JPH0421524A - Purification of potassium tantalum fluoride - Google Patents

Purification of potassium tantalum fluoride

Info

Publication number
JPH0421524A
JPH0421524A JP12302190A JP12302190A JPH0421524A JP H0421524 A JPH0421524 A JP H0421524A JP 12302190 A JP12302190 A JP 12302190A JP 12302190 A JP12302190 A JP 12302190A JP H0421524 A JPH0421524 A JP H0421524A
Authority
JP
Japan
Prior art keywords
solution
tantalum fluoride
potassium
tantalum
potassium tantalum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12302190A
Other languages
Japanese (ja)
Inventor
Yuichiro Shindo
裕一朗 新藤
Eiji Nishimura
栄二 西村
Masami Kuroki
黒木 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP12302190A priority Critical patent/JPH0421524A/en
Publication of JPH0421524A publication Critical patent/JPH0421524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain highly purified potassium tantalum fluoride containing a slight radioactive element or metal of high melting point by dissolving crude potassium tantalum fluoride in a hydrofluoric acid solution at a specific temperature range and cooling the solution to below normal temperature to recrystallize. CONSTITUTION:Crude potassium tantalum fluoride is poured into hydrofluoric acid or a mixed solution containing hydrofluoric acid and resultant solution is heated to 50-95 deg.C, then cooled to below 20 deg.C. Potassium tantalum fluoride crystal re-crystallized by cooling is filtrated and sufficiently washed to become pH5-6 preferably in an alkaline solution, e.g., a solution having >=9 of pH, then the recrystallized crystal is dried at 140-300 deg.C.

Description

【発明の詳細な説明】 本発明は、高純度弗化タンタルカリウムの製造方法に関
するものであり、特には半導体デバイス用のタンタル酸
化膜の形成に用いられる高純度タンタルの原料の製造方
法に関する。本発明の弗化タンタルカリウムは半導体デ
バイスに有害な作用を与える不純物が榛微量にまで低減
されており、半導体デバイスにおける絶縁膜として用い
られる高純度タンタル製造のための原料として非常に好
適である。更に本発明の弗化タンタルカリウムはLSI
電極膜用として用いられる高純度タンタル製造のための
原料としても好適である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-purity potassium tantalum fluoride, and particularly to a method for producing a raw material for high-purity tantalum used for forming a tantalum oxide film for semiconductor devices. The potassium tantalum fluoride of the present invention has impurities harmful to semiconductor devices reduced to a trace amount, and is very suitable as a raw material for producing high-purity tantalum used as an insulating film in semiconductor devices. Further, the potassium tantalum fluoride of the present invention is LSI
It is also suitable as a raw material for producing high-purity tantalum used for electrode films.

茜ユL貧米且困 従来、半導体デバイスにおける電接配線層間の絶縁膜と
してはシリコン酸化膜か用いられてきたが、LSIの高
集積化に伴う絶縁膜の薄膜化のためにはシリコン酸化膜
では性能不足となり、もっと誘電率の高いタンタル酸化
膜を用いようとする試みが盛んに行なわている。また、
大容量MO3DRAMのキャパシタ用誘電体として高誘
電率のTa、06に現在大きな注目が集められている。
Traditionally, silicon oxide films have been used as insulating films between electrical connection wiring layers in semiconductor devices, but silicon oxide films have been used to thin insulating films as LSIs become more highly integrated. However, the performance is insufficient, and many attempts are being made to use tantalum oxide film, which has a higher dielectric constant. Also,
Ta, 06, which has a high dielectric constant, is currently attracting a lot of attention as a dielectric material for capacitors in large-capacity MO3DRAMs.

こうしたTa、06膜は代表的にタンタル製ターゲット
をアルゴン−酸素混合ガス中でスパッタすることにより
形成されるが、スパッタTa、O,薄膜は膜中に多くの
トラップ中心を含むためリーク電流が流れやすい。リー
ク電流の原因としては、残留不純物がその主たるものと
して考えられている。
Such Ta, 06 films are typically formed by sputtering a tantalum target in an argon-oxygen mixed gas, but sputtered Ta, 0, thin films contain many trap centers in the film, so leakage current flows. Cheap. Residual impurities are considered to be the main cause of leakage current.

更に、半導体デバイス素子の性能の信頼性を向上するた
めには 1)Na、に、Lj等のアルカリ金属 2)U、Th等の放射性元素 3)Fe、Cr、Ni、Mn等の遷移金属4)Nb、W
、Mo、Z r等の高融点金属のような不純物の低減化
が必要である。上記(1)(3)は後のTa処理工程で
除去可能であるため問題はないが、上記(2)、(4)
は除くことができないため、予め除去しておくことが望
ましい。Na等のアルカリ金属は、ゲート絶縁膜中を容
易に移動し界面特性を劣化させ、またU等の放射性元素
は、該元素より放出するα線によって素子の動作信頼性
に致命的影響を与える。Fe等の遷移金属は、動作の信
頼性を阻害する。W等の高融点金属は、リーク電流の増
大をもたらす。これらの理由からアルカリ金属及び放射
性元素ならびに遷移金属、高融点金属等の不純物の低減
化がVLSI構成材料としての使用における基本である
Furthermore, in order to improve the reliability of the performance of semiconductor device elements, it is necessary to use 1) alkali metals such as Na, Lj, etc., 2) radioactive elements such as U and Th, 3) transition metals such as Fe, Cr, Ni, Mn, etc. ) Nb, W
It is necessary to reduce impurities such as high melting point metals such as , Mo, and Zr. There is no problem with the above (1) and (3) because they can be removed in the later Ta treatment process, but the above (2) and (4)
cannot be removed, so it is desirable to remove them in advance. Alkali metals such as Na easily move in the gate insulating film and deteriorate interface characteristics, and radioactive elements such as U have a fatal effect on the operational reliability of the device due to alpha rays emitted from the elements. Transition metals such as Fe inhibit operational reliability. High melting point metals such as W cause an increase in leakage current. For these reasons, reduction of impurities such as alkali metals, radioactive elements, transition metals, and high-melting point metals is fundamental for use as VLSI constituent materials.

しかし、このタンタルあるいはタンタル酸化物製造のた
めの原料として用いられる市販の弗化タンタルカリウム
の純度は、Nb、  Mo、W、Zr等の不純物が数十
ppm以上あり、好ましいものではなかった。さらに、
弗化タンタルカリウムの原料として通常用いられるTa
、06の純度に大きく影響されてしまい、最終的なタン
タルあるいはタンタル酸化物の純度の保証及び向上は望
めなかった。
However, the purity of commercially available potassium tantalum fluoride used as a raw material for the production of tantalum or tantalum oxide was not preferable, as it contained impurities such as Nb, Mo, W, and Zr in an amount of several tens of ppm or more. moreover,
Ta, commonly used as a raw material for potassium tantalum fluoride
, 06, and it was not possible to guarantee or improve the purity of the final tantalum or tantalum oxide.

このため、純度のよい高純度タンタルあるいはタンタル
酸化物を製造するための原料、特に弗化タンタルカリウ
ムを高純度化する方法が要望されていた。
For this reason, there has been a need for a method for highly purifying raw materials for producing high-purity tantalum or tantalum oxide, particularly potassium tantalum fluoride.

そこで、本発明者等が鋭意検討した結果、以下の発明が
なされた。
Therefore, as a result of intensive study by the present inventors, the following invention was made.

叉ユニ!疾 即ち、本発明は、 1)粗部化タンタルカリウムを弗化水素酸或いは弗化水
素酸を含む混酸に投入し、該溶液を50〜95℃に昇温
し、その後20℃以下に冷却することを特徴とする弗化
タンタルカリウムの精製方法。
Uni! That is, the present invention comprises: 1) Putting crude tantalum potassium into hydrofluoric acid or a mixed acid containing hydrofluoric acid, heating the solution to 50 to 95°C, and then cooling it to 20°C or less. A method for purifying potassium tantalum fluoride, characterized by:

2)溶液中の弗化水素酸濃度が5〜30wし%であるこ
とを特徴とする第1項記載の方法。である。
2) The method according to item 1, wherein the concentration of hydrofluoric acid in the solution is 5 to 30% by weight. It is.

[(の目 酬−1 本発明の対象となる粗部化タンタルカリウムは、高融点
金属特にNbが5〜60ppmWが2〜40ppm、M
oが2〜10ppm、Zrが1〜10ppm、放射性元
素においては、Uが1〜20ppb、Thか1〜1op
pb含有されている。
[(Objectives)-1 The roughened tantalum potassium that is the object of the present invention contains a high melting point metal, especially Nb, of 5 to 60 ppm, W of 2 to 40 ppm, M
O is 2 to 10 ppm, Zr is 1 to 10 ppm, and in radioactive elements, U is 1 to 20 ppb, Th is 1 to 1 op.
Contains PB.

これら高融点金属及び放射性金属の除去には、湿式精製
を実施しなければならない。まず、粗部化タンタルカリ
ウムを溶解する手段として、鋭意探索した結果、弗化水
素酸あるいはその混酸が有効であることを見い出した。
Wet refining must be performed to remove these high melting point metals and radioactive metals. First, as a means of dissolving crude tantalum potassium, as a result of intensive research, it was discovered that hydrofluoric acid or a mixed acid thereof is effective.

溶液中の弗化水素酸の濃度としては、第1図に示す如く
5〜30 w t%が好ましい。これは、溶液中の弗化
水素酸の濃度が5%より少い場合は温度を上げても弗化
タンタルカリウムの溶解量が少ないためである。30w
L%以上では、温度20℃での弗化タンタルカリウムの
溶解量がかなりあるため、冷却後の弗化タンタルカリウ
ムの収率が落ちるからである。溶解温度も50℃〜95
℃が好ましく、より好ましい温度は70℃〜95℃であ
る。溶解温度が」1記の温度より低い場合は、粗部化タ
ンタルカリウムの溶解性が劣り、収率に影響するからで
ある。溶解温度が95℃より高い場合は、弗化水素酸溶
液の蒸発か激しくなり、最終的には粗部化タンタルカリ
ウムの溶解性が悪くなるからである。次にこの合邦化タ
ンタル溶液を20℃以下に冷却することにより、弗化タ
ンタルカリウム再結晶か晶出してくる。
The concentration of hydrofluoric acid in the solution is preferably 5 to 30 wt% as shown in FIG. This is because when the concentration of hydrofluoric acid in the solution is less than 5%, the amount of potassium tantalum fluoride dissolved is small even if the temperature is raised. 30w
This is because if the temperature exceeds L%, the amount of potassium tantalum fluoride dissolved at a temperature of 20° C. is considerable, and the yield of potassium tantalum fluoride after cooling decreases. The melting temperature is also 50℃~95℃
The temperature is preferably 70°C to 95°C. This is because if the dissolution temperature is lower than the temperature listed in item 1, the solubility of the crude tantalum potassium will be poor, which will affect the yield. This is because if the dissolution temperature is higher than 95° C., the hydrofluoric acid solution will evaporate violently, and the solubility of the crude tantalum potassium will eventually deteriorate. Next, by cooling this tantalum fluoride solution to 20° C. or lower, potassium tantalum fluoride recrystallizes.

弗化タンタルカリウム再結晶をI適役、好ましくはアル
カリ性溶液例えばpH9以上である溶液で、pHが5〜
6になるまで充分に洗浄する。これは、乾燥工程で使用
される乾燥機の腐食を防止するためである。次いで14
0〜300℃で弗化タンタルカリウム再結晶を乾燥する
Potassium tantalum fluoride is recrystallized in a suitable solution, preferably in an alkaline solution, such as a solution with a pH of 9 or higher, with a pH of 5 to 5.
Wash thoroughly until it reaches 6. This is to prevent corrosion of the dryer used in the drying process. then 14
Dry the recrystallized potassium tantalum fluoride at 0-300°C.

このようにして、得られた弗化タンタルカリウム再結晶
の収率は95%以上である。
The yield of potassium tantalum fluoride recrystallized thus obtained is 95% or more.

このように、温度による弗化タンタルカリウムの溶解度
差を利用したたけで容易に高純度の弗化タンタルカリウ
ムが得られる。
In this way, highly pure potassium tantalum fluoride can be easily obtained by utilizing the difference in solubility of potassium tantalum fluoride depending on temperature.

更に精製が切望される場合は、上記の方法を繰り返す。If further purification is desired, repeat the above method.

[実施例] 市販の粗部化タンタルカリウム2.5に、g(表1に示
す。)を採取し、高純度の50%弗化水素酸10kgと
共に、テフロン製反応層内で温度95℃でlhr撹拌し
つつ溶解して、含タンタル水溶液を得た。
[Example] 2.5 g (shown in Table 1) of commercially available crude tantalum potassium was collected and heated at 95°C in a Teflon reaction bed with 10 kg of high-purity 50% hydrofluoric acid. The mixture was dissolved while stirring for 1 hour to obtain a tantalum-containing aqueous solution.

次に、20℃以下まで溶液の温度を落として、弗化タン
タルカリウムを再結晶させた。その後、テフロン製炉布
を用い炉別分離し、弗化タンタルカリウム結晶を弗化カ
リウム濃度100g/Qの水溶液で洗浄した。ついで、
弗化タンタルカリウムを160℃で乾燥させた。こうし
て得られた高純度弗化タンタルカリウムは2.4kgで
あり、また表1に示すごとく高融点金属含有量がlpp
m以下、放射性元素含有量が1 ppb以下の高品位の
ものである。
Next, the temperature of the solution was lowered to 20° C. or lower to recrystallize potassium tantalum fluoride. Thereafter, the mixture was separated into separate furnaces using a Teflon furnace cloth, and the potassium tantalum fluoride crystals were washed with an aqueous solution having a potassium fluoride concentration of 100 g/Q. Then,
Potassium tantalum fluoride was dried at 160°C. The amount of high purity potassium tantalum fluoride thus obtained was 2.4 kg, and as shown in Table 1, the high melting point metal content was 1pp.
It is of high quality with a radioactive element content of 1 ppb or less.

この弗化タンタルカリウムを用いてタンタルあるいは五
酸化タンタルを製造するならば、有害不純物を含まない
ので使用される半導体デバイスの高い性能及び動作信頼
性を保証することかできる。
If tantalum or tantalum pentoxide is produced using this potassium tantalum fluoride, high performance and operational reliability of the semiconductor devices used can be guaranteed because it does not contain harmful impurities.

表 (ppm) 套訓WΣ弧果 高融点金属、放射性元素の少ない高純度の弗化タンタル
カリウムが、高収率でかつ簡単な工程で容易に得られる
Table (ppm) Instructions WΣArchid Highly pure potassium tantalum fluoride, which is a high melting point metal and contains few radioactive elements, can be easily obtained in high yield and through a simple process.

4、垣画m←(託咀 第1図は本発明における弗化水素酸濃度変化と各温度に
よる弗化タンタルカリウムの溶解量である。
4. Frame m ← (Figure 1 shows the change in hydrofluoric acid concentration and the amount of potassium tantalum fluoride dissolved at each temperature in the present invention.

Claims (1)

【特許請求の範囲】 1)粗弗化タンタルカリウムを弗化水素酸或いは弗化水
素酸を含む混酸に投入し、該溶液を50〜95℃に昇温
し、その後20℃以下に冷却することを特徴とする弗化
タンタルカリウムの精製方法。 2)溶液中の弗化水素酸濃度が5〜30wt%であるこ
とを特徴とする第1項記載の方法。
[Claims] 1) Adding crude potassium tantalum fluoride to hydrofluoric acid or a mixed acid containing hydrofluoric acid, heating the solution to 50 to 95°C, and then cooling it to 20°C or less. A method for purifying potassium tantalum fluoride, characterized by: 2) The method according to item 1, wherein the concentration of hydrofluoric acid in the solution is 5 to 30 wt%.
JP12302190A 1990-05-15 1990-05-15 Purification of potassium tantalum fluoride Pending JPH0421524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12302190A JPH0421524A (en) 1990-05-15 1990-05-15 Purification of potassium tantalum fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12302190A JPH0421524A (en) 1990-05-15 1990-05-15 Purification of potassium tantalum fluoride

Publications (1)

Publication Number Publication Date
JPH0421524A true JPH0421524A (en) 1992-01-24

Family

ID=14850264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12302190A Pending JPH0421524A (en) 1990-05-15 1990-05-15 Purification of potassium tantalum fluoride

Country Status (1)

Country Link
JP (1) JPH0421524A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047813A1 (en) * 1999-12-28 2001-07-05 Mitsui Mining & Smelting Co., Ltd. Method for producing fluorinated potassium tantalate crystal and fluorinated potassium tantalate crystal
WO2002083568A1 (en) * 2001-04-06 2002-10-24 Mitsui Mining & Smelting Co.,Ltd. Method for producing high purity potassium fluorotantalate crystal or high purity potassium fluoroniobate crystal and recrystallization vessel for use in the method for production, and potassium fluorotantalate crystal or high purity potassium fluoroniobate crystal produced by the method for production
WO2003072503A1 (en) * 2002-02-27 2003-09-04 Stella Chemifa Kabushiki Kaisha Method of purifying niobium compound and/or tantalum compound
WO2003072504A1 (en) * 2002-02-27 2003-09-04 Stella Chemifa Kabushiki Kaisha Purification method for producing high purity niobium compound and/or tantalum compound
KR100425795B1 (en) * 2001-06-02 2004-04-03 태원필 Synthesis of nanosized potassium tantalum oxide(KTaO3) sol-particle
US6863750B2 (en) 2000-05-22 2005-03-08 Cabot Corporation High purity niobium and products containing the same, and methods of making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932897A (en) * 1972-07-27 1974-03-26
JPS56125217A (en) * 1980-02-12 1981-10-01 Starck Hermann C Fa Manufacture of alkali subearth-acid metallic fluoride complex
JPS5734026A (en) * 1980-08-01 1982-02-24 Showa K B I Kk Production of high-purity potassium fluorotantalate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932897A (en) * 1972-07-27 1974-03-26
JPS56125217A (en) * 1980-02-12 1981-10-01 Starck Hermann C Fa Manufacture of alkali subearth-acid metallic fluoride complex
JPS5734026A (en) * 1980-08-01 1982-02-24 Showa K B I Kk Production of high-purity potassium fluorotantalate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047813A1 (en) * 1999-12-28 2001-07-05 Mitsui Mining & Smelting Co., Ltd. Method for producing fluorinated potassium tantalate crystal and fluorinated potassium tantalate crystal
DE10085177B4 (en) * 1999-12-28 2004-01-08 Mitsui Mining & Smelting Co., Ltd. Process for producing potassium tantalate crystals and potassium fluorotantalate crystals produced thereby
US6764669B2 (en) 1999-12-28 2004-07-20 Mitsui Mining & Smelting Co., Ltd. Method for producing fluorinated potassium tantalate crystal
US6863750B2 (en) 2000-05-22 2005-03-08 Cabot Corporation High purity niobium and products containing the same, and methods of making the same
WO2002083568A1 (en) * 2001-04-06 2002-10-24 Mitsui Mining & Smelting Co.,Ltd. Method for producing high purity potassium fluorotantalate crystal or high purity potassium fluoroniobate crystal and recrystallization vessel for use in the method for production, and potassium fluorotantalate crystal or high purity potassium fluoroniobate crystal produced by the method for production
US6860941B2 (en) 2001-04-06 2005-03-01 Mitsui Mining & Smelting Co., Ltd. Method for manufacturing high-purity potassium fluoroniobate crystal, recrystallization bath used in manufacturing method thereof and high-purity potassium fluorotantalate crystal or high-purity potassium fluoroniobate crystal obtained by manufacturing method thereof
KR100425795B1 (en) * 2001-06-02 2004-04-03 태원필 Synthesis of nanosized potassium tantalum oxide(KTaO3) sol-particle
WO2003072503A1 (en) * 2002-02-27 2003-09-04 Stella Chemifa Kabushiki Kaisha Method of purifying niobium compound and/or tantalum compound
WO2003072504A1 (en) * 2002-02-27 2003-09-04 Stella Chemifa Kabushiki Kaisha Purification method for producing high purity niobium compound and/or tantalum compound
US7214362B2 (en) 2002-02-27 2007-05-08 Stella Chemifa Kabushiki Kaisha Purification method for producing high purity niobium compound and/or tantalum compound

Similar Documents

Publication Publication Date Title
JP4058777B2 (en) High purity ruthenium sintered compact sputtering target for thin film formation and thin film formed by sputtering the target
JP2000034563A (en) Production of highly pure ruthenium sputtering target and highly pure ruthenium sputtering target
JPH0421524A (en) Purification of potassium tantalum fluoride
TWI248476B (en) High purity copper sulfate and method for production thereof
JPH01172226A (en) Production of ammonium paratungstate crystal having high purity
KR102518462B1 (en) Preparation Method for 2,2'-Bis(Trifluoromethyl)-4,4'-Diaminobiphenyl for High Quality Polyimide Resin
JPH042618A (en) Method for purifying potassium tantalum fluoride
WO2001047813A1 (en) Method for producing fluorinated potassium tantalate crystal and fluorinated potassium tantalate crystal
JP2002363662A (en) Method for recovery of high-purity tantalum, high-purity tantalum sputtering target, and thin film deposited by using this sputtering target
JP3382561B2 (en) High purity phosphoric acid
JPH082920A (en) Production of tungstic acid crystal having high purity
US6277349B1 (en) Tridymite-based processing for high purity quartz
JPH027381B2 (en)
JPS6261094B2 (en)
JPH0547976B2 (en)
JPH0227287B2 (en) KOJUNDOPARATANGUSUTENSANANMONIUMUKETSUSHONOSEIZOHOHO
JPH0227286B2 (en) SUIYOSEITANGUSUTENKAGOBUTSUKETSUSHOOYOBIKOJUNDOTANGUSUTENSANKETSUSHONOSEIZOHOHO
JPH0412026A (en) High-purity niobium compound and production thereof
JP2710049B2 (en) Method for producing high-purity ammonium molybdate crystal
TWI779994B (en) Method for purification of iminodiacetic acid
JP2691414B2 (en) Purification method of molybdenum or tungsten
TW200303294A (en) Method of purifying niobium compound and/or tantalum compound
KR100567447B1 (en) Recovery of phosphoric acid, nitric acid and acetic acid from waste TFT-LCD aluminium etchant
JP2019525946A (en) Method for producing hydronidone
JPS6123315A (en) Silica material for heat-treatment of semiconductor