged with plural holes 8a bored through a tapered part 8c of a radiant screen 8, fixed with pins ad the partition wall a is pulled up so that the partition wall 9 is not brought into contact with a raw material in a crucible 3. Then the crucible 3 is heated by a heater 4, the raw material containing a dopant is heated and melted, the crucible 3 is raised to a pulling position, the screen 8 and the partition wall 9 are dropped, a supporting part 8b of the screen 8 is contacted with a supporting base 2a of a heat insulating wall 2, the lower end of the main body part 9a is immersed in a proper position in the melt and the melt is divided into an inside zone and an outside zone. Then the crucible 3 is rotated through a shaft 3c in the arrow direction, a pulling shaft 5a is dropped, seed crystal 5c is immersed in the inside zone of the partition wall 9, the seed crystal is pulled up while rotating the shaft 5a to grow single crystal 7 under the seed crystal 5c.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チョクラルスキー法(CZ法)により単結晶
を引上げる方法に関し、特に1回の引上げによって多種
の抵抗率、直径を有する単結晶を得る単結晶引上方法に
関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for pulling single crystals by the Czochralski method (CZ method), and in particular, the present invention relates to a method for pulling single crystals by the Czochralski method (CZ method), and particularly relates to a method for pulling single crystals using the Czochralski method (CZ method). This invention relates to a single crystal pulling method for obtaining crystals.

〔従来の技術〕[Conventional technology]

半導体デバイスの基板として使用されるシリコン(Si
)単結晶は、主にCZ法により製造されている。
Silicon (Si) is used as a substrate for semiconductor devices.
) Single crystals are mainly produced by the CZ method.

このCZ法は、チャンバ内に回転自在に設けた坩堝内に
Si原料を装填し、坩堝外周に設けられたヒータにてこ
れを加熱溶融し、Si融液中に種結晶を浸し、これを回
転させつつ上方に引上げて種結晶下端にSi単結晶を成
長させることにより、Si単結晶を引上げる方法である
In this CZ method, a Si raw material is loaded into a rotatable crucible in a chamber, heated and melted by a heater installed on the outer periphery of the crucible, and a seed crystal is immersed in the Si melt, which is then rotated. This is a method of pulling a Si single crystal by growing the Si single crystal at the lower end of the seed crystal by pulling the Si single crystal upward while causing the seed crystal to grow.

半導体デバイスの多様化に伴って、このようなSi単結
晶の用途も多種、多様となり、単結晶の直径、または単
結晶中の抵抗率が様々である単結晶の製造が必要となっ
てきている。
With the diversification of semiconductor devices, the uses of such Si single crystals have become diverse and diverse, and it has become necessary to manufacture single crystals with various diameters or resistivities within the single crystal. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

単結晶の製造は、基本的には引上単位の製造であり、1
回の引上により製造される単結晶の直径は同一である。
The production of single crystals is basically the production of pulled units, and 1
The diameter of the single crystal produced by multiple pulling is the same.

従って、直径が異なる単結晶を製造する場合には、2台
の引上装置を用いて直径が異なる単結晶を個々に引上げ
るか、または第1の直径を有する単結晶の引上げを完了
した後、引上げられた単結晶を引上装置から取出した後
、新たに第2の直径を有する単結晶を引上げるかしてい
た。従って、単結晶引上初期における肩作り及び単結晶
引上後半におけるテール絞りを夫々1回ずつ行う必要が
あり、製品歩留が低いという難点がある。また、後述の
方法では単結晶を取出して再引上するまでに数時間を要
するという難点もある。
Therefore, when producing single crystals with different diameters, two pulling devices can be used to pull the single crystals with different diameters individually, or after completing the pulling of the single crystal with the first diameter. After the pulled single crystal was taken out from the pulling device, a new single crystal having a second diameter was pulled. Therefore, it is necessary to perform shoulder building in the early stage of single crystal pulling and tail drawing in the latter half of single crystal pulling, each of which has the disadvantage of low product yield. Additionally, the method described below has the disadvantage that it takes several hours to take out the single crystal and pull it up again.

単結晶中の抵抗率の調整は、坩堝内の融液中におけるド
ーパント濃度の調整により行われている。
The resistivity in the single crystal is adjusted by adjusting the dopant concentration in the melt in the crucible.

Si単結晶の引上時に用いられる殆どのドーパントの偏
析係数は1より小さいので、引上げか進行して坩堝内の
融液量が減少するに応じて融液中のドーパント濃度は大
きくなり、引上げられる単結晶中の抵抗率が下がる。目
標の抵抗率が達成されるように融液中のビーパンH8度
を調整して単結晶の引上を開始しても、目標の抵抗率を
満足する部分は少ししか得られず、収率の低下が生じる
という問題点がある。
The segregation coefficient of most dopants used when pulling Si single crystals is less than 1, so as the pulling progresses and the amount of melt in the crucible decreases, the dopant concentration in the melt increases and is pulled. The resistivity in the single crystal decreases. Even if you adjust the bepan H8 degree in the melt and start pulling the single crystal so that the target resistivity is achieved, only a small portion that satisfies the target resistivity is obtained, resulting in a decrease in yield. There is a problem that a decrease occurs.

このような問題点が解消する引上方法が、特開昭61−
132584号公報に開示されている。この引上方法は
、ドーパントが添加された坩堝内の融液から第1の抵抗
率規格に従って単結晶を引上げ、その途中でドーパント
を再添加した後、第2の抵抗率規格に従って単結晶を引
上げる方法である。この方法では、1本の単結晶におい
て複数の抵抗率規格を満足する単結晶を得ることは可能
であるが、融液中にドーパントを再添加する際に、融液
表面が波立ち成長界面における単結晶成長が不安定とな
り、単結晶の有転位化または多結晶化を生しるという難
点がある。
A lifting method that solves these problems is disclosed in Japanese Patent Application Laid-open No. 1983-
It is disclosed in Japanese Patent No. 132584. This pulling method involves pulling a single crystal from a dopant-added melt in a crucible according to a first resistivity standard, adding the dopant again during the process, and then pulling the single crystal according to a second resistivity standard. This is a way to raise it. With this method, it is possible to obtain a single crystal that satisfies multiple resistivity specifications in one single crystal, but when the dopant is re-added to the melt, the melt surface becomes rippled and the single crystal at the growth interface becomes There is a drawback that crystal growth becomes unstable, resulting in dislocations or polycrystals in the single crystal.

ところで、引上を行いながら坩堝内の融液に原料を追加
供給して単結晶を連続的に大量に製造する引上装置とし
て、二重坩堝構造の装置が公知である(特開昭63−7
9790号公報等)。これは、外坩堝と内坩堝とを同心
状に配設し、外坩堝と内坩堝との間の外側融液に原料を
供給して溶融させ、流通孔を通して内側融液へ供給し、
内側融液から単結晶を引上げる装置である。このような
装置において、引上げ途中に外側融液中にドーパントを
供給すれば、単結晶の成長不安定さをなくすことばでき
る。ところが、内側融液の減少量と同量の融液が流通孔
を通じて供給されるので、ドーパントを外側融液に供給
しても、内側融液のドーパント濃度はすくには高くなら
ず、所望の濃度に達するまでには時間がかかり、この間
に規格範囲外の単結晶が多く引上げられるという問題が
ある。また、原料溶融時に内坩堝が座屈変形して、単結
晶の引上が行えないこともある。更に、この二重坩堝構
造は製作コストが高いという問題もある。
By the way, a device with a double crucible structure is known as a pulling device for continuously producing a large amount of single crystals by additionally supplying raw materials to the melt in the crucible while performing pulling (Japanese Unexamined Patent Application Publication No. 1983-1999). 7
9790, etc.). This involves arranging an outer crucible and an inner crucible concentrically, supplying raw materials to the outer melt between the outer crucible and the inner crucible, melting the raw material, and supplying the raw material to the inner melt through a flow hole.
This is a device that pulls single crystals from the inner melt. In such an apparatus, if a dopant is supplied to the outer melt during the pulling process, instability in the growth of the single crystal can be eliminated. However, since the same amount of melt as the decrease in the inner melt is supplied through the flow holes, even if the dopant is supplied to the outer melt, the dopant concentration in the inner melt does not increase much, and the desired concentration is not increased. There is a problem in that it takes time to reach the concentration, and during this time many single crystals that are outside the standard range are pulled. Furthermore, the inner crucible may undergo buckling deformation during melting of the raw materials, making it impossible to pull a single crystal. Furthermore, this double crucible structure has the problem of high manufacturing cost.

本発明はかかる事情に鑑みてなされたものであり、二重
坩堝を用いることなく単結晶の収率の向上を図ることが
でき、抵抗率及び/または直径が異なる複数種の単結晶
を同一単結晶内に連続的に引上げることができる単結晶
引上方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to improve the yield of single crystals without using a double crucible, and to combine multiple types of single crystals with different resistivities and/or diameters into the same single crystal. An object of the present invention is to provide a method for pulling a single crystal that can be pulled continuously into a crystal.

〔課題を解決するための手段〕[Means to solve the problem]

本願の第1発明に係る単結晶引上方法は、坩堝内に収容
した原料を加熱溶融し、前記坩堝内の融液から単結晶を
引上げる方法において、前記坩堝内の融液面下では融液
が相通じる状態で、融液面を含むその上下にわたって単
結晶を引上げる内側領域とその外側領域とを区分する筒
状隔壁を設け、前記内側領域から単結晶を引上げ、この
引上げ中の任意の時期に前記外側領域にドーパントを供
給することを特徴とする。
The single crystal pulling method according to the first invention of the present application is a method of heating and melting a raw material contained in a crucible and pulling a single crystal from the melt in the crucible, in which the melt is not melted below the surface of the melt in the crucible. A cylindrical partition wall is provided that separates an inner area for pulling the single crystal from an outer area thereof, which extends above and below the melt surface, in a state where the liquids are in communication with each other, and pulls the single crystal from the inner area. The method is characterized in that a dopant is supplied to the outer region at a time of .

本願の第2発明に係る単結晶引上方法は、坩堝内に収容
した原料を加熱溶融し、前記坩堝内の融液から単結晶を
引上げる方法において、前記坩堝内の融液面下では融液
が相通じる状態で、融液面を含むその上下にわたって単
結晶を引上げる内側領域とその外側領域とを区分する筒
状隔壁を設け、前記内側領域から単結晶を引上げ、この
引上げ中の任意の時期に、前記外側領域にドーパントを
供給すると共に、引上中の単結晶の直径を漸次増加また
は減少させて所定径に変化させ、先の引上げ時の直径と
は異なる直径の単結晶を連続的に引上げることを特徴と
する。
A single crystal pulling method according to a second invention of the present application is a method of heating and melting a raw material contained in a crucible and pulling a single crystal from a melt in the crucible, in which the melt is not melted below the surface of the melt in the crucible. A cylindrical partition wall is provided that separates an inner area for pulling the single crystal from an outer area thereof, which extends above and below the melt surface, in a state where the liquids are in communication with each other, and pulls the single crystal from the inner area. At the time of , a dopant is supplied to the outer region, and the diameter of the single crystal being pulled is gradually increased or decreased to a predetermined diameter, so that single crystals with a diameter different from the diameter at the time of the previous pulling are continuously produced. It is characterized by raising the temperature.

本願の第3発明に係る単結晶引上方法は、坩堝内に収容
した原料を加熱溶融し、前記坩堝内の融液から単結晶を
引上げる方法において、引上げ中の任意の時期に、引上
中の単結晶の直径を漸次増加または減少させて所定径に
変化させ、先の引上げ時の直径とは異なる直径の単結晶
を連続的に引上げることを特徴とする。
A method for pulling a single crystal according to a third aspect of the present application is a method for heating and melting a raw material contained in a crucible and pulling a single crystal from the melt in the crucible. The method is characterized in that the diameter of the single crystal inside is gradually increased or decreased to a predetermined diameter, and single crystals having a diameter different from the diameter at the time of previous pulling are continuously pulled.

〔作用〕[Effect]

第1発明、第2発明では、筒状隔壁により融液面が内側
領域と外側領域とに分画されているので、外側領域の融
液にドーパントを供給しても、内側領域の融液面が波立
つことはなく、単結晶の成長に支障はない。また外側領
域の融液に供給されたドーパントは、融液全体によって
溶解されるので、内側領域の融液のドーパントs度は所
望の濃度に素早く変化し、規格外になる部分は殆どない
In the first invention and the second invention, since the melt surface is divided into the inner region and the outer region by the cylindrical partition wall, even if the dopant is supplied to the melt in the outer region, the melt surface in the inner region There is no ripple, and there is no problem with single crystal growth. Further, since the dopant supplied to the melt in the outer region is dissolved by the entire melt, the dopant concentration in the melt in the inner region quickly changes to a desired concentration, and there is almost no part outside the standard.

また第2発明、第3発明では、直径が異なる複数の単結
晶を連続して引上げるので、トップ、テールによる歩留
の低下は少ない。
Furthermore, in the second and third inventions, since a plurality of single crystals having different diameters are pulled successively, there is little reduction in yield due to the top and tail.

〔実施例〕〔Example〕

以下、本発明の実施例について具体的に説明する。 Examples of the present invention will be specifically described below.

第1図は本発明に係る単結晶引上方法を実施するための
装置の構成を示す模式的断面図であり、図中1はチャン
バ、2は保温壁、3は坩堝、4はヒータを示している。
FIG. 1 is a schematic cross-sectional view showing the configuration of an apparatus for carrying out the single crystal pulling method according to the present invention, in which 1 is a chamber, 2 is a heat retaining wall, 3 is a crucible, and 4 is a heater. ing.

チャンバ1内にはその側周に保温壁2が内張すされ、こ
の保温壁2で囲われた中央部に坩堝3が配設され、この
坩堝3と保温壁2との間にヒータ4がこれらとの間に排
気用の通気路を構成する間隙を隔てて配設されている。
A heat insulating wall 2 is lined around the side of the chamber 1, a crucible 3 is disposed in the center surrounded by the heat insulating wall 2, and a heater 4 is placed between the crucible 3 and the heat insulating wall 2. A gap forming an exhaust air passage is provided between them.

坩堝3はカーボン製の容器3aの内側に石英製の容器3
bを嵌め合せた二重構造に構成されており、底部中央に
はチャンバ1の底壁を貫通させた軸3cの上端が連結さ
れ、軸3cにて回転させつつ昇降せしめられるようにな
っている。
The crucible 3 has a quartz container 3 inside a carbon container 3a.
The upper end of the shaft 3c that penetrates the bottom wall of the chamber 1 is connected to the center of the bottom part, and the chamber 1 can be raised and lowered while being rotated by the shaft 3c. .

チャンバ1の上部壁中央にはチャンバ1内の雰囲気ガス
(Arガス)の供給口を兼ねる単結晶の引上口1aが開
口され、またその周囲の1個所には、ドーパント供給口
1bが開口せしめられている。引上口1aにはプルチャ
ンバ5が立設され、またドーパント供給口1bを通じて
ドーパント供給管6がチャンバ1内に差し込まれている
。プルチャンバ5の上端からは引上軸5aを用いて種結
晶5cを掴持するチャック5bが吊り下げられ、また引
上軸5aの上端は図示しない回転、昇降機構に連繋され
ており、種結晶5cを融液になじまセた後、回転させつ
つ上昇させることによって、種結晶5c下端に単結晶7
を成長せしめるようになっている。
A single crystal pulling port 1a, which also serves as a supply port for atmospheric gas (Ar gas) in the chamber 1, is opened in the center of the upper wall of the chamber 1, and a dopant supply port 1b is opened at one location around the single crystal pulling port 1a. It is being A pull chamber 5 is provided upright in the pull-up port 1a, and a dopant supply pipe 6 is inserted into the chamber 1 through the dopant supply port 1b. A chuck 5b is suspended from the upper end of the pull chamber 5 using a pulling shaft 5a to grip the seed crystal 5c, and the upper end of the pulling shaft 5a is connected to a rotating and lifting mechanism (not shown) to hold the seed crystal 5c. After blending with the melt, the single crystal 7 is placed at the lower end of the seed crystal 5c by rotating and raising it.
It is designed to encourage growth.

チャンバ1内の上方には単結晶7の引上げ域の周囲に位
置させて、輻射熱遮蔽体である輻射スクリーン8がプル
チャンバ保護筒5内上部に配した昇降手段にて昇降可能
に配設され、またこの輻射スクリーン8には筒状隔壁9
が取り付けられている。ドーパント供給管6は輻射スク
リーン8を貫通しており、その管端は坩堝3の辺縁部上
方に位置している。輻射スクリーン8はカーボン製の環
状リム8aの外周縁部に円筒形の支持部8bを、また環
状リム8aの内周縁部にはここから下方に向かうに従っ
て縮径され、中空の逆円錐台形をなすよう傾斜させたテ
ーバ部8cを夫々設けて構成されており、支持部8bに
より保温壁2の上面に支持されている。
A radiant screen 8, which is a radiant heat shield, is disposed above the chamber 1 around the pulling area of the single crystal 7, and is movable up and down by a lifting means arranged at the upper part of the inside of the pull chamber protection cylinder 5. This radiation screen 8 has a cylindrical partition wall 9
is installed. The dopant supply tube 6 passes through the radiation screen 8 and its tube end is located above the edge of the crucible 3. The radiation screen 8 has a cylindrical support part 8b on the outer peripheral edge of an annular rim 8a made of carbon, and the inner peripheral edge of the annular rim 8a has a diameter that decreases downward from there to form a hollow inverted truncated cone shape. The tapered portions 8c are each provided with a tapered portion 8c, and are supported on the upper surface of the heat retaining wall 2 by a support portion 8b.

第2図は筒状隔壁の斜視図であり、筒状隔壁9は石英製
であって、円筒形の隔壁本体部9aの上端部に周方向の
複数個所から支持片9bを立設して構成しである。各支
持片9bは輻射スクリーン8のテーパ部8cに穿った複
数の孔8dに係入してピン止めされており、筒状隔壁9
は輻射スクリーン8の昇降に伴って上下方向に移動可能
である。筒状隔壁9の位置は輻射スクリーン8を上昇さ
せたとき筒状隔壁9の下端が坩堝3内の融液に漬からな
い位置に上昇させ得、また輻射スクリーン8を下降させ
たときは輻射スクリーン8の支持部8bが保温壁2上部
の支持台2aに当接すると同時に筒状隔壁9の下端が坩
堝3の内底から所要高さの位置であって、且つ融液中の
適正な深さ位置まで漬かるよう設定される。
FIG. 2 is a perspective view of the cylindrical partition wall 9. The cylindrical partition wall 9 is made of quartz and has supporting pieces 9b erected from a plurality of circumferential locations at the upper end of the cylindrical partition main body 9a. It is. Each support piece 9b is inserted into a plurality of holes 8d drilled in the tapered part 8c of the radiation screen 8 and fixed with pins, and the cylindrical partition wall 9
is movable in the vertical direction as the radiation screen 8 moves up and down. The position of the cylindrical partition wall 9 can be raised to a position where the lower end of the cylindrical partition wall 9 is not submerged in the melt in the crucible 3 when the radiation screen 8 is raised, and when the radiation screen 8 is lowered. At the same time when the support part 8b of 8 comes into contact with the support base 2a on the upper part of the heat insulation wall 2, the lower end of the cylindrical partition wall 9 is located at a required height from the inner bottom of the crucible 3 and at an appropriate depth in the melt. It is set so that it is immersed up to that point.

次に、単結晶引上の手順について説明する。Next, the procedure for pulling a single crystal will be explained.

まず、筒状隔壁9を上方に引上げ、筒状隔壁9が坩堝3
内の原料と接触しないよう設定しておく。
First, the cylindrical partition wall 9 is pulled upward, and the cylindrical partition wall 9 is placed in the crucible 3.
Set it so that it does not come into contact with the raw materials inside.

この状態でヒータ4にて坩堝3を加熱し、ドーパントが
添加された原料を加熱溶融する。原料が溶融すると、坩
堝3を引上位置まで上昇させると共に、昇降手段を作動
して輻射スクリーン8、筒状隔壁9を下降させて、輻射
スクリーン8の支持部8bが保温壁2の支持台2a上に
当接し、また筒状隔壁9の隔壁本体部9aの下端が融液
下の適宜位置に浸漬するように、両者の位置決めを行う
。このようにすることにより、坩堝3内の融液面下では
融液が相通じる状態で、融液面を含むその上下にわたっ
て単結晶7を引上げる内側領域とその外側領域とを分画
することができる。
In this state, the crucible 3 is heated by the heater 4, and the raw material to which the dopant has been added is heated and melted. When the raw materials are melted, the crucible 3 is raised to the pulling position, and the elevating means is activated to lower the radiant screen 8 and the cylindrical partition wall 9, so that the support part 8b of the radiant screen 8 moves up to the support base 2a of the heat retaining wall 2. The two are positioned so that they are in contact with each other and the lower end of the partition main body 9a of the cylindrical partition 9 is immersed at an appropriate position under the melt. By doing this, the melt is in communication with each other below the melt surface in the crucible 3, and the inner region where the single crystal 7 is pulled up and the outer region thereof can be separated from the upper and lower regions including the melt surface. I can do it.

坩堝3はこれを支持する軸3cにて矢符方向に回転させ
、また引上軸5aを下降して種結晶5cを筒状隔壁9に
て囲われた内側領域の融液中に浸漬した後、引上軸5a
を回転させつつ所定の速度で引上げ、種結晶5c下に単
結晶7を成長せしめる。そして、この引上中の任意の時
期に、ドーパント供給管6を通じて外側領域の融液中に
ドーパントを供給して単結晶7の抵抗率を変化させたり
、単結晶7の直径を変化させたりする。
The crucible 3 is rotated in the direction of the arrow by the shaft 3c that supports it, and the pulling shaft 5a is lowered to immerse the seed crystal 5c in the melt in the inner region surrounded by the cylindrical partition wall 9. , pulling shaft 5a
is rotated and pulled up at a predetermined speed to grow a single crystal 7 under the seed crystal 5c. Then, at any time during this pulling, a dopant is supplied into the melt in the outer region through the dopant supply pipe 6 to change the resistivity of the single crystal 7 or change the diameter of the single crystal 7. .

なお、坩堝3の昇降ストロークが充分にある場合には、
予め筒状隔壁9を引上げてお(必要はない。また、坩堝
3内に収容された原料の溶融開始から、単結晶の引上げ
終了に到るまでプルチャンバ5の上端に接続した供給管
からArガスがプルチャンバ5を通して坩堝3上にその
上方から導入される。プルチャンバ5の上方から坩堝3
上に下降したArガスは輻射スクリーン80テーパ部8
cに沿って坩堝3内の融液表面に達し、ここから輻射ス
クリーン8の下面側を経て筒状隔壁9の隔壁本体部9a
と支持片9bとの間を経、次いで筒状隔壁9で囲われた
外側領域を経、坩堝3とヒータ4、保温壁2との間に形
成された通気路を経てチャンバ1の下部側壁に開口した
排気口1cから図示しない排気ポンプにより吸引排出さ
れる。
In addition, if the crucible 3 has a sufficient vertical stroke,
It is not necessary to pull up the cylindrical partition wall 9 in advance (it is not necessary to do so. Ar gas is supplied from the supply pipe connected to the upper end of the pull chamber 5 from the start of melting of the raw material contained in the crucible 3 to the end of pulling the single crystal). is introduced from above onto the crucible 3 through the pull chamber 5.The crucible 3 is introduced from above the pull chamber 5.
The Ar gas that has descended is passed through the radiation screen 80 and the tapered part 8.
c, the melt surface in the crucible 3 is reached, and from there it passes through the lower surface side of the radiation screen 8 to the partition main body 9a of the cylindrical partition 9.
and the support piece 9b, then through the outer area surrounded by the cylindrical partition wall 9, through the ventilation path formed between the crucible 3, the heater 4, and the heat retaining wall 2, and then to the lower side wall of the chamber 1. The gas is sucked and discharged from the open exhaust port 1c by an exhaust pump (not shown).

輻射熱遮蔽体である輻射スクリーン8には、その融液面
側の保温効果により融液面から蒸発したSiOの固体化
(Sin(gass)−”5in(solid))を阻
止するという機能がある。これにより蒸発したSiOが
筒状隔壁9に付着し異物となって融液面に落下すること
が防止される。
The radiant screen 8, which is a radiant heat shield, has a function of preventing SiO evaporated from the melt surface from solidifying (Sin(gas)-"5in(solid)) by its heat retention effect on the melt surface side. This prevents the evaporated SiO from adhering to the cylindrical partition wall 9 and becoming foreign matter and falling onto the melt surface.

本実施例において用いられた坩堝3.筒状隔壁9は、夫
々16”φ、10”φであり、引上げ開始前の融液量は
45kgであった。引上げ開始時の単結晶7は6”φの
PトープのN型〈100〉、引上げ中の単結晶7.坩堝
3の回転数は夫々15rpm、 5 rpmであり、引
上げ速度は1.3〜1.5m+=/分であった。
Crucible used in this example 3. The cylindrical partition walls 9 had diameters of 16" and 10", respectively, and the amount of melt before the start of pulling was 45 kg. The single crystal 7 at the start of pulling is a 6"φ P-tope N type <100>, and the single crystal 7 during pulling is 15 rpm and 5 rpm, respectively, and the pulling speed is 1.3 to 1. .5m+=/min.

また、引上げ中にドーパント供給管6から外側領域の融
液中に供給されるドーパントの単結晶側への付着を防止
するために、筒状隔壁9は約10mだけ融液中に浸漬さ
せた。
Further, in order to prevent the dopant supplied from the dopant supply pipe 6 into the melt in the outer region from adhering to the single crystal side during pulling, the cylindrical partition wall 9 was immersed in the melt by about 10 m.

次に、第1図に示すような装置を用い、本発明方法によ
りS1単結晶を引上げた具体例について説明する。
Next, a specific example in which an S1 single crystal was pulled by the method of the present invention using an apparatus as shown in FIG. 1 will be described.

(第1発明の例) 抵抗率範囲が8Ω(2)〜12Ωcmと1.5Ωcm〜
3Ω。□とであるPドープN型の6”φSi単結晶を連
続的に引上げた。第3図はこのような引上げ例の結果を
示すグラフ及び引上げられた単結晶の模式図である。グ
ラフにおいて、実線(a)が本例の結果を示し、Aはド
ーパント供給管6を介してドーパントを融液中に供給し
た時点を表しており、破線(blはドーパント供給を行
わない場合の結果を示している。引上げ途中においてド
ーパントの供給を行わない場合には、連続して1.5Ω
Cm〜3Ω(2)の単結晶を引上げることはできない。
(Example of the first invention) Resistivity range is 8Ω(2) to 12Ωcm and 1.5Ωcm to
3Ω. A P-doped N-type 6"φ Si single crystal with □ was continuously pulled. FIG. 3 is a graph showing the results of such a pulling example and a schematic diagram of the pulled single crystal. In the graph, The solid line (a) shows the results of this example, A shows the time point when the dopant is supplied into the melt via the dopant supply pipe 6, and the broken line (bl shows the result when no dopant is supplied). If dopant is not supplied during pulling, 1.5Ω is continuously applied.
It is not possible to pull a single crystal of Cm~3Ω(2).

ところが、本実施例では所望の時期にドーパントを供給
するので、8ΩC11l〜12Ω■の単結晶の引上げに
連続して1.5ΩC111〜3Ω■の単結晶を引上げる
ことができる。
However, in this embodiment, since the dopant is supplied at a desired time, it is possible to pull a single crystal of 1.5 ΩC111 to 3 Ω■ following the pulling of a single crystal of 8 ΩC111 to 12 Ω■.

この結果、本例では引上げられた単結晶のほぼ全域を製
品として供することができる。
As a result, in this example, almost the entire area of the pulled single crystal can be provided as a product.

(第2発明の例) 8Ωc11〜12Ω国、6”φのPドープN型のSi単
結晶と1.5ΩCff1〜3Ω国、4”φのPドープN
型のSi単結晶とを同一単結晶内にて引上げた。第4図
はこのような引上げ例の結果を示すグラフ及び引上げら
れた単結晶の模式図である。グラフにおいてAは、ドー
パント供給管6を介してドーパントを融液中に供給する
と共に直径の漸減を開始させた時点を示す。計算上の抵
抗率が8Ωcmになった時点(第4図A)で、ドーパン
トを供給すると共に直径を6”φ−4”φにする漸減を
開始し、4”φとなった後は4”φにて引上げを続行す
る。
(Example of the second invention) 8Ωc11-12Ω country, 6”φ P-doped N type Si single crystal and 1.5ΩCff1-3Ω country, 4”φ P-doped N
type Si single crystal was pulled within the same single crystal. FIG. 4 is a graph showing the results of such a pulling example and a schematic diagram of the pulled single crystal. In the graph, A indicates the point at which the dopant is supplied into the melt via the dopant supply pipe 6 and the diameter starts to gradually decrease. When the calculated resistivity reached 8 Ωcm (Fig. 4A), the dopant was supplied and the diameter started to be gradually reduced to 6"φ - 4"φ, and after reaching 4"φ, the diameter was reduced to 4" Continue lifting at φ.

第4図かられかるように、時間のロスがなく、しかもト
ップ、テールにおけるロスなしに、抵抗率及び直径が異
なった2種類の単結晶を連続的に同一単結晶内で引上げ
ることができ、この結果、引上げられた単結晶のほぼ全
域を製品として供することができる。
As can be seen from Figure 4, two types of single crystals with different resistivities and diameters can be continuously pulled within the same single crystal without any time loss and without any loss at the top or tail. As a result, almost the entire area of the pulled single crystal can be used as a product.

(第3発明の例) 8ΩcIII〜12Ω国、6″φのPドープN型のSi
単結晶と4ΩCff1〜8Ω口、4”φのPドープN型
のSi単結晶とを同一単結晶内にて引上げた。第5図は
このような引上げ例の結果を示すグラフ及び引上げられ
た単結晶の模式図である。グラフにおいてAは、単結晶
の直径の漸減を開始させた時点を示す。計算上の抵抗率
が8Ω値になった時点(第5図A)で、直径を6”φ−
4”φにする漸減を開始し、4”φとなった後は4”φ
にて引上げを続行する。なお、この第3発明の例では、
引上げ中にドーパントの供給を行わないので、筒状隔壁
は用いなくても良い。本例でも、第5図かられかるよう
に、時間のロスがなく、しかもトップ、テールにおける
ロスなしに、直径が異なった2種類の単結晶を連続的に
同一単結晶内で引上げることができ、この結果、引上げ
られた単結晶のほぼ全域を製品として供することができ
る。
(Example of third invention) P-doped N-type Si of 8ΩcIII to 12Ω country, 6″φ
A single crystal and a P-doped N-type Si single crystal of 4ΩCff1 to 8Ω and 4”φ were pulled in the same single crystal. Figure 5 shows a graph showing the results of such a pulling example and a graph of the pulled single crystal. This is a schematic diagram of a crystal. In the graph, A indicates the point at which the diameter of the single crystal starts to gradually decrease. At the point when the calculated resistivity reaches a value of 8Ω (Fig. 5A), the diameter is reduced to 6". φ−
Start the gradual decrease to 4”φ, and after reaching 4”φ
Continue lifting. In addition, in the example of this third invention,
Since no dopant is supplied during pulling, a cylindrical partition wall may not be used. In this example as well, as can be seen from Figure 5, two types of single crystals with different diameters can be continuously pulled within the same single crystal without any time loss and without any loss at the top or tail. As a result, almost the entire area of the pulled single crystal can be used as a product.

なお、上述の実施例では2種類の単結晶を連続的に引上
げる場合について説明したが、本発明では、抵抗率及び
/または直径が異なる3種類以上の単結晶の連続的な引
上げが可能であることは言うまでもない。
In addition, although the above-mentioned example explained the case where two types of single crystals were continuously pulled, the present invention enables continuous pulling of three or more types of single crystals having different resistivities and/or diameters. It goes without saying that there is.

また、上述の実施例では、引上げ途中において原料の供
給を行わないこととしたが、外側領域の融液に原料を供
給する場合においても本発明を適用できる。
Further, in the above embodiment, the raw material is not supplied during the pulling, but the present invention can also be applied to the case where the raw material is supplied to the melt in the outer region.

また、上述の実施例はシリコン単結晶の成長を行う場合
につき説明したが、何らこれに限るものではなく、各種
の単結晶成長に適用し得ることは勿論である。
Furthermore, although the above-mentioned embodiments have been described with reference to the case where a silicon single crystal is grown, the present invention is not limited to this in any way, and it goes without saying that the present invention can be applied to various types of single crystal growth.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明の単結晶引上方法では、抵抗
率及び/または直径が異なる複数種の単結晶を、1回の
引上げにより連続的に引上げることができ、しかもこの
際の収率の向上を図ることができる。この結果、本発明
により多種、多様な単結晶を高歩留りにて製造すること
が可能となる。
As detailed above, in the single crystal pulling method of the present invention, multiple types of single crystals with different resistivities and/or diameters can be pulled continuously in one pulling process, and the It is possible to improve the ratio. As a result, the present invention makes it possible to produce a wide variety of single crystals at high yields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いる単結晶引上装置の模
式的断面図、第2図は筒状隔壁の斜視図、第3図、第4
図、第5図は本発明方法を用いた引上げ例の結果を示す
図である。 3・・・坩堝 4・・・ヒータ 6・・・ドーパント供
給管7・・・単結晶 9・・・筒状隔壁 9a・・・隔
壁本体部9b・・・支持片 特許出願人  大阪チタニウム製造株式会社(外1名) 代理人 弁理士  河  野  登  夫第 ] 図 第 図 トップ テール 第 図 トップ 第 図 ル
FIG. 1 is a schematic cross-sectional view of a single crystal pulling apparatus used for carrying out the method of the present invention, FIG. 2 is a perspective view of a cylindrical partition wall, FIGS.
5 are diagrams showing the results of a pulling example using the method of the present invention. 3... Crucible 4... Heater 6... Dopant supply pipe 7... Single crystal 9... Cylindrical partition wall 9a... Partition main body portion 9b... Supporting piece patent applicant Osaka Titanium Manufacturing Co., Ltd. Company (1 other person) Agent Patent attorney Noboru Kono] Figure Top Tail Figure Top Figure Le

Claims (1)

【特許請求の範囲】 1、坩堝内に収容した原料を加熱溶融し、前記坩堝内の
融液から単結晶を引上げる方法において、 前記坩堝内の融液面下では融液が相通じる 状態で、融液面を含むその上下にわたって単結晶を引上
げる内側領域とその外側領域とを区分する筒状隔壁を設
け、前記内側領域から単結晶を引上げ、この引上げ中の
任意の時期に前記外側領域にドーパントを供給すること
を特徴とする単結晶引上方法。 2、坩堝内に収容した原料を加熱溶融し、前記坩堝内の
融液から単結晶を引上げる方法において、 前記坩堝内の融液面下では融液が相通じる 状態で、融液面を含むその上下にわたって単結晶を引上
げる内側領域とその外側領域とを区分する筒状隔壁を設
け、前記内側領域から単結晶を引上げ、この引上げ中の
任意の時期に、前記外側領域にドーパントを供給すると
共に、引上中の単結晶の直径を漸次増加または減少させ
て所定径に変化させ、先の引上げ時の直径とは異なる直
径の単結晶を連続的に引上げることを特徴とする単結晶
引上方法。 3、坩堝内に収容した原料を加熱溶融し、前記坩堝内の
融液から単結晶を引上げる方法において、 引上げ中の任意の時期に、引上中の単結晶 の直径を漸次増加または減少させて所定径に変化させ、
先の引上げ時の直径とは異なる直径の単結晶を連続的に
引上げることを特徴とする単結晶引上方法。
[Claims] 1. In a method of heating and melting a raw material contained in a crucible and pulling a single crystal from the melt in the crucible, the melts are in a state of mutual communication below the surface of the melt in the crucible. , a cylindrical partition wall is provided that separates an inner region from which the single crystal is pulled from the inner region and an outer region therefrom above and below the melt surface, the single crystal is pulled from the inner region, and at any time during this pulling, the outer region A single crystal pulling method characterized by supplying a dopant. 2. In a method of heating and melting raw materials contained in a crucible and pulling a single crystal from the melt in the crucible, the melts are in contact with each other below the melt surface in the crucible, including the melt surface. A cylindrical partition is provided above and below the inner region for pulling the single crystal and an outer region thereof, the single crystal is pulled from the inner region, and a dopant is supplied to the outer region at any time during this pulling. In addition, single crystal pulling is characterized in that the diameter of the single crystal being pulled is gradually increased or decreased to a predetermined diameter, and single crystals having a diameter different from the diameter at the time of previous pulling are continuously pulled. Upper method. 3. In a method of heating and melting a raw material contained in a crucible and pulling a single crystal from the melt in the crucible, gradually increasing or decreasing the diameter of the single crystal being pulled at any time during pulling. to change it to the specified diameter,
A method for pulling a single crystal, which is characterized by continuously pulling a single crystal having a diameter different from the diameter at the time of previous pulling.
JP2127824A 1990-05-16 1990-05-16 Pulling of single crystal Pending JPH0421585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2127824A JPH0421585A (en) 1990-05-16 1990-05-16 Pulling of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2127824A JPH0421585A (en) 1990-05-16 1990-05-16 Pulling of single crystal

Publications (1)

Publication Number Publication Date
JPH0421585A true JPH0421585A (en) 1992-01-24

Family

ID=14969578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2127824A Pending JPH0421585A (en) 1990-05-16 1990-05-16 Pulling of single crystal

Country Status (1)

Country Link
JP (1) JPH0421585A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616492A (en) * 1992-06-30 1994-01-25 Mitsubishi Materials Corp Compound semiconductor single crystal pulling up device and pulling up method
JP2017105675A (en) * 2015-12-10 2017-06-15 株式会社Sumco Method of manufacturing silicon single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130195A (en) * 1982-01-27 1983-08-03 Toshiba Ceramics Co Ltd Pulling apparatus for single crystalline silicon
JPH03183684A (en) * 1989-12-13 1991-08-09 Nippon Steel Corp Method for pulling single crystal
JPH03295891A (en) * 1990-04-13 1991-12-26 Nkk Corp Device for producing silicon single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130195A (en) * 1982-01-27 1983-08-03 Toshiba Ceramics Co Ltd Pulling apparatus for single crystalline silicon
JPH03183684A (en) * 1989-12-13 1991-08-09 Nippon Steel Corp Method for pulling single crystal
JPH03295891A (en) * 1990-04-13 1991-12-26 Nkk Corp Device for producing silicon single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616492A (en) * 1992-06-30 1994-01-25 Mitsubishi Materials Corp Compound semiconductor single crystal pulling up device and pulling up method
JP2017105675A (en) * 2015-12-10 2017-06-15 株式会社Sumco Method of manufacturing silicon single crystal

Similar Documents

Publication Publication Date Title
CA1261715A (en) Apparatus and process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique
US6251184B1 (en) Insulating-containing ring-shaped heat shields for czochralski pullers
JP2003146797A (en) Device for pulling silicon single crystal and method of pulling the same
JP2813592B2 (en) Single crystal manufacturing method
JPH10167892A (en) Method for pulling silicon single crystal
JP2010254487A (en) Method for growing single crystal
JPH0421585A (en) Pulling of single crystal
JPH10167881A (en) Method for pulling semiconductor single crystal
JP2560418B2 (en) Single crystal growing equipment
GB2084046A (en) Method and apparatus for crystal growth
JPH01160892A (en) Method for controlling oxygen concentration in silicon single crystal
KR100906281B1 (en) Heat shield structure for growing silicon single crystal ingot and grower using the same
JPH0523580Y2 (en)
JP2006169016A (en) Method for producing silicon single crystal
JP2004292288A (en) Method for melting raw material for silicon single crystal
JP2001240485A (en) Single crystal pulling-up method and single crystal pulling-up equipment
JPH07277875A (en) Method for growing crystal
JP2990661B2 (en) Single crystal growth method
JP3870646B2 (en) Single crystal pulling device
JP2520926B2 (en) Method for controlling oxygen concentration in silicon single crystal
JPH04357191A (en) Single crystal production apparatus
JP2740569B2 (en) Method and apparatus for producing single crystal
JP2008019129A (en) Apparatus for producing single crystal, method for producing single crystal, and single crystal
JP2759105B2 (en) Single crystal manufacturing method
JPH06135791A (en) Device for growing semiconductor single crystal