JP3382561B2 - High purity phosphoric acid - Google Patents

High purity phosphoric acid

Info

Publication number
JP3382561B2
JP3382561B2 JP18131299A JP18131299A JP3382561B2 JP 3382561 B2 JP3382561 B2 JP 3382561B2 JP 18131299 A JP18131299 A JP 18131299A JP 18131299 A JP18131299 A JP 18131299A JP 3382561 B2 JP3382561 B2 JP 3382561B2
Authority
JP
Japan
Prior art keywords
phosphoric acid
crystallization
temperature
purity
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP18131299A
Other languages
Japanese (ja)
Other versions
JP2000026111A (en
Inventor
康夫 山崎
清吉 田部井
克幸 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16098488&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3382561(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP18131299A priority Critical patent/JP3382561B2/en
Publication of JP2000026111A publication Critical patent/JP2000026111A/en
Application granted granted Critical
Publication of JP3382561B2 publication Critical patent/JP3382561B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、半導体製造工程に
おける窒化珪素膜除去用高純度リン酸(以下、単に「高
純度リン酸」と記載する)に関する。更に言えば、本発
明の高純度リン酸は、Fe、Mn及びNa元素の混入が
少ないために半導体製造工程において窒化珪素膜を除去
するために使用した際に、微細素子の電気特性を劣化さ
せる不純物を実質的に含まない好適な電子材料となる 【0002】 【従来の技術】従来のリン酸を晶析法で精製する技術
は、古くは例えば特公昭44−14692号公報にみら
れる。これによれば、リン酸を所望純度に精製するため
に晶析操作、母液からの分離操作及び融解操作からなる
一連の晶析精製操作を3回繰り返す方法が開示されてい
る。 【0003】追村ら[東洋曹達報告:10、2、21
(1966)]は、リン酸を晶析操作で精製する基礎物
性データである飽和溶解度、過飽和度と成長速度の相
関、リン酸半水結晶の吸湿性、リン酸中の結晶沈降速度
について明らかにしたが、析出したリン酸半水結晶粒子
の純度については、定量的には論じていない。 【0004】また、例えば青山らのProceedings of a C
onference of Industrial Crystallization (1976)の第
413〜420頁には、流動層型晶析装置での応用例が
示されている。この流動層型晶析装置では、均一粗大粒
子が生成するため、母液からの分離操作が容易になる上
に、流動層部分に設けられた外部熱交換器により溶液を
冷却し、効率よく晶析熱を除去することにより生産速度
を高くすることができる特徴をもっている。 【0005】このようにリン酸を晶析操作で精製するこ
とは公知であるが、これらの操作によって得られたリン
酸の純度については明確に記されていないうえに、リン
酸を晶析操作で精製する方法は明らかにされているもの
の、その方法による効果が明示されていない。 【0006】 【発明が解決しようとする課題】本発明は、このような
従来技術に鑑みて鋭意研究を行った結果完成されたもの
であり、各種金属元素が、その液中の状態が溶解、不溶
解に拘わらず、実質的に検出できる限界と同程度の高純
度リン酸を提供することを目的とするものである。 【0007】 【課題を解決するための手段】すなわち、本発明はH3
PO4の濃度を85重量%に換算したときの含有不純物
は、Feとして25ppb以下、Mnとして3ppb以
下、Naとして40ppb以下であることを特徴とする
高純度リン酸に係る。 【0008】 【発明の実施の形態】以下、本発明を詳細に説明する。
本発明においてリン酸とは、下記の一般式 H3PO4 で表される成分とH2Oの任意の比率の混合液体であ
り、その濃度はJIS K−1449に示される水酸化
ナトリウムによる滴定法で測定するものをいう。 【0009】一般に、リン酸は、他の鉱酸と比べて蒸気
分圧が低く蒸留法を適用して精製することは容易でな
く、また、工業的に精製することは実質的に非常に困難
な化合物であるけれども、本発明に係る高純度リン酸
は、前記したようにFe、Mn及びNaすなわち鉄、マ
ンガン及びナトリウムの成分含有量が少ないことを特徴
とするリン酸である。 【0010】本発明に係るリン酸は、不純物量がppb
のレベルを扱うものであるところから、測定精度が実際
上問題となるので次のように定義する。すなわち、リン
酸中の不純物成分における各元素すなわちFe、Mn及
びNa等の含有量の値は、希釈率5倍(Naにおいては
100倍)に希釈した試料を炭素製加熱炉に10μl注
入し、800℃に加熱してリン酸を除去し、表1に示す
元素に応じた原子化温度において原子状となった元素を
元素によって定めた測定波長の光の吸光度を希薄塩酸中
の標準試料と比較する、いわゆるフレームレス原子吸光
光度分析法で測定評価するものをいう。また、リン酸の
純度は、単位リン酸質量当たりの元素の質量の比率とし
て表す。フレームレス原子吸光光度分析によるFe、M
n及びNaの検出下限を表1に示す。 【0011】 【表1】 【0012】なお、前記の検出下限は次式で算出した。 【数1】 ここで、試料注入量は10μl、試料密度は1g/cm
3とした。 【0013】本発明に係る高純度リン酸は前記の測定法
で求めた不純物量、特に、Fe、Mn及びNaがそれぞ
れ25ppb以下、3ppb以下及び40ppb以下に
あるものである。 【0014】リン酸は各種金属に対する腐食性が強いた
め、金属等の表面エッチング液として有用であるが、本
発明に係るものは特に上記各元素の不純物量が少ない高
純度リン酸であるため、半導体の分野その他精密工業に
用いられる金属、ガラスなどのエッチング液として最適
なものである。 【0015】次に、本発明に係る高純度リン酸は、
(イ)の晶析工程と(ロ)のリン酸結晶の発汗操作によ
る精製工程から本質的になるプロセスにより工業的に製
造することができる。 【0016】本発明において適用できる原料リン酸は、
特に限定はなく、乾式法または湿式法で得られる工業用
リン酸であり、その濃度は70重量%以上にあるもので
ある。濃度が70重量%未満では飽和温度が低く、晶析
に際し適切な過飽和度を得るのに多くのエネルギーを必
要とし、工業的に好ましくない。また、上限は飽和濃度
(91.6重量%)までであり、それ以上はリン酸半水
結晶以外の結晶が析出する恐れがあり、更に粘度が高く
なって晶析、分離が困難となり好ましくない。なお、本
発明の目的上可及的に精製され且つ浮遊微粒子を除いた
リン酸を原料とすることが好ましい。 【0017】(イ)晶析工程 この工程は、原料リン酸よりリン酸半水結晶を析出させ
る晶析工程である。原料リン酸の温度は15〜30℃、
好ましくは18〜27℃にあり、且つ温度制御が効率的
にできるように循環系を構成されたものがよい。 【0018】リン酸の晶析は前記したように冷媒を流通
した晶析管を原料リン酸液に浸漬せしめ、その管表面に
半水結晶を析出させるものである。 【0019】晶析管としては多くの場合、例えば硬質ガ
ラス製の二重円筒形の中空構造をもったもので、その内
部に冷媒を流通させることにより管表面の温度を所定の
過冷却温度に調整できるようにした比較的簡単なもので
よい。 【0020】従って、晶析管表面の形状は特に円筒形で
なければならないということはなく、冷媒が流通でき且
つ晶析管表面の温度が所定温度に対して±1℃、望まし
くは±0.05℃に保てるならば平面、その他の形状を
採ることができる。 【0021】また、冷媒は、水及びエチレングリコール
の混合溶液であるが、操作する温度の範囲において固体
が析出せず流動性があれば、他の冷媒も同様に用いられ
る。係る晶析管を原料リン酸中に浸漬させることにより
管表面が過冷却状態にあるところから、その表面に半水
結晶が析出する。 【0022】本発明において、この過冷却温度は−2〜
−8℃の範囲がよく、これはそのような状態の冷媒を流
通させることにより保持される。ここに、過冷却温度と
は、リン酸の温度からそのリン酸の濃度に対して次式で
示す飽和温度を差し引いた値である。 【数2】 ただし、リン酸濃度は(重量%)で表したものである。 【0023】従って、過冷却温度は、晶析操作において
は負の値、次の精製工程に係る発汗操作においては、正
の値をとる。係る温度に設定した理由は、本発明者らの
数多くの実験により、高純度リン酸の収率と不純物除去
の効率との相対的関係から求められたものである。この
晶析工程により、析出したリン酸半水結晶は母液の原料
リン酸に比較するとかなりの不純物が除去されたもので
あり、晶析条件の如何によっては、精製効果が著しいも
のである。 【0024】(ロ)精製工程 この工程は、前工程で析出した半水結晶を、晶析管をリ
ン酸液より取り出すことにより母液と分離せしめた後、
該結晶を発汗させて結晶内外の含有不純物を除去するこ
とにより、更にリン酸を精製する工程である。ここに、
発汗とは、母液より分離した結晶表面に付着した母液の
過冷却温度を所定の範囲に保持して結晶の表面の一部を
融解し、滴下させる操作をいい、この操作により付着母
液の不純物及び結晶内部に取り込まれた不純物が滴下液
として除去される。従って、このときの過冷却温度はリ
ン酸半水結晶の歩留まりと不純物の除去効果との相対的
関係から設定され、多くの場合0〜10℃の範囲にあ
る。 【0025】また、発汗操作における融解量は、析出し
たリン酸半水結晶の質量に対して滴下したリン酸液量の
比率で表したとき、10重量%以上40重量%以下の範
囲であり、好ましくは20重量%以上35重量%以下の
範囲で操作を行う。これは、本発明者らの研究によれ
ば、融解量が10重量%未満では、発汗効果が不充分で
高純度リン酸が得られ難く、40重量%を超えて発汗操
作を継続しても、発汗操作の効果が飽和してしまうため
である。 【0026】リン酸結晶の発汗により充分目的とする高
純度リン酸を得ることができるが、必要に応じこの発汗
の前後のいずれかにおいて超純水ないし製品の高純度リ
ン酸で晶析管表面に析出したリン酸半水結晶を置換洗浄
して不純物を除去する精製工程を付加することもでき
る。このように置換洗浄とは、析出したリン酸半水結晶
の表面に、超純水ないし高純度リン酸の任意の比率の混
合物を接触させ、リン酸半水結晶に付着した原料リン酸
を除去する操作であり、係る操作でより効果的にリン酸
半水結晶に含まれた不純物を可及的に除去することがで
きる。なお、この操作は多くの場合、発汗操作の後で行
う方が合理的である。かくして、本発明によれば、高純
度のリン酸結晶を得、次いで必要に応じこれを超純水に
溶解すれば高純度リン酸液として工業的に有利に製造す
ることができる。 【0027】本発明の高純度リン酸を製造するための方
法によれば、原料リン酸を所定温度における過冷却状態
で半水結晶として晶析することにより一次精製されたリ
ン酸半水結晶を得、次いで、この結晶を発汗操作させる
ことにより結晶内部に取り込まれた不純物が結晶表面に
マイグレーションして濃縮され、この不純物と結晶表面
に付着した母液の不純物とが液滴の中にあって滴下除去
することにより第二次の精製がなされる。 【0028】また、より効果的な精製は、前記二次精製
の前後において、好ましくはその後で、水ないし高純度
リン酸で置換洗浄する第三次の精製を所望により施すこ
とにより達成され、高純度リン酸を得ることができる。 【0029】 【実施例】実施例で用いる原料リン酸は次のように調製
した。すなわち、公知のリン酸の製造法である乾式法で
製造したリン酸(H3PO4として89重量%)をポリテ
トラフルオロエチレン(PTFE)でできた孔径0.8
μmのメンブランフィルター[東洋濾紙(株)社製:T
080A047A]で濾過することによって、0.8μ
m以上の粒子の個数を減少させ、とりわけ2μm以上の
浮遊微粒子を取り除いた。このリン酸中の金属元素の量
をフレームレス原子吸光光度分析によって測定したとこ
ろ、Feは180ppb、Mnは50ppb、Naは2
50ppbであった。なお、85重量%の原料リン酸
は、この89重量%の原料リン酸を超純水で希釈して調
製した。 【0030】実施例1〜3 所定の濃度に調製した原料リン酸を硬質ガラス製容器に
2.5kg入れ、所定の過冷却温度となるように温度を
設定し撹拌用ポンプで原料リン酸を循環し原料リン酸の
温度及び濃度の分布を少なくした。他方、外径2.5c
m、長さ10cmの二重円筒形晶析管を用い、次のよう
な操作と条件で実施した。すなわち、原料リン酸中に晶
析管を浸漬し、浸漬管内部に所定過冷却温度の冷媒(水
とエチレングリコールの混合液)を流通し、晶析管の伝
熱面表面にリン酸半水結晶を晶析した。このときの条件
を表2に示す。晶析操作の後に析出結晶の質量を測定し
た結果を併せて表2に示す。 【0031】 【表2】 【0032】なお、晶析管表面へリン酸半水結晶が晶析
する速度は、冷媒の過冷却温度によって異なるが、およ
そ12〜16kg・cm-2・hr-1の範囲であった。 【0033】所定の結晶成長時間が経過した後、晶析管
を取り出し、原料リン酸を滴下させ分離した。このリン
酸半水結晶に含まれるFe、Mn及びNa等の不純物成
分をフレームレス原子吸光光度分析によって測定して晶
析工程におけるリン酸の精製の程度を調べたところ、表
3の結果が得られた。 【0034】 【表3】 【0035】次いで、晶析工程で得たリン酸半水結晶が
付着した晶析管を引き上げた後、発汗操作時の冷媒温度
を表4に記載の温度になるようにすると共にこの温度な
いしは少なくとも±2℃の範囲で一定の温度に保った気
相中に保持したところ、リン酸半水結晶の表面の一部が
融解して結晶に付着した母液と共に滴下した。晶析管の
表面に析出し付着したリン酸半水結晶の質量に対して滴
下した前記混合液量が30重量%となった後に晶析管の
表面に残ったリン酸半水結晶を採取し、リン酸半水結晶
に含まれるFe、Mn及びNaの成分含有量をフレーム
レス原子吸光個分析によって測定した。その結果を表4
に示す。 【0036】 【表4】 注:ndは検出できない量を意味する。()内の数値は
発汗前の値(表3に記載)を示す。 【0037】実施例4、5 実施例1〜2で得られた発汗後のそれぞれの精製リン酸
半水結晶に対して、晶析管表面の過冷却温度を5℃とし
た。この晶析管表面に析出したリン酸半水結晶に超純水
及び本発明に係る高純度リン酸を噴霧による置換洗浄し
た。この洗浄操作後、表面に残ったリン酸半水結晶を採
取し、リン酸半水結晶に含まれるFe、Mn及びNaの
成分含有量を上述と同様に測定したところ、表5の結果
が得られた。 【0038】 【表5】 注:()内は洗浄前発汗後の不純物量を示す。従って、
実施例4は実施例1、実施例5は実施例2に係る発汗後
のリン酸半水結晶を用いたものである。 【0039】 【発明の効果】以上説明したように、本発明の高純度リ
ン酸は、Fe、Mn及びNa元素の混入が少ないために
半導体製造工程において窒化珪素膜を除去するために使
用した際に、微細素子の電気特性を劣化させる不純物を
実質的に含まない好適な電子材料となる
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing process.
High-purity phosphoric acid for removing a silicon nitride film (hereinafter, simply referred to as "high-purity phosphoric acid"). Furthermore, the high-purity phosphoric acid of the present invention deteriorates the electrical characteristics of the microelement when used for removing a silicon nitride film in a semiconductor manufacturing process because Fe, Mn and Na elements are less mixed. A suitable electronic material substantially free of impurities is obtained . 2. Description of the Related Art A conventional technique for purifying phosphoric acid by a crystallization method has long been found in, for example, Japanese Patent Publication No. 44-14692. According to this, a method is disclosed in which a series of crystallization purification operations including a crystallization operation, a separation operation from a mother liquor, and a melting operation are repeated three times in order to purify phosphoric acid to a desired purity. Oimura et al. [Report of Toyo Soda: 10, 2, 21]
(1966)] reveals the basic physical property data for purifying phosphoric acid by a crystallization operation, such as saturation solubility, correlation between supersaturation and growth rate, hygroscopicity of phosphoric acid hemihydrate crystals, and crystal sedimentation rate in phosphoric acid. However, the purity of the precipitated phosphoric acid hemihydrate crystal particles is not quantitatively discussed. Aoyama et al., Proceedings of a C
On pages 413 to 420 of onference of Industrial Crystallization (1976), an application example in a fluidized bed crystallizer is shown. In this fluidized bed type crystallizer, uniform coarse particles are generated, so that the separation operation from the mother liquor is easy.In addition, the solution is cooled by an external heat exchanger provided in the fluidized bed, and crystallization is efficiently performed. It has the characteristic that the production rate can be increased by removing heat. [0005] As described above, it is known to purify phosphoric acid by a crystallization operation. However, the purity of phosphoric acid obtained by these operations is not clearly described. Although the method of purifying by the method has been clarified, the effect of the method is not specified. SUMMARY OF THE INVENTION The present invention has been completed as a result of intensive studies in view of such prior art. Various metal elements are dissolved in a liquid state. It is an object of the present invention to provide high-purity phosphoric acid having substantially the same limit as that which can be substantially detected regardless of insolubility. [0007] That is, the present invention provides H 3
Impurities contained when the concentration of PO 4 is converted to 85% by weight relate to high-purity phosphoric acid, which is characterized in that Fe is 25 ppb or less, Mn is 3 ppb or less, and Na is 40 ppb or less. Hereinafter, the present invention will be described in detail.
In the present invention, phosphoric acid is a mixed liquid of a component represented by the following general formula H 3 PO 4 and H 2 O at an arbitrary ratio, and the concentration thereof is determined by titration with sodium hydroxide shown in JIS K-1449. It is measured by the method. In general, phosphoric acid has a low vapor partial pressure as compared with other mineral acids, so that it is not easy to purify by applying a distillation method, and it is substantially very difficult to purify industrially. Although it is a simple compound, the high-purity phosphoric acid according to the present invention is a phosphoric acid characterized by having a small content of Fe, Mn and Na, that is, iron, manganese and sodium as described above. The phosphoric acid according to the present invention has an impurity amount of ppb
Since the measurement accuracy is actually a problem from the point of handling the level of 定義, it is defined as follows. That is, the value of the content of each element, that is, Fe, Mn, Na, etc. in the impurity component in phosphoric acid is obtained by injecting 10 μl of a sample diluted to a dilution ratio of 5 times (100 times for Na) into a carbon heating furnace, The phosphoric acid was removed by heating to 800 ° C., and the absorbance of light at the measurement wavelength determined by the element was compared with the standard sample in dilute hydrochloric acid at the atomization temperature according to the element shown in Table 1. To be measured and evaluated by the so-called flameless atomic absorption spectrometry. Further, the purity of phosphoric acid is expressed as a ratio of the mass of an element per unit mass of phosphoric acid. Fe, M by flameless atomic absorption spectrometry
Table 1 shows the lower detection limits of n and Na. [Table 1] The lower limit of detection was calculated by the following equation. (Equation 1) Here, the sample injection amount is 10 μl, and the sample density is 1 g / cm.
It was set to 3 . The high-purity phosphoric acid according to the present invention has an impurity amount, particularly Fe, Mn and Na, of 25 ppb or less, 3 ppb or less and 40 ppb or less, respectively, determined by the above-mentioned measuring method. Since phosphoric acid is highly corrosive to various metals, it is useful as a surface etching solution for metals and the like. However, the phosphoric acid according to the present invention is a high-purity phosphoric acid having a small amount of impurities of each of the above elements. It is most suitable as an etchant for metals, glass and the like used in the field of semiconductors and other precision industries. Next, the high-purity phosphoric acid according to the present invention comprises:
It can be industrially produced by a process essentially consisting of the crystallization step (a) and the purification step of the phosphoric acid crystal (b) by perspiration. The raw material phosphoric acid applicable in the present invention is:
There is no particular limitation, and it is industrial phosphoric acid obtained by a dry method or a wet method, and its concentration is 70% by weight or more. If the concentration is less than 70% by weight, the saturation temperature is low, and a large amount of energy is required to obtain an appropriate degree of supersaturation during crystallization, which is not industrially preferable. The upper limit is up to the saturation concentration (91.6% by weight). If it is higher than this, crystals other than phosphoric acid hemihydrate crystals may be precipitated, and the viscosity is further increased, and crystallization and separation become difficult, which is not preferable. . For the purpose of the present invention, it is preferable to use phosphoric acid as purified as possible and excluding suspended particles. (A) Crystallization Step This step is a crystallization step of precipitating phosphoric acid hemihydrate crystals from the starting phosphoric acid. The temperature of the raw phosphoric acid is 15-30 ° C,
The temperature is preferably 18 to 27 ° C., and a circulation system is configured so that temperature control can be performed efficiently. As described above, the crystallization of phosphoric acid involves immersing a crystallization tube through which a refrigerant has been circulated in a raw phosphoric acid solution to precipitate hemihydrate crystals on the surface of the tube. In many cases, the crystallization tube has a double-cylindrical hollow structure made of, for example, hard glass, and the temperature of the tube surface is reduced to a predetermined supercooling temperature by flowing a coolant through the inside. A relatively simple one that can be adjusted may be used. Therefore, the surface of the crystallizing tube does not have to be particularly cylindrical, and the temperature of the surface of the crystallizing tube is ± 1 ° C., preferably ± 0. If the temperature can be maintained at 05 ° C., a flat surface or another shape can be adopted. The refrigerant is a mixed solution of water and ethylene glycol. Other refrigerants may be used as long as solids do not precipitate and have fluidity in the operating temperature range. By immersing such a crystallization tube in the raw phosphoric acid, the hemihydrate crystals precipitate on the surface of the tube from the supercooled state. In the present invention, the supercooling temperature is -2 to
A range of −8 ° C. is preferable, and this is maintained by flowing the refrigerant in such a state. Here, the supercooling temperature is a value obtained by subtracting a saturation temperature represented by the following equation with respect to the concentration of phosphoric acid from the temperature of phosphoric acid. (Equation 2) Here, the phosphoric acid concentration is represented by (% by weight). Accordingly, the supercooling temperature takes a negative value in the crystallization operation, and takes a positive value in the sweating operation in the next purification step. The reason for setting the temperature is determined from the relative relationship between the yield of high-purity phosphoric acid and the efficiency of impurity removal by many experiments by the present inventors. In the crystallization step, the precipitated phosphoric acid hemihydrate crystals have been substantially free of impurities compared to the phosphoric acid used as the mother liquor, and the purification effect is remarkable depending on the crystallization conditions. (B) Purification Step In this step, the hemihydrate crystals precipitated in the previous step are separated from the mother liquor by taking out the crystallization tube from the phosphoric acid solution.
In this step, phosphoric acid is further purified by sweating the crystal to remove impurities contained inside and outside the crystal. here,
Sweating is an operation in which the supercooling temperature of the mother liquor attached to the crystal surface separated from the mother liquor is kept within a predetermined range to melt a part of the surface of the crystal and drop it. The impurities taken into the crystal are removed as a drop solution. Accordingly, the supercooling temperature at this time is set from the relative relationship between the yield of phosphoric acid hemihydrate crystals and the effect of removing impurities, and in many cases is in the range of 0 to 10 ° C. The amount of melting in the sweating operation is in the range of 10% by weight or more and 40% by weight or less when expressed as a ratio of the amount of phosphoric acid solution dropped to the mass of the precipitated phosphoric acid hemihydrate crystals. Preferably, the operation is performed in the range of 20% by weight or more and 35% by weight or less. According to the study of the present inventors, if the amount of melting is less than 10% by weight, the effect of perspiration is insufficient and it is difficult to obtain high-purity phosphoric acid. This is because the effect of the sweating operation is saturated. The desired high-purity phosphoric acid can be sufficiently obtained by the perspiration of phosphoric acid crystals. If necessary, either before or after the perspiration, ultrapure water or the high-purity phosphoric acid of the product is used to crystallize the crystallization tube surface. A purification step for removing impurities by replacing and washing the phosphoric acid hemihydrate crystals precipitated on the substrate may also be added. In this way, the displacement washing is to contact a mixture of ultrapure water or high-purity phosphoric acid at an arbitrary ratio to the surface of the precipitated phosphoric acid hemihydrate crystal to remove the raw phosphoric acid adhering to the phosphoric acid hemihydrate crystal. In this operation, impurities contained in the phosphoric acid hemihydrate crystals can be removed as effectively as possible. In many cases, it is more reasonable to perform this operation after the sweating operation. Thus, according to the present invention, a high-purity phosphoric acid crystal is obtained, and then, if necessary, is dissolved in ultrapure water to produce a high-purity phosphoric acid solution industrially advantageously. According to the method of the present invention for producing high-purity phosphoric acid, the raw material phosphoric acid is crystallized as hemihydrate crystals in a supercooled state at a predetermined temperature, whereby primary purified phosphoric acid hemihydrate crystals are obtained. Then, the impurities taken into the crystal are migrated to the crystal surface and concentrated by the sweating operation of the crystal, and the impurity and the impurity of the mother liquor attached to the crystal surface are dropped in the droplet. Removal results in a second purification. Further, more effective purification can be achieved by performing a third purification, which is carried out by washing with water or high-purity phosphoric acid before and after the second purification, preferably thereafter, if desired. Purified phosphoric acid can be obtained. EXAMPLES The starting phosphoric acid used in the examples was prepared as follows. That is, a phosphoric acid (89% by weight as H 3 PO 4 ) produced by a dry method, which is a known method for producing phosphoric acid, is used to make polytetrafluoroethylene (PTFE) with a pore diameter of 0.8.
μm membrane filter [Toyo Roshi Kaisha Co., Ltd .: T
080A047A].
m, and the number of particles having a particle size of 2 μm or more was removed. When the amount of the metal element in the phosphoric acid was measured by flameless atomic absorption spectrometry, Fe was 180 ppb, Mn was 50 ppb, and Na was 2 ppb.
It was 50 ppb. The 85% by weight raw phosphoric acid was prepared by diluting the 89% by weight raw phosphoric acid with ultrapure water. Examples 1 to 3 2.5 kg of raw phosphoric acid adjusted to a predetermined concentration was placed in a hard glass container, the temperature was set to a predetermined supercooling temperature, and the raw phosphoric acid was circulated by a stirring pump. The distribution of the temperature and concentration of the raw phosphoric acid was reduced. On the other hand, outer diameter 2.5c
The operation was carried out under the following conditions using a double cylindrical crystallization tube having a length of 10 cm and a length of 10 cm. That is, the crystallization tube is immersed in the raw phosphoric acid, a coolant (a mixture of water and ethylene glycol) having a predetermined supercooling temperature is circulated inside the immersion tube, and phosphoric acid hemihydrate is placed on the heat transfer surface of the crystallization tube. The crystals were crystallized. Table 2 shows the conditions at this time. Table 2 also shows the results of measuring the mass of the precipitated crystals after the crystallization operation. [Table 2] The rate at which the phosphoric acid hemihydrate crystallizes on the surface of the crystallizing tube varies depending on the supercooling temperature of the refrigerant, but is in the range of about 12 to 16 kg · cm -2 · hr -1 . After a lapse of a predetermined crystal growth time, the crystallizing tube was taken out, and phosphoric acid was dropped and separated. Impurity components such as Fe, Mn and Na contained in the phosphoric acid hemihydrate crystals were measured by flameless atomic absorption spectrometry to determine the degree of purification of phosphoric acid in the crystallization step, and the results in Table 3 were obtained. Was done. [Table 3] Next, after pulling up the crystallization tube to which the phosphoric acid hemihydrate crystals obtained in the crystallization step are attached, the refrigerant temperature during the sweating operation is adjusted to the temperature shown in Table 4, and this temperature or at least When kept in a gas phase maintained at a constant temperature within the range of ± 2 ° C., a part of the surface of the phosphoric acid hemihydrate crystal was melted and dropped together with the mother liquor attached to the crystal. The phosphoric acid hemihydrate crystals remaining on the surface of the crystallization tube were collected after the amount of the mixed solution dropped to the mass of the phosphoric acid hemihydrate crystals deposited and adhered to the surface of the crystallization tube became 30% by weight. And the component contents of Fe, Mn and Na contained in the phosphoric acid hemihydrate crystals were measured by flameless atomic absorption spectrometry. Table 4 shows the results.
Shown in [Table 4] Note: nd means undetectable amount. Numerical values in parentheses indicate values before perspiration (described in Table 3). Examples 4 and 5 The supercooling temperature of the surface of the crystallizing tube was set at 5 ° C. for each of the purified phosphoric acid hemihydrate crystals obtained after sweating obtained in Examples 1 and 2. Ultrapure water and the high-purity phosphoric acid according to the present invention were subjected to replacement washing by spraying the phosphoric acid hemihydrate crystals deposited on the surface of the crystallizing tube. After this washing operation, the phosphoric acid hemihydrate crystals remaining on the surface were collected, and the contents of Fe, Mn, and Na contained in the phosphoric acid hemihydrate crystals were measured in the same manner as described above. Was done. [Table 5] Note: () shows the amount of impurities before perspiration before washing. Therefore,
Example 4 uses Example 1 and Example 5 uses the sweated phosphoric acid hemihydrate crystal according to Example 2. As described above, the high-purity phosphoric acid of the present invention is used for removing a silicon nitride film in a semiconductor manufacturing process because Fe, Mn and Na elements are little mixed. In addition, a preferable electronic material substantially does not contain impurities that deteriorate the electrical characteristics of the microelement .

Claims (1)

(57)【特許請求の範囲】 【請求項1】 HPOの濃度を85重量%に換算し
たときの含有不純物は、Feとして25ppb以下、M
nとして3ppb以下、Naとして40ppb以下であ
ることを特徴とする半導体製造工程における窒化珪素膜
除去用高純度リン酸。
(57) [Claims 1] When the concentration of H 3 PO 4 is converted to 85% by weight, the content of impurities is 25 ppb or less as Fe,
A silicon nitride film in a semiconductor manufacturing process, wherein n is 3 ppb or less and Na is 40 ppb or less.
High purity phosphoric acid for removal .
JP18131299A 1999-06-28 1999-06-28 High purity phosphoric acid Ceased JP3382561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18131299A JP3382561B2 (en) 1999-06-28 1999-06-28 High purity phosphoric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18131299A JP3382561B2 (en) 1999-06-28 1999-06-28 High purity phosphoric acid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP01329462A Division JP3131433B2 (en) 1989-12-21 1989-12-21 Method for producing high-purity phosphoric acid

Publications (2)

Publication Number Publication Date
JP2000026111A JP2000026111A (en) 2000-01-25
JP3382561B2 true JP3382561B2 (en) 2003-03-04

Family

ID=16098488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18131299A Ceased JP3382561B2 (en) 1999-06-28 1999-06-28 High purity phosphoric acid

Country Status (1)

Country Link
JP (1) JP3382561B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239710B (en) * 2007-02-08 2013-07-10 日本瑞环化工株式会社 Method and apparatus for obtaining purified phosphoric acid from phosphoric acid aqueous solution containing plural metal ions

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447941B1 (en) * 2001-11-21 2004-09-08 한국화학연구원 Purification Method and Equipment for Phosphoric Acid
KR100454101B1 (en) * 2002-03-15 2004-10-26 한국화학연구원 Purification method and equipment for phosphoric acid
JP2008247733A (en) 2007-03-14 2008-10-16 Niro Process Technology Bv Purification of phosphoric acid rich stream
CH701939B1 (en) * 2007-09-06 2011-04-15 Sulzer Chemtech Ag Method and apparatus for the purification of aqueous phosphoric acid.
CN102198937B (en) * 2011-04-18 2012-10-03 天津大学 Static multistage melting crystallization method for preparing electronic grade phosphoric acid
CN103771374B (en) * 2013-12-30 2016-04-20 广西明利化工有限公司 A kind of electron-level phosphoric acid baffle crystallization device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239710B (en) * 2007-02-08 2013-07-10 日本瑞环化工株式会社 Method and apparatus for obtaining purified phosphoric acid from phosphoric acid aqueous solution containing plural metal ions

Also Published As

Publication number Publication date
JP2000026111A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
JP3131433B2 (en) Method for producing high-purity phosphoric acid
JP3382561B2 (en) High purity phosphoric acid
KR101516601B1 (en) Purification of Phosphoric Acid Rich Streams
JP6728731B2 (en) Method for recovering hydrofluoric acid and nitric acid
JP3103360B2 (en) High purity phosphoric acid and method for producing the same
JP4211130B2 (en) Method for producing sodium hypochlorite pentahydrate
Kim Purification of phosphoric acid from waste acid etchant using layer melt crystallization
KR101267638B1 (en) Method for producing high purity caustic potash
KR20140010024A (en) Process for the purification of phosphoric acid
JP5566585B2 (en) Method and apparatus for purifying phosphoric acid by fractional crystallization
JP6134811B2 (en) Multi-stage crystallization method and apparatus for purifying compounds
KR100454101B1 (en) Purification method and equipment for phosphoric acid
JP4188085B2 (en) Continuous process for producing highly concentrated hydrogen peroxide, highly concentrated hydrogen peroxide and uses thereof
JP5079631B2 (en) Waste liquid reduction method and waste liquid treatment method
JP4309648B2 (en) High purity aluminum chloride manufacturing method and high purity aluminum chloride manufacturing apparatus
JP2020121310A (en) Recovery method of hydrofluoric acid and nitric acid
US3340002A (en) Method of manufacturing germanium-containing products substantially free of fluorinefrom liquids containing fluorine and germanium
JPH0361605B2 (en)
JP3137226B2 (en) Production method of high purity strontium chloride
JP2547500B2 (en) How to reduce tantalum
US3458279A (en) Process for preparing sodium metaphosphate
KR100593833B1 (en) Separation and recovery method of ultra-high purity phosphoric acid from semiconductor waste etching solution
KR20040093062A (en) Purification method for producing high purity niobium compound and/or tantalum compound
SU1664739A1 (en) Method of producing metal iodides and iodates
JPH0250926A (en) Refining method of metallic gallium

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition