JPH04215475A - Image sensor and manufacture thereof - Google Patents

Image sensor and manufacture thereof

Info

Publication number
JPH04215475A
JPH04215475A JP2410531A JP41053190A JPH04215475A JP H04215475 A JPH04215475 A JP H04215475A JP 2410531 A JP2410531 A JP 2410531A JP 41053190 A JP41053190 A JP 41053190A JP H04215475 A JPH04215475 A JP H04215475A
Authority
JP
Japan
Prior art keywords
insulating layer
film
image sensor
electrode
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2410531A
Other languages
Japanese (ja)
Inventor
Kenichi Kobayashi
健一 小林
Takayuki Yamada
高幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2410531A priority Critical patent/JPH04215475A/en
Publication of JPH04215475A publication Critical patent/JPH04215475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To improve insulation of an image sensor by employing polyimide having excellent step flattening as a first insulating layer and employing a silicon inorganic film having excellent insulation, water resistance as a second insulating layer after the step is flattened, as an interlayer insulating layer. CONSTITUTION:Polyimide having excellent step flattening is used as a first insulating film 5, and an SiNx or a silicon inorganic film having excellent insulation, water resistance, is used as a second insulating film 6. Thus, an interlayer insulating layer is not reduced in thickness near the edge of a photodetector to prevent a leakage of a current between a lower electrode 2 and wiring 7 with sufficient insulation and to simultaneously obtain excellent water resistance. That is, since the inorganic film is disposed after the polyimide is sufficiently flattened, the inorganic film can be formed with substantially uniform thickness. As a result, sufficient insulation, water resistance are obtained to improve reliability of an image sensor.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ファクシミリや画像入
力端末装置等の原稿読取り部等に用いられるイメ−ジセ
ンサ及びその製造方法に係わり、特に絶縁性や耐水性に
優れた受光素子を有するイメ−ジセンサ及びその製造方
法に関する。
[Industrial Application Field] The present invention relates to an image sensor used in a document reading section of a facsimile machine or an image input terminal device, etc., and a method for manufacturing the same. -Relating to a sensor and a method for manufacturing the same.

【0002】0002

【従来の技術】従来のイメ−ジセンサは、受光素子の集
合体で原稿幅と同じ幅の受光素子アレイを有し、原稿と
密着して用いられる密着型イメ−ジセンサがあった。
2. Description of the Related Art A conventional image sensor is a contact type image sensor which is an assembly of light receiving elements and has a light receiving element array having the same width as the width of an original, and is used in close contact with the original.

【0003】この密着型イメ−ジセンサにおける受光素
子の構成は、光導電層として水素化アモルファスシリコ
ン(a−Si:H)を用い、これを金属電極と透明電極
とで挟んだサンドイッチ構造のものであり、特に製造上
困難であるとの理由から通常は透明電極側を共通電極と
し、金属電極を個別電極とする構成が採られていた。
The structure of the light-receiving element in this contact-type image sensor is a sandwich structure in which hydrogenated amorphous silicon (a-Si:H) is used as a photoconductive layer, and this is sandwiched between a metal electrode and a transparent electrode. However, because it is difficult to manufacture, the common electrode is usually the transparent electrode, and the metal electrode is the individual electrode.

【0004】ところが、上記のサンドイッチ構造の受光
素子においては、光導電層を個別化していないために隣
接ビットでの干渉が起こり、出力の均一化が図れず、良
好なダイオ−ド特性を得ることができないとの問題点が
あり、そこで金属電極を共通電極とし、透明電極を個別
電極とし、各受光素子毎のばらつきを少なくするために
、更に光導電層をも個別化する受光素子が考えられてい
た。
However, in the above-mentioned sandwich structure photodetector, since the photoconductive layer is not individualized, interference occurs between adjacent bits, making it impossible to achieve uniform output and obtaining good diode characteristics. Therefore, a light-receiving element has been considered in which the metal electrode is used as a common electrode, the transparent electrode is used as an individual electrode, and the photoconductive layer is also made individual in order to reduce the variation between each light-receiving element. was.

【0005】このように、透明電極と同じ様に光導電層
を個別化すれば、光の回り込みによる漏れ電流が抑制さ
れ、イメ−ジセンサの解像度を向上させることができる
ものである。
[0005] In this way, if the photoconductive layer is made individual in the same manner as the transparent electrode, leakage current due to the wraparound of light can be suppressed and the resolution of the image sensor can be improved.

【0006】ここで、金属電極を共通電極とする受光素
子の構成を図5の平面説明図と図5のB−B′部分の断
面説明図である図6を用いて具体的に説明する。
[0006] Here, the structure of a light-receiving element having a metal electrode as a common electrode will be specifically explained using FIG. 5, which is a plan view, and FIG. 6, which is a cross-sectional view taken along line BB' in FIG.

【0007】ガラス等の絶縁性の基板1上に、下部電極
2として、帯状をなして一体に形成されたクロム(Cr
)層からなる金属電極と、各素子毎に分割形成されたa
−Si:H層から成る光導電層3と、同様に分割形成さ
れた酸化インジウム・スズ(ITO)層から成る上部電
極4の透明電極が順次積層され、受光素子全体を覆うよ
うにポリイミド等の層間絶縁層10が形成され、下部電
極2の金属電極に一定の電位が印加するようになってい
る。上部電極4の透明電極からはアルミニウム(Al)
等の引き出し配線7aが層間絶縁層10のコンタクト用
viaホ−ル8から導き出され、光電変換された電荷を
読み取るようになっている。
[0007] A chromium (Cr) is integrally formed in a band shape as a lower electrode 2 on an insulating substrate 1 made of glass or the like.
) layer, and a layer formed separately for each element.
A photoconductive layer 3 made of a -Si:H layer and a transparent upper electrode 4 made of an indium tin oxide (ITO) layer formed in the same way are sequentially laminated, and a layer of polyimide or the like is formed so as to cover the entire light receiving element. An interlayer insulating layer 10 is formed, and a constant potential is applied to the metal electrode of the lower electrode 2. Aluminum (Al) is used from the transparent electrode of the upper electrode 4.
A lead wire 7a such as the one shown in FIG.

【0008】次に、このイメ−ジセンサの受光素子の製
造方法について説明する。
Next, a method for manufacturing the light receiving element of this image sensor will be explained.

【0009】ガラス等の基板1上にスパッタリング法に
より膜厚約1000〜1500オングストロ−ム程度で
クロム層を着膜し、これを帯状にパタ−ニングし、下部
電極2となる共通電極としての金属電極を形成する。
A chromium layer with a thickness of approximately 1000 to 1500 angstroms is deposited on a substrate 1 made of glass or the like by a sputtering method, and this is patterned into a band shape to form a metal common electrode that will become the lower electrode 2. Form an electrode.

【0010】そして、プラズマCVD法により膜厚約1
〜2μm程度でa−Si:H層を堆積する。この時の堆
積条件は、シラン(SiH4 )ガスを原料ガスとし、
流量を200〜500sccm、圧力を0.2〜0.5
Torr、基板温度を150〜250℃、RFパワ−を
80〜150mW/cm2 、時間を30〜60分とす
る。
[0010] Then, a film thickness of about 1
Deposit an a-Si:H layer with a thickness of ~2 μm. The deposition conditions at this time were as follows: silane (SiH4) gas was used as the source gas;
Flow rate 200~500sccm, pressure 0.2~0.5
Torr, the substrate temperature is 150 to 250°C, the RF power is 80 to 150 mW/cm2, and the time is 30 to 60 minutes.

【0011】次に、DCマグネトロンスパッタ法により
膜厚約800オングストロ−ム程度でITO膜を成膜し
た後、レジストを塗布しフォトリソエッチング法により
パタ−ニングし、上部電極4となる個別電極としての透
明電極を形成する。
Next, after forming an ITO film with a thickness of about 800 angstroms by DC magnetron sputtering, a resist is applied and patterned by photolithography to form individual electrodes that will become the upper electrode 4. Form a transparent electrode.

【0012】更にレジストパタ−ンをそのままにし、こ
れをマスクとしてテトラフルオルメタン(CF4 )と
酸素(O2 )との混合ガスを用いて前記a−Si:H
層をエッチングし、個別に分割された光導電層3を形成
する。そして、レジストを剥離した後、大気中で200
℃で30分間のアニ−ル処理を行う。
Furthermore, the resist pattern is left as it is, and using this as a mask, the a-Si:H
The layers are etched to form individually segmented photoconductive layers 3. After peeling off the resist, it was
Annealing treatment is performed at ℃ for 30 minutes.

【0013】次に受光素子全体にポリイミド等の層間絶
縁層10を塗布し、ベ−クして、フォトリソエッチング
にて上部電極4から引き出し配線7を導き出すコンタク
ト用viaホ−ル8を形成する。
Next, an interlayer insulating layer 10 made of polyimide or the like is applied to the entire light receiving element, baked, and a contact via hole 8 for leading out the lead wiring 7 from the upper electrode 4 is formed by photolithographic etching.

【0014】更にアルミニウム(Al)を着膜してフォ
トリソエッチングでパタ−ニングし、引き出し配線7の
パタ−ンを形成する。このようにして、イメ−ジセンサ
の受光素子が形成されるものである(特開昭63−67
772号公報参照)。
Furthermore, a film of aluminum (Al) is deposited and patterned by photolithography to form a pattern for the lead wiring 7. In this way, the light receiving element of the image sensor is formed (Japanese Patent Laid-Open No. 63-67
(See Publication No. 772).

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上記従
来のイメ−ジセンサ及びその製造方法では、通常、層間
絶縁層をポリイミド等のスピンコ−ティングにより形成
しており、この層間絶縁層は受光素子の各層積層により
生ずる段差をならして平坦化する点で優れているが、ポ
リイミド部分の膜厚が1μm程度までの厚さであると、
受光素子のエッジ(段差部)付近でポリイミドの膜厚が
薄くなり、図6の矢印で示した箇所において、下部電極
の共通電極と引き出し配線との間に電流のリ−クが起こ
り易くなり、また、ポリイミド自身が透水性が高いため
にポリイミド膜の膜厚の薄い部分から水が浸透しやすく
、耐水性の低いセンサとなってしまうという問題点があ
った。
[Problems to be Solved by the Invention] However, in the above conventional image sensor and its manufacturing method, the interlayer insulating layer is usually formed by spin coating of polyimide, etc. It is excellent in smoothing out and flattening the steps caused by lamination, but if the film thickness of the polyimide part is up to about 1 μm,
The thickness of the polyimide film becomes thinner near the edges (steps) of the light-receiving element, and current leakage is likely to occur between the common electrode of the lower electrode and the lead wiring at the location indicated by the arrow in Figure 6. Furthermore, since polyimide itself has high water permeability, water easily penetrates through the thin portions of the polyimide membrane, resulting in a sensor with low water resistance.

【0016】また、十分な絶縁性を得るためには、図7
の断面説明図に示すように、ポリイミドを更に厚く2μ
m以上形成する必要があるが、膜厚が大きいとコンタク
トホ−ルの微細加工が困難になり、受光素子全体の微細
化の妨げになるとの問題点があった。
[0016] In addition, in order to obtain sufficient insulation, it is necessary to
As shown in the cross-sectional diagram, the polyimide is made thicker by 2μ.
However, if the film thickness is large, it becomes difficult to microfabricate the contact hole, and this poses a problem in that it hinders miniaturization of the entire light-receiving element.

【0017】更に耐水性を向上させるために層間絶縁層
としてシリコン窒化膜(SiNx )又はシリコン酸化
膜(SiOx )をポリイミド膜の代わりに用いること
も考えられるが、プラズマCVDでこれらの絶縁層を形
成する際にITO膜の上部電極がプラズマにより損傷を
受け、センサ特性が劣化してしまい、また、これらの絶
縁層の着膜時にはSiH4 ガスを用いるため、ITO
膜がSiH4 に直接さらされて還元されるという問題
点もあった。
In order to further improve water resistance, it may be possible to use a silicon nitride film (SiNx) or a silicon oxide film (SiOx) as an interlayer insulating layer in place of the polyimide film, but these insulating layers cannot be formed by plasma CVD. When depositing these insulating layers, the upper electrode of the ITO film is damaged by the plasma, deteriorating the sensor characteristics.
Another problem was that the membrane was directly exposed to SiH4 and reduced.

【0018】更に別の方法として、層間絶縁層にはポリ
イミドを用い、耐水性を向上させるためにイメ−ジセン
サ形成後、パシベ−ション膜としてSiNx 膜やSi
Ox 膜を着膜形成する方法も考えられるが、上述した
リ−クの問題は解決できず、また、パシベ−ション膜を
形成する前に上部電極からの引き出し配線が形成されて
いるため、良好なパシベ−ション効果を得るためにはS
iNx 膜やSiOx 膜を厚く形成しなければならな
いが、膜厚が厚くなると膜ストレス等が大きくなり、ク
ラック(ひびわれ)や、SiNx 膜、SiOx 膜及
び下層の電極膜の膜ハガレ等が発生しやすいとの問題点
があった。
As yet another method, polyimide is used as the interlayer insulating layer, and after forming the image sensor, a SiNx film or Si film is used as the passivation film to improve water resistance.
A method of depositing an Ox film is also considered, but it does not solve the leakage problem mentioned above, and the lead wiring from the upper electrode is formed before forming the passivation film, so it is not possible to solve the problem. In order to obtain a good passivation effect, S
The iNx film and SiOx film must be formed thickly, but the thicker the film, the greater the stress on the film, which tends to cause cracks and peeling of the SiNx film, SiOx film, and underlying electrode film. There was a problem with that.

【0019】本発明は上記実情に鑑みて為されたもので
、イメ−ジセンサの受光素子における絶縁性を向上させ
下部電極と引き出し配線との間の電流のリ−クを少なく
し、更に耐水性を向上させて受光素子の信頼性を向上さ
せ、フォトリソ工程の増加なしで、歩留まり良く製造す
ることができるイメ−ジセンサ及びその製造方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and improves the insulation in the light receiving element of an image sensor, reduces current leakage between the lower electrode and the lead wiring, and further improves water resistance. An object of the present invention is to provide an image sensor and a method for manufacturing the same, which can improve the reliability of a light-receiving element by improving the reliability of the light-receiving element, and can be manufactured with high yield without increasing the number of photolithography steps.

【0020】[0020]

【課題を解決するための手段】上記従来例の問題点を解
決するための請求項1記載の発明は、基板上に形成され
た共通電極となる下部電極と、前記下部電極上に画素毎
に個別化して形成された光導電層と、前記光導電層上に
前記各光導電層に対応するよう形成された上部電極と、
前記下部電極、前記光導電層と前記上部電極上を覆うよ
うに形成された層間絶縁層と、前記層間絶縁層に設けら
れた開口部を介して前記上部電極と接続するよう前記層
間絶縁層上に形成された引き出し配線とを具備する受光
素子を有するイメ−ジセンサにおいて、前記層間絶縁層
をポリイミドから成る第1絶縁層とシリコン系無機膜か
ら成る第2絶縁層とを順次積層して形成したことを特徴
としている。
[Means for Solving the Problems] The invention according to claim 1 for solving the problems of the above-mentioned conventional example has a lower electrode formed on a substrate as a common electrode, and a lower electrode formed on the lower electrode for each pixel. a photoconductive layer formed individually; an upper electrode formed on the photoconductive layer so as to correspond to each photoconductive layer;
an interlayer insulating layer formed to cover the lower electrode, the photoconductive layer, and the upper electrode; and an interlayer insulating layer formed on the interlayer insulating layer to be connected to the upper electrode through an opening provided in the interlayer insulating layer. In the image sensor having a light-receiving element having a lead-out wiring formed in It is characterized by

【0021】上記従来例の問題点を解決するための請求
項2記載の発明は、イメ−ジセンサの製造方法において
、基板上に共通電極となる下部電極を形成し、前記下部
電極上に光導電層と上部電極を画素毎に個別化して形成
し、前記上部電極を覆うようにポリイミドから成る第1
絶縁層を積層し、前記第1絶縁層上にシリコン系無機膜
から成る第2絶縁層を積層して層間絶縁層を形成し、前
記層間絶縁層に開口部を形成して前記各上部電極からの
引き出し配線を前記層間絶縁層上に形成することを特徴
としている。
The invention according to claim 2 for solving the problems of the conventional example is a method for manufacturing an image sensor, in which a lower electrode serving as a common electrode is formed on a substrate, and a photoconductive layer is formed on the lower electrode. A layer and an upper electrode are individually formed for each pixel, and a first layer made of polyimide is formed to cover the upper electrode.
an insulating layer is laminated, a second insulating layer made of a silicon-based inorganic film is laminated on the first insulating layer to form an interlayer insulating layer, and an opening is formed in the interlayer insulating layer to form an opening from each of the upper electrodes. The invention is characterized in that a lead-out wiring is formed on the interlayer insulating layer.

【0022】[0022]

【作用】請求項1記載の発明によれば、層間絶縁層とし
て、第1絶縁層を段差の平坦化に優れたポリイミドを用
い、受光素子の各層積層により生ずる段差を平坦化した
後に第2絶縁層を絶縁性及び耐水性に優れたシリコン系
無機膜を用いたイメ−ジセンサとしているので、受光素
子のエッジ付近での層間絶縁層の薄膜化を防止でき、イ
メ−ジセンサの絶縁性を向上させて下部電極と引き出し
配線との間の電流のリ−クを少なくすることができ、更
に第2絶縁層のシリコン系無機膜によって耐水性を向上
させることができる。
According to the invention as set forth in claim 1, the first insulating layer is made of polyimide, which is excellent in flattening steps, and after flattening the steps caused by stacking each layer of the light receiving element, the second insulating layer is formed as an interlayer insulating layer. Since the image sensor layer is made of a silicon-based inorganic film with excellent insulation and water resistance, it is possible to prevent the interlayer insulation layer from becoming thinner near the edge of the photodetector, improving the insulation properties of the image sensor. Therefore, current leakage between the lower electrode and the lead wiring can be reduced, and water resistance can be improved by the silicon-based inorganic film of the second insulating layer.

【0023】請求項2記載の発明によれば、受光素子の
上部電極上に第1絶縁層を段差の平坦化に優れたポリイ
ミドで形成し、受光素子の各層積層により生ずる段差を
平坦化した後に、絶縁性及び耐水性に優れたシリコン系
無機膜から成る第2絶縁層を積層するイメ−ジセンサの
製造方法としているので、受光素子のエッジ付近での層
間絶縁層の薄膜化を阻止することができ、イメ−ジセン
サの絶縁性を向上させて下部電極と引き出し線との間の
電流のリ−クを少なくすることができ、更に第2絶縁層
のシリコン系無機膜によって耐水性を向上させることが
できる。
According to the second aspect of the invention, the first insulating layer is formed on the upper electrode of the light-receiving element using polyimide, which is excellent in flattening steps, and after flattening the steps caused by stacking each layer of the light-receiving element. Since this method of manufacturing an image sensor laminates a second insulating layer made of a silicon-based inorganic film with excellent insulation and water resistance, thinning of the interlayer insulating layer near the edge of the photodetector can be prevented. It is possible to improve the insulation properties of the image sensor, reduce current leakage between the lower electrode and the lead wire, and further improve water resistance by using a silicon-based inorganic film as the second insulating layer. I can do it.

【0024】[0024]

【実施例】本発明の一実施例について図面を参照しなが
ら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings.

【0025】図1は、本発明の一実施例に係るイメ−ジ
センサの受光素子の平面説明図、図2は、図1のA−A
′部分の断面説明図である。尚、図5、図6と同様の構
造をとる部分については同一の符号を使って説明する。
FIG. 1 is an explanatory plan view of a light receiving element of an image sensor according to an embodiment of the present invention, and FIG.
FIG. Note that parts having the same structure as in FIGS. 5 and 6 will be described using the same reference numerals.

【0026】本実施例のイメ−ジセンサは、ガラス等の
絶縁性の基板1上に併設された複数個のサンドイッチ型
の受光素子(フォトダイオ−ド)からなる長尺状の受光
素子アレイと、各受光素子にそれぞれ接続された駆動回
路から構成され、各受光素子に発生した電荷は、時系列
的に駆動回路にて画像信号として出力されるようになっ
ている。
The image sensor of this embodiment includes a long light-receiving element array consisting of a plurality of sandwich-type light-receiving elements (photodiodes) arranged on an insulating substrate 1 made of glass or the like; It is composed of a drive circuit connected to each light receiving element, and the electric charge generated in each light receiving element is output as an image signal by the drive circuit in a time-series manner.

【0027】受光素子は図1の平面説明図及び図2の断
面説明図に示すように、ガラス等の基板1上に共通電極
となるクロム(Cr)等による金属電極の下部電極2と
、水素化アモルファスシリコン(a−Si:H)から成
る光導電層3と、酸化インジウム・スズ(ITO)から
成る上部電極4とが順次積層するサンドイッチ型を構成
している。
As shown in the plan view of FIG. 1 and the cross-sectional view of FIG. A photoconductive layer 3 made of amorphous silicon (a-Si:H) and an upper electrode 4 made of indium tin oxide (ITO) are successively laminated to form a sandwich type.

【0028】尚、ここでは金属電極の下部電極2は主走
査方向に帯状に形成され、下部電極2の上に光導電層3
が主走査方向に離散的に分割して形成され、同様に上部
電極4の透明電極も主走査方向に離散的に分割して形成
されることにより、光導電層3を金属電極の下部電極2
と透明電極の上部電極4とで挟んだ部分が各受光素子を
構成し、その集まりが受光素子アレイを形成している。
Note that here, the lower electrode 2 of the metal electrode is formed in a strip shape in the main scanning direction, and a photoconductive layer 3 is formed on the lower electrode 2.
are formed by being discretely divided in the main scanning direction, and similarly, the transparent electrode of the upper electrode 4 is also formed by being divided into discrete parts in the main scanning direction.
The portion sandwiched between the upper electrode 4 of the transparent electrode constitutes each light-receiving element, and a collection thereof forms a light-receiving element array.

【0029】また、受光素子全体を覆うようにポリイミ
ドから成る第1絶縁層5が形成され、さらにその上に同
じく受光素子全体を覆うようにシリコン系無機膜(Si
Nx ,SiOx 等)から成る第2絶縁層6が形成さ
れ、上部電極4と引き出し線7を接続するために、当該
第1絶縁層5,第2絶縁層6を通してコンタクト用vi
aホ−ル8が設けられている。
Further, a first insulating layer 5 made of polyimide is formed so as to cover the entire light-receiving element, and a silicon-based inorganic film (Si
A second insulating layer 6 made of Nx, SiOx, etc.) is formed, and in order to connect the upper electrode 4 and the lead wire 7, a contact via is formed through the first insulating layer 5 and the second insulating layer 6.
An a-hole 8 is provided.

【0030】また、離散的に分割形成された上部電極4
の一端からはアルミニウムなどの配線7が引き出され、
電荷転送部の薄膜トランジスタに接続されている。受光
素子において、水素化アモルファスシリコンの代わりに
、CdSe(カドミウムセレン)などを光導電層とする
ことも可能である。
[0030] Furthermore, the upper electrode 4 is formed by discretely dividing.
A wiring 7 made of aluminum or the like is pulled out from one end of the
Connected to the thin film transistor of the charge transfer section. In the light receiving element, it is also possible to use CdSe (cadmium selenium) or the like as the photoconductive layer instead of hydrogenated amorphous silicon.

【0031】次に、本実施例のイメ−ジセンサの受光素
子の製造方法を図3(a)〜(c)及び図4(d)〜(
f)の製造プロセス断面説明図を使って説明する。
Next, a method for manufacturing the light receiving element of the image sensor of this embodiment will be explained as shown in FIGS. 3(a) to 3(c) and 4(d) to
This will be explained using the manufacturing process cross-sectional explanatory diagram f).

【0032】まず、ガラス等の基板1上に下部電極2と
なる金属電極を形成するために、DCマグネトロンスパ
ッタ法によりCrを厚さ約700オングストロ−ム程度
で着膜し、帯状にパタ−ニングする。尚、この金属とし
てはCrの他に、ニッケルクロム(NiCr)、タング
ステン(W)、タンタル(Ta)等であっても構わない
First, in order to form a metal electrode that will become the lower electrode 2 on a substrate 1 made of glass or the like, a Cr film with a thickness of about 700 angstroms is deposited by DC magnetron sputtering and patterned into a band shape. do. In addition to Cr, this metal may be nickel chromium (NiCr), tungsten (W), tantalum (Ta), or the like.

【0032】次に、光導電層3の半導体層a−Si:H
をプラズマCVD(P−CVD)法で膜厚約1.3μm
で着膜する。形成の条件は、SiH4 ガスを用いて流
量約200〜500sccm、圧力0.2〜0.5To
rr、基板温度150〜250℃、RFパワ−80〜1
50mW/cm2 着膜時間30〜60分とする。
Next, the semiconductor layer a-Si:H of the photoconductive layer 3
The film thickness is approximately 1.3 μm using plasma CVD (P-CVD) method.
Deposit a film. The formation conditions were SiH4 gas at a flow rate of approximately 200 to 500 sccm and a pressure of 0.2 to 0.5 To.
rr, substrate temperature 150~250℃, RF power -80~1
50 mW/cm2 Film deposition time is 30 to 60 minutes.

【0033】次に、光導電層3の上に上部電極4の透明
電極を形成するために、DCマグネトロンスパッタ法に
より膜厚約700オングストロ−ム程度でITOを着膜
する(図3(a)参照)。その後、レジストを塗布しフ
ォトリソエッチング法により露光・現像して、図1に示
すような形状にITOをパタ−ニングし、個別電極とし
ての透明電極の上部電極4を形成する。
Next, in order to form a transparent electrode of the upper electrode 4 on the photoconductive layer 3, ITO is deposited to a thickness of about 700 angstroms by DC magnetron sputtering (FIG. 3(a)). reference). Thereafter, a resist is applied, exposed and developed using a photolithographic etching method, and the ITO is patterned into the shape shown in FIG. 1, thereby forming the upper electrode 4 of the transparent electrode as an individual electrode.

【0034】更にレジストパタ−ンをそのままにし、こ
のパタ−ンをフォトリソマスクとして用い、テトラフル
オルメタン(CF4 )と酸素(O2 )との混合ガス
を用いて前記a−Si:H層をドライエッチングし、個
別に分割された光導電層3を形成する。そして、レジス
トの剥離を行う(図3(b)参照)。
Furthermore, the a-Si:H layer is dry etched using a mixed gas of tetrafluoromethane (CF4) and oxygen (O2), leaving the resist pattern as it is and using this pattern as a photolithography mask. Then, individually divided photoconductive layers 3 are formed. Then, the resist is removed (see FIG. 3(b)).

【0035】次に、ポリイミドをスピンコ−ティングに
より膜厚約1μm程度で塗布し、大気中で200〜25
0℃にて1〜2時間べ−キングを行い硬化させ、第1絶
縁層5を形成する。この上にSiNx をP−CVD法
にて膜厚約6000オングストロ−ム程度で着膜し、第
2絶縁層6を形成する。形成条件の一例は、SiH4 
とNH3 の混合ガスを用いて、SiH4 の流量を2
50sccm、NH3 の流量を40sccmとし、圧
力0.2Torr 、基板温度250℃、RFパワ−2
0mW/cm2 とする(図3(c)参照)。
Next, polyimide was applied to a film thickness of about 1 μm by spin coating, and the film was heated at 200 to 25 μm in the atmosphere.
Baking is performed at 0° C. for 1 to 2 hours to harden and form the first insulating layer 5. A second insulating layer 6 is formed by depositing SiNx on this layer to a thickness of about 6000 angstroms by P-CVD. An example of the formation conditions is SiH4
and NH3, the flow rate of SiH4 was set to 2.
50 sccm, the flow rate of NH3 was 40 sccm, the pressure was 0.2 Torr, the substrate temperature was 250°C, and the RF power was 2.
0 mW/cm2 (see Figure 3(c)).

【0036】本実施例においては、シリコン窒化膜(S
iNx )を用いて第2絶縁層6を形成したが、シリコ
ン酸化膜(SiOx )を用いて第2絶縁層6を形成し
てもよく、第2絶縁層6はシリコン系無機膜で形成する
こととする。
In this example, a silicon nitride film (S
Although the second insulating layer 6 is formed using silicon oxide (SiOx), the second insulating layer 6 may be formed using a silicon oxide film (SiOx), and the second insulating layer 6 may be formed using a silicon-based inorganic film. shall be.

【0037】上部電極4から配線7が引き出せるようコ
ンタクト用viaホ−ル8を形成するために、フォトレ
ジスト9を塗布し、所定のマスクを用いてフォトリソエ
ッチング法にて露光、現像し、レジストパタ−ンを形成
する。そして、フッ酸(HF):フッ化アンモニウム(
NH4 F)=1:10の混合溶液を用いてSiNx 
膜をエッチングする(図4(d)参照)。
In order to form a contact via hole 8 so that the wiring 7 can be drawn out from the upper electrode 4, a photoresist 9 is applied, exposed and developed using a photolithographic etching method using a predetermined mask, and a resist pattern is formed. form a formation. And hydrofluoric acid (HF): ammonium fluoride (
SiNx using a mixed solution of NH4F) = 1:10
The film is etched (see FIG. 4(d)).

【0038】レジストを剥離した後、SiNx 膜をマ
スクにして酸素(O2 )とテトラフルオロメタン(C
F4 )の混合ガスを用いたRIEによりポリイミドを
エッチングし、コンタクト用viaホ−ル8を形成する
(図4(e)参照)。
After peeling off the resist, oxygen (O2) and tetrafluoromethane (C) are exposed using the SiNx film as a mask.
The polyimide is etched by RIE using a mixed gas of F4) to form contact via holes 8 (see FIG. 4(e)).

【0039】更に、配線7となるアルミニウムをDCマ
グネトロンスパッタ法により、厚さ約15000オング
ストロ−ム程度で着膜し、フォトリソエッチング法で所
望のパタ−ンにパタ−ニングする(図4(f)参照)。 このようにして、イメ−ジセンサの受光素子部分が製造
される。
Furthermore, a film of aluminum, which will become the wiring 7, is deposited to a thickness of about 15,000 angstroms by DC magnetron sputtering, and patterned into a desired pattern by photolithographic etching (FIG. 4(f)). reference). In this way, the light receiving element portion of the image sensor is manufactured.

【0040】本実施例のイメ−ジセンサによれば、段差
の平坦化に優れているポリイミドを第1絶縁層5とし、
絶縁性および耐水性に優れたSiNx 膜又はSiOx
 膜等のシリコン系無機膜を第2絶縁層6としているの
で、受光素子のエッジ付近での層間絶縁層の薄膜化が起
こらず、十分な絶縁性を保って下部電極2と配線7との
間の電流のリ−クを防ぐと同時に、良好な耐水性を得る
ことができる効果がある。
According to the image sensor of this embodiment, the first insulating layer 5 is made of polyimide, which is excellent in flattening steps.
SiNx film or SiOx with excellent insulation and water resistance
Since the second insulating layer 6 is made of a silicon-based inorganic film such as a film, the interlayer insulating layer does not become thin near the edge of the light receiving element, and sufficient insulation is maintained between the lower electrode 2 and the wiring 7. This has the effect of preventing current leakage and at the same time obtaining good water resistance.

【0041】すなわち、第1絶縁層としてのポリイミド
が段差を十分平坦化した後で第2絶縁層としてのシリコ
ン系無機膜を着膜するので、第2絶縁層としてのシリコ
ン系無機膜はほぼ均一な膜厚で形成することができ、そ
の結果十分な絶縁性が得られ、また、シリコン系無機膜
は水に侵されないので、良好な耐水性が得られ、イメ−
ジセンサの信頼性を向上させる効果がある。
That is, since the silicon-based inorganic film as the second insulating layer is deposited after the polyimide as the first insulating layer has sufficiently flattened the steps, the silicon-based inorganic film as the second insulating layer is almost uniform. As a result, a silicon-based inorganic film is not eroded by water, so it has good water resistance and an image quality.
This has the effect of improving the reliability of the sensor.

【0042】本実施例のイメ−ジセンサの製造方法によ
れば、第1絶縁層5としてのポリイミドが受光素子部分
を覆っているため、第2絶縁層6としてのSiNx 膜
又はSiOx 膜の着膜時に上部電極4としてのITO
がプラズマやSiH4 ガスに直接さらされて還元され
ることがなく、センサ特性の劣化を防止することができ
る効果がある。同様に、SiNx 膜又はSiOx 膜
のエッチング時にITOがエッチング液にさらされるこ
とがなく、ダメ−ジを受けることがない。
According to the method of manufacturing the image sensor of this embodiment, since the polyimide as the first insulating layer 5 covers the light receiving element portion, the SiNx film or the SiOx film as the second insulating layer 6 is deposited. Sometimes ITO as the upper electrode 4
is not directly exposed to plasma or SiH4 gas and reduced, which has the effect of preventing deterioration of sensor characteristics. Similarly, when etching a SiNx film or a SiOx film, ITO is not exposed to the etching solution and is not damaged.

【0043】また、第2絶縁層6はフォトレジスト9の
パタ−ンで、更に第1絶縁層5は第2絶縁層6のパタ−
ンで、それぞれ別のエッチング工程によりエッチングさ
れるので、1回のエッチング工程でエッチングすべき膜
厚が極端に厚くなることがなく、コンタクト用viaホ
−ル8の微細加工が十分可能である。
The second insulating layer 6 is a pattern of the photoresist 9, and the first insulating layer 5 is a pattern of the second insulating layer 6.
Since each layer is etched in a separate etching process, the thickness of the film to be etched in one etching process does not become extremely thick, and the contact via hole 8 can be sufficiently microfabricated.

【0044】また、第1絶縁層5としてのポリイミドの
エッチングのマスクに第2絶縁層6であるSiNx 膜
やSiOx 膜のパタ−ンを用いているため、フォトリ
ソ工程の増加がなく、従って歩留まり良く信頼性の高い
イメ−ジセンサを製造できる効果がある。
Furthermore, since the pattern of the SiNx film or SiOx film, which is the second insulating layer 6, is used as a mask for etching polyimide, which is the first insulating layer 5, there is no increase in the number of photolithography steps, and therefore, the yield can be improved. This has the effect of making it possible to manufacture a highly reliable image sensor.

【0045】[0045]

【発明の効果】請求項1記載の発明によれば、層間絶縁
層として、第1絶縁層を段差の平坦化に優れたポリイミ
ドを用い、受光素子の各層積層により生ずる段差を平坦
化した後に第2絶縁層を絶縁性及び耐水性に優れたシリ
コン系無機膜を用いたイメ−ジセンサとしているので、
受光素子のエッジ付近での層間絶縁層の薄膜化を防止で
き、イメ−ジセンサの絶縁性を向上させて下部電極と引
き出し配線との間の電流のリ−クを少なくすることがで
き、更に第2絶縁層のシリコン系無機膜によって耐水性
を向上させることができ、イメ−ジセンサの信頼性を向
上させることができる効果がある。
According to the invention as set forth in claim 1, the first insulating layer is made of polyimide which is excellent in flattening steps, and after flattening the steps caused by stacking each layer of the light receiving element, Since the image sensor uses a silicon-based inorganic film with excellent insulation and water resistance as the second insulating layer,
It is possible to prevent thinning of the interlayer insulating layer near the edge of the photodetector, improve the insulation of the image sensor, and reduce current leakage between the lower electrode and the lead wiring. The two insulating layers of the silicon-based inorganic film can improve water resistance and have the effect of improving the reliability of the image sensor.

【0046】請求項2記載の発明によれば、受光素子の
上部電極上に第1絶縁層を段差の平坦化に優れたポリイ
ミドで形成し、受光素子の各層積層により生ずる段差を
平坦化した後に、絶縁性及び耐水性に優れたシリコン系
無機膜から成る第2絶縁層を積層するイメ−ジセンサの
製造方法としているので、受光素子のエッジ付近での層
間絶縁層の薄膜化を阻止することができ、イメ−ジセン
サの絶縁性を向上させて下部電極と引き出し線との間の
電流のリ−クを少なくすることができ、更に第2絶縁層
のシリコン系無機膜によって耐水性を向上させることが
でき、イメ−ジセンサの信頼性を向上させることができ
る効果がある。
According to the second aspect of the invention, the first insulating layer is formed on the upper electrode of the light-receiving element using polyimide, which is excellent in flattening steps, and after flattening the steps caused by laminating each layer of the light-receiving element. Since this method of manufacturing an image sensor laminates a second insulating layer made of a silicon-based inorganic film with excellent insulation and water resistance, thinning of the interlayer insulating layer near the edge of the photodetector can be prevented. It is possible to improve the insulation properties of the image sensor, reduce current leakage between the lower electrode and the lead wire, and further improve water resistance by using a silicon-based inorganic film as the second insulating layer. This has the effect of improving the reliability of the image sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例に係るイメ−ジセンサの平面
説明図である。
FIG. 1 is an explanatory plan view of an image sensor according to an embodiment of the present invention.

【図2】図1のA−A′部分の断面説明図である。FIG. 2 is an explanatory cross-sectional view taken along line AA' in FIG. 1;

【図3】(a)〜(c)は本実施例の製造プロセス断面
説明図である。
FIGS. 3A to 3C are cross-sectional explanatory views of the manufacturing process of this embodiment.

【図4】(d)〜(f)は本実施例の製造プロセス断面
説明図である。
FIGS. 4(d) to 4(f) are cross-sectional explanatory views of the manufacturing process of this embodiment.

【図5】従来のイメ−ジセンサの受光素子の平面説明図
である。
FIG. 5 is an explanatory plan view of a light receiving element of a conventional image sensor.

【図6】図5のB−B′部分の断面説明図である。6 is an explanatory cross-sectional view taken along line BB' in FIG. 5; FIG.

【図7】従来の代替案の断面説明図である。FIG. 7 is a cross-sectional explanatory diagram of a conventional alternative.

【符号の説明】[Explanation of symbols]

1  基板 2  下部電極 3  光導電層 4  上部電極 5  第1絶縁層 6  第2絶縁層 7  配線 8  コンタクト用viaホ−ル 9  フォトレジスト 10  層間絶縁層 1 Board 2 Lower electrode 3 Photoconductive layer 4 Upper electrode 5 First insulating layer 6 Second insulating layer 7 Wiring 8 Via hole for contact 9 Photoresist 10 Interlayer insulation layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  基板上に形成された共通電極となる下
部電極と、前記下部電極上に画素毎に個別化して形成さ
れた光導電層と、前記光導電層上に前記各光導電層に対
応するよう形成された上部電極と、前記下部電極、前記
光導電層と前記上部電極上を覆うように形成された層間
絶縁層と、前記層間絶縁層に設けられた開口部を介して
前記上部電極と接続するよう前記層間絶縁層上に形成さ
れた引き出し配線とを具備する受光素子を有するイメ−
ジセンサにおいて、前記層間絶縁層をポリイミドから成
る第1絶縁層とシリコン系無機膜から成る第2絶縁層と
を順次積層して形成したことを特徴とするイメ−ジセン
サ。
1. A lower electrode serving as a common electrode formed on a substrate, a photoconductive layer formed individually for each pixel on the lower electrode, and a photoconductive layer formed on each photoconductive layer on the photoconductive layer. An upper electrode formed in a corresponding manner, an interlayer insulating layer formed to cover the lower electrode, the photoconductive layer and the upper electrode, and an opening provided in the interlayer insulating layer to form the upper electrode. An image having a light receiving element comprising a lead wiring formed on the interlayer insulating layer so as to be connected to an electrode.
An image sensor characterized in that the interlayer insulating layer is formed by sequentially laminating a first insulating layer made of polyimide and a second insulating layer made of a silicon-based inorganic film.
【請求項2】  基板上に共通電極となる下部電極を形
成し、前記下部電極上に光導電層と上部電極を画素毎に
個別化して形成し、前記上部電極を覆うようにポリイミ
ドから成る第1絶縁層を積層し、前記第1絶縁層上にシ
リコン系無機膜から成る第2絶縁層を積層して層間絶縁
層を形成し、前記層間絶縁層に開口部を形成して前記各
上部電極からの引き出し配線を前記層間絶縁層上に形成
することを特徴とするイメ−ジセンサの製造方法。
2. A lower electrode serving as a common electrode is formed on a substrate, a photoconductive layer and an upper electrode are individually formed for each pixel on the lower electrode, and a layer made of polyimide is formed to cover the upper electrode. a second insulating layer made of a silicon-based inorganic film is laminated on the first insulating layer to form an interlayer insulating layer, and an opening is formed in the interlayer insulating layer to form an opening in each of the upper electrodes. 1. A method of manufacturing an image sensor, comprising forming lead wiring from the interlayer insulating layer on the interlayer insulating layer.
JP2410531A 1990-12-14 1990-12-14 Image sensor and manufacture thereof Pending JPH04215475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410531A JPH04215475A (en) 1990-12-14 1990-12-14 Image sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2410531A JPH04215475A (en) 1990-12-14 1990-12-14 Image sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04215475A true JPH04215475A (en) 1992-08-06

Family

ID=18519687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410531A Pending JPH04215475A (en) 1990-12-14 1990-12-14 Image sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04215475A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295908A (en) * 2008-06-09 2009-12-17 Mitsubishi Electric Corp Photosensor, and method of manufacturing the same
JP2010067762A (en) * 2008-09-10 2010-03-25 Mitsubishi Electric Corp Photoelectric transducer and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295908A (en) * 2008-06-09 2009-12-17 Mitsubishi Electric Corp Photosensor, and method of manufacturing the same
JP2010067762A (en) * 2008-09-10 2010-03-25 Mitsubishi Electric Corp Photoelectric transducer and production method thereof

Similar Documents

Publication Publication Date Title
US5191453A (en) Active matrix substrate for liquid-crystal display and method of fabricating the active matrix substrate
TWI404212B (en) Thin film transistor array panel and method for manufacturing the same
US7294855B2 (en) Contact structure of semiconductor device, manufacturing method thereof, thin film transistor array panel including contact structure, and manufacturing method thereof
JPH0734467B2 (en) Image sensor manufacturing method
JPH1093102A (en) Method of manufacture thin-film transistor
JP2780673B2 (en) Active matrix type liquid crystal display device and manufacturing method thereof
US5216491A (en) Semiconductor photoconductive device with laminated refractory metal electrode
WO2019196191A1 (en) Method for preparing tft array substrate, tft array substrate, and display panel
JP2002350897A (en) Method for manufacturing matrix substrate for liquid crystal
JPH04215475A (en) Image sensor and manufacture thereof
US20040178412A1 (en) Thin film transistor and method of manufacturing the same and display apparatus using the transistor
JPH0746721B2 (en) Image sensor and manufacturing method thereof
KR100663288B1 (en) Method for fabricating tft-lcd
JP2504092B2 (en) Method for manufacturing thin film transistor
JPH10173195A (en) Thin film transistor and its manufacturing method
JPH07118527B2 (en) Image sensor manufacturing method
JPH04111322A (en) Manufacture of thin film transistor
JPH05102454A (en) Thin film semiconductor device
JPH04215474A (en) Manufacture of wirings of semiconductor element
JPH0651350A (en) Display device
JPS62124530A (en) Liquid crystal display element
JPH0888396A (en) Photosensor array
JPH03212975A (en) Image sensor
JPH0653470A (en) Image sensor and fabrication thereof
JP2522832Y2 (en) Thin film transistor