JPH0421437B2 - - Google Patents

Info

Publication number
JPH0421437B2
JPH0421437B2 JP58169638A JP16963883A JPH0421437B2 JP H0421437 B2 JPH0421437 B2 JP H0421437B2 JP 58169638 A JP58169638 A JP 58169638A JP 16963883 A JP16963883 A JP 16963883A JP H0421437 B2 JPH0421437 B2 JP H0421437B2
Authority
JP
Japan
Prior art keywords
terminal control
control element
motor
terminal
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58169638A
Other languages
Japanese (ja)
Other versions
JPS6062888A (en
Inventor
Hiroyuki Michihashi
Hideyuki Kominami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16963883A priority Critical patent/JPS6062888A/en
Publication of JPS6062888A publication Critical patent/JPS6062888A/en
Publication of JPH0421437B2 publication Critical patent/JPH0421437B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/24Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by applying dc to the motor

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は脱水機等に使用するモータの制動装置
に関するものである。 従来例の構成とその問題点 従来、この種のモータの制動は、第1図に示す
ような構成であつた。すなわち、1はモータの主
巻線、2は補助巻線、3は進相コンデンサ、4は
補助巻線2に取り付けた中間タツプで端部にはダ
イオード5を接続した切換端子6を設けてある。
7はモータの一方の端子、8はモータの他方の端
子に接続した交流電源で、スイツチ9により交流
電源8を切換端子6、あるいは端子7に接続する
ことができる。 上記構成において、モータ運転時にはスイツチ
9を端子7に接続し、モータに交流電源8を直接
印加する。又、モータ制動時にはスイツチ9を切
換端子6に接続し、主巻線1と補助巻線2の一部
にダイオード5による半波を印加する事により、
モータの回転子の運動エネルギーを電気エネルギ
ーに変換させてブレーキをかけるものであつた。 しかしながら、このような構成によれば、ブレ
ーキの効きがゆるく、モータの回転を完全に停止
するのにかなりの時間がかかつた。 発明の目的 本発明は上記従来の問題点を解決するためにな
されたもので、制動力が強く、素早くモータの回
転を停止する事のできるモータの制動装置を提供
しようとするものである。 発明の構成 上記目的を達成するため本発明は、モータの主
巻線に接続した第1の三端子制御素子と、補助巻
線に接続した第2の三端子制御素子と、制動時に
前記第1、第2の三端子制御素子の両方あるいは
どちらか一方のゲート端子に交流電源のゼロボル
トクロス点に対してその2回に1回と同期した信
号を供給するスイツチング回路と、制動開始から
所定時間、前記二つの三端子制御素子をオフ状態
にするデイレイ装置とを備え、前記スイツチング
回路により、制動開始から所定時間後に前記三端
子制御素子のゲート端子に前記信号を供給し、制
動時途中から両三端子制御素子のどちらか一方へ
のゲート端子への制動信号を停止するようにし、
モータを制動するものである。 実施例の説明 以下、本発明の実施例について添付図面を参照
して説明する。 第2図において、11は交流電源、12はモー
タの主巻線13に接続した第1の三端子制御素
子、14はモータの補助巻線15に接続した第2
の三端子制御素子、16は進相コンデンサであ
る。 17はマイクロコンピユータであり、ZVS計
測部18、デイレイ装置19、演算処理部20、
スイツチング回路21,22を有している。
ZVS計測部18は交流電源のゼロボルトクロス
点に同期した信号(以下、ZVSと称す)を計測
するものである。演算処理部20はZVS計測部
18の出力、すなわち、ZVSの数に基づいて後
述の演算処理を行つて、後段のスイツチング回路
21,22を制御するものである。デイレイ装置
19は制動開始から所定時間だけ、演算処理部2
0からスイツチング回路21,22へ、スイツチ
ング回路21,22の出力がLOレベルとなるよ
うな信号を供給させるものである。スイツチング
回路21の出力端子には、抵抗23を介して、エ
ミツク接地形のトランジスタ24のベースが接続
され、このトランジスタ24のコレクタは抵抗2
5を介して第1の三端子制御素子12のゲートに
接続されている。なお、トランジスタ24のベー
スは抵抗23,26を介して定電圧源27に接続
されている。また、スイツチング回路22の出力
端子には同様に、抵抗28を介してエミツタ接地
形のトランジスタ29のベースに接続され、この
トランジスタ29のコレクタは抵抗30を介して
第2の三端子制御素子14のゲートに接続されて
いる。なお、トランジスタ29のベースは抵抗2
8,31を介して定電圧源32に接続されてい
る。また、33,34はそれぞれスイツチング回
路を示している。 上記構成において動作を説明すると、モータを
運転するときには、スイツチング回路21の出力
端子はHiレベルとなり、トランジスタ24がオ
ンし、第1の三端子制御素子12のゲートにゲー
ト信号が入力されて第1の三端子制御素子12が
導通し、主巻線13に通電される。一方、スイツ
チング回路22の出力端子はLOレベルであり、
トランジスタ29をオフし、第2の三端子制御素
子14のゲートにはゲート信号が入力されず、第
2の三端子制御素子14は非導通となり、補助巻
線15は通電されない。このように、主巻線13
に通電がなされ、補助巻線15に通電されないこ
とにより、モータが正規の状態で回転する。 次に、モータを停止する場合について、第3図
を参照して説明する。モータ停止信号が演算処理
部20に入力されると、デイレイ装置の出力が入
力されて、スイツチング回路21およびスイツチ
ング回路22の出力端子が所定時間、LOレベル
となるような信号を各スイツチング回路21,2
2へ出力する。このスイツチング回路21,22
の出力端子がLOレベルであるので、トランジス
タ24,29がオフし、第1の三端子制御素子1
2および第2の三端子制御素子14が非導通とな
り、主巻線13および補助巻線15には通電され
ない。このデイレイ装置19による主巻線13お
よび補助巻線15への通電遮断が所定時間行われ
ると、ステツプ35において、ZVSの数AをO
に設定する。次にステツプ36で、ZVSを入力し
たか否かを判断し、ZVSが入力されると次のス
テツプ37でZVSの数Aを1とする。以後同様
にZVSの数Aを1つづつ増す。次に、ステツプ
38でZVSの数Aが偶数であるか否かを判断し、
数Aが偶数の場合には主巻数13および補助巻線
15への通電を遮断する。すなわち、スイツチン
グ回路21,22の出力端子をLOレベルとする。
数Aが寄数の場合は、次のステツプ39で、数A
が任意の設定数Xより大か否かを判断する。
ZVSの数Aが誤定数Xより小の場合、すなわち
初期の場合は、スイツチング回路21,22の出
力端子をHiレベルにして主巻線13、補助巻線
15へ通電する。その後数Aが設定数Xより大と
なると、スイツチング回路21の出力端子をLO
レベルとして主巻線への通電を遮断するととも
に、スイツチング回路22の出力端子をHiレベ
ルしてて補助巻線15へ通電する。 上記動作の説明において、モータ停止信号が入
力されてから、デイレイ装置19によつて、所定
時間、主巻線15への通電を遮断するのは、以下
の理由による。 すなわち、第4図に示すように、モータ停止信
号の入力時a、第1の三端子制御素子12の両端
に印加される電圧12aと、第2の三端子制御素
子14の両端に印加される電圧14aの位相差tO
が大きく、この位相差tOが小さくなるまで(所定
時間)、スイツチング回路21,22の出力端子
をLOレベルに保つて、両三端子制御素子12,
14をオフし、所定時間後位相差tOが小さくなつ
てから、ZVSに同期して、両三端子制御素子1
2,14に同時にゲート信号を入力でき、両三端
子制御素子12,14に流れる突入電流を小さく
できる。 このように、本実施例ではモータ停止信号が入
力されてから、所定時間主巻線13および補助巻
線15への通電を遮断し、次にZVSの2回に1
回と同期して主巻線13および補助巻線15に一
方向の電流を流して制動を行い、この時の両三端
子制御素子12,14への突入電流を小さくでき
る。その後ZVSの2回に1回と同期して補助巻
線15にのみ一方向の電流を流してさらに制動す
ることができる。 なお、上記実施例においては、モータ停止信号
が入力されてからの所定時間後に主巻線13に一
定時間、半波の電流を流しているが、この主巻線
13への半波の電流は常に流し続けてもよく、ま
た全く流さなくてもよい。ちなみに、従来例の場
合と、主巻線13へ半波電流を流す時間を0秒、
12秒、16秒、常時とした各場合についての回転停
止までの時間、および主巻線13、補助巻線15
の温度上昇値の結果を下表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a braking device for a motor used in a dehydrator or the like. Conventional configuration and its problems Conventionally, this type of motor braking has been configured as shown in FIG. That is, 1 is the main winding of the motor, 2 is the auxiliary winding, 3 is the phase advancing capacitor, 4 is the intermediate tap attached to the auxiliary winding 2, and the end thereof is provided with a switching terminal 6 to which a diode 5 is connected. .
7 is an AC power source connected to one terminal of the motor, and 8 is an AC power source connected to the other terminal of the motor.A switch 9 allows the AC power source 8 to be connected to the switching terminal 6 or the terminal 7. In the above configuration, when the motor is operated, the switch 9 is connected to the terminal 7, and the AC power source 8 is directly applied to the motor. Also, when braking the motor, by connecting the switch 9 to the switching terminal 6 and applying a half wave from the diode 5 to a part of the main winding 1 and the auxiliary winding 2,
It applied the brakes by converting the kinetic energy of the motor's rotor into electrical energy. However, with this configuration, the effectiveness of the brake was slow, and it took a considerable amount of time to completely stop the rotation of the motor. OBJECTS OF THE INVENTION The present invention was made to solve the above-mentioned conventional problems, and it is an object of the present invention to provide a motor braking device that has a strong braking force and can quickly stop the rotation of the motor. Structure of the Invention In order to achieve the above object, the present invention provides a first three-terminal control element connected to a main winding of a motor, a second three-terminal control element connected to an auxiliary winding, and a second three-terminal control element connected to a main winding of a motor. , a switching circuit that supplies a signal to both or either gate terminal of the second three-terminal control element in synchronization with the zero volt cross point of the AC power source once every two times, and a predetermined period of time from the start of braking; a delay device that turns off the two three-terminal control elements, and the switching circuit supplies the signal to the gate terminal of the three-terminal control element after a predetermined time from the start of braking, and switches both three-terminal control elements off during braking. stopping the braking signal to the gate terminal to either one of the terminal control elements;
It brakes the motor. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In FIG. 2, 11 is an AC power source, 12 is a first three-terminal control element connected to the main winding 13 of the motor, and 14 is a second three-terminal control element connected to the auxiliary winding 15 of the motor.
The three-terminal control element 16 is a phase advancing capacitor. 17 is a microcomputer, which includes a ZVS measuring section 18, a delay device 19, an arithmetic processing section 20,
It has switching circuits 21 and 22.
The ZVS measurement unit 18 measures a signal (hereinafter referred to as ZVS) synchronized with the zero volt cross point of the AC power source. The arithmetic processing section 20 performs arithmetic processing, which will be described later, based on the output of the ZVS measurement section 18, that is, the number of ZVS, and controls the subsequent switching circuits 21 and 22. The delay device 19 operates in the arithmetic processing unit 2 for a predetermined period of time from the start of braking.
0 to the switching circuits 21, 22 such that the outputs of the switching circuits 21, 22 are at the L O level. The output terminal of the switching circuit 21 is connected via a resistor 23 to the base of a transistor 24 having an emitter grounding type, and the collector of this transistor 24 is connected to the resistor 2
5 to the gate of the first three-terminal control element 12. Note that the base of the transistor 24 is connected to a constant voltage source 27 via resistors 23 and 26. Similarly, the output terminal of the switching circuit 22 is connected via a resistor 28 to the base of a transistor 29 whose emitter is grounded, and the collector of this transistor 29 is connected to the second three-terminal control element 14 via a resistor 30. connected to the gate. Note that the base of the transistor 29 is connected to the resistor 2.
It is connected to a constant voltage source 32 via 8 and 31. Further, 33 and 34 each indicate a switching circuit. To explain the operation in the above configuration, when the motor is operated, the output terminal of the switching circuit 21 becomes Hi level, the transistor 24 is turned on, a gate signal is input to the gate of the first three-terminal control element 12, and the first The three-terminal control element 12 becomes conductive, and the main winding 13 is energized. On the other hand, the output terminal of the switching circuit 22 is at L O level,
The transistor 29 is turned off, no gate signal is input to the gate of the second three-terminal control element 14, the second three-terminal control element 14 is non-conductive, and the auxiliary winding 15 is not energized. In this way, the main winding 13
By energizing the auxiliary winding 15 and not energizing the auxiliary winding 15, the motor rotates in a normal state. Next, the case of stopping the motor will be explained with reference to FIG. 3. When the motor stop signal is input to the arithmetic processing unit 20, the output of the delay device is input, and a signal is sent to each switching circuit 21 so that the output terminals of the switching circuits 21 and 22 are at the L O level for a predetermined period of time. ,2
Output to 2. This switching circuit 21, 22
Since the output terminal of is at L O level, transistors 24 and 29 are turned off, and the first three-terminal control element 1
2 and the second three-terminal control element 14 become non-conductive, and the main winding 13 and the auxiliary winding 15 are not energized. When the delay device 19 interrupts the current supply to the main winding 13 and the auxiliary winding 15 for a predetermined period of time, in step 35, the number A of ZVS is
Set to . Next, in step 36, it is determined whether or not ZVS has been input. If ZVS has been input, the number A of ZVS is set to 1 in step 37. Thereafter, the number A of ZVS is increased by one in the same way. Next, step
38 to determine whether the number A of ZVS is an even number,
If the number A is an even number, power to the main winding 13 and the auxiliary winding 15 is cut off. That is, the output terminals of the switching circuits 21 and 22 are set to the L O level.
If the number A is a parsimonious number, in the next step 39, the number A
is larger than an arbitrary set number X.
When the number A of ZVS is smaller than the error constant X, that is, in the initial stage, the output terminals of the switching circuits 21 and 22 are set to Hi level, and the main winding 13 and the auxiliary winding 15 are energized. After that, when the number A becomes larger than the set number X, the output terminal of the switching circuit 21 is switched to L O
At the same time, the output terminal of the switching circuit 22 is set to Hi level and the auxiliary winding 15 is energized. In the above description of the operation, the reason why the delay device 19 cuts off the power to the main winding 15 for a predetermined period of time after the motor stop signal is input is as follows. That is, as shown in FIG. 4, when a motor stop signal is input, a voltage 12a applied to both ends of the first three-terminal control element 12 and a voltage 12a applied to both ends of the second three-terminal control element 14 are applied. Phase difference t O of voltage 14a
is large, and the output terminals of the switching circuits 21 and 22 are kept at the L O level until this phase difference t O becomes small (for a predetermined time), and both three-terminal control elements 12,
14 is turned off, and after a predetermined period of time, after the phase difference t O becomes small, both three-terminal control elements 1 are turned off in synchronization with ZVS.
Gate signals can be input to both three-terminal control elements 12 and 14 at the same time, and the rush current flowing to both three-terminal control elements 12 and 14 can be reduced. In this way, in this embodiment, after the motor stop signal is input, the main winding 13 and the auxiliary winding 15 are de-energized for a predetermined period of time, and then once every two times of ZVS.
Braking is performed by flowing a current in one direction through the main winding 13 and the auxiliary winding 15 in synchronization with the rotation, and the rush current to both the three-terminal control elements 12 and 14 at this time can be reduced. Thereafter, in synchronization with every two times of ZVS, a unidirectional current is applied only to the auxiliary winding 15 to further perform braking. In the above embodiment, a half-wave current is passed through the main winding 13 for a predetermined time after a predetermined time after the motor stop signal is input, but the half-wave current to the main winding 13 is It may be kept running all the time, or it may not be run at all. By the way, in the case of the conventional example, the time for flowing half-wave current to the main winding 13 is 0 seconds,
Time until rotation stops in each case of 12 seconds, 16 seconds, and constant, and main winding 13 and auxiliary winding 15
The results of the temperature rise values are shown in the table below.

【表】【table】

【表】 なお、第2図に示す実施例ではスイツチング回
路33,34を設けたが、スイツチング回路21
の出力端子と第1の三端子制御素子12のゲート
とを抵抗を介して接続し、同様にスイツチング回
路22の出力端子と第2の三端子制御素子14の
ゲートとを抵抗を介して接続してもよい。 発明の効果 以上の説明から明らかなように本発明によれば
モータ停止信号が入力されてから所定時間、主巻
線および補助巻線への通電を遮断するので、次に
第1および第2の三端子制御素子に同時にZVS
の2回に1回と同期したゲート信号を供給して
も、突入電流は小さく三端子制御素子を破壊する
ことはない。また、制動時に途中から三端子制御
素子のゲート端子への制動信号を停止するので、
モータの巻線の温度上昇も抑制することができ
る。また、三端子制御素子にはZVSの2回に1
回と同期したゲート信号が供給されるので、主巻
線および補助巻線に半波電流が流れ、モータを効
率よく制動できるとともに、両巻線への通電時間
を調整することにより、モータや三端子制御素子
への負担を調整することができる。
[Table] Note that although the switching circuits 33 and 34 are provided in the embodiment shown in FIG.
The output terminal of the switching circuit 22 and the gate of the first three-terminal control element 12 are connected through a resistor, and the output terminal of the switching circuit 22 and the gate of the second three-terminal control element 14 are similarly connected through a resistor. It's okay. Effects of the Invention As is clear from the above description, according to the present invention, the power supply to the main winding and the auxiliary winding is cut off for a predetermined period of time after the motor stop signal is input. ZVS on three-terminal control element simultaneously
Even if a gate signal synchronized once every two times is supplied, the inrush current is small and will not destroy the three-terminal control element. Also, since the braking signal to the gate terminal of the three-terminal control element is stopped halfway during braking,
It is also possible to suppress the temperature rise of the motor windings. In addition, for the three-terminal control element, once every two times of ZVS
Since a gate signal synchronized with the rotation is supplied, a half-wave current flows through the main and auxiliary windings, enabling efficient braking of the motor. The load on the terminal control element can be adjusted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のモータの制動装置の電気回路
図、第2図は本発明の一実施例を示すモータの制
動装置の電気回路図、第3図は同電気回路のマイ
クロコンピユータの制御によるフローチヤートを
示す図、第4図は同電気回路の三端子制御素子の
両端の電圧波形図である。 12……第1の三端子制御素子、13……主巻
線、14……第2の三端子制御素子、15……補
助巻線、19……デイレイ装置、21,22……
スイツチング回路。
Fig. 1 is an electric circuit diagram of a conventional motor braking device, Fig. 2 is an electric circuit diagram of a motor braking device showing an embodiment of the present invention, and Fig. 3 is a flowchart of the electric circuit under control of a microcomputer. FIG. 4, which is a diagram showing the chart, is a voltage waveform diagram at both ends of the three-terminal control element of the same electric circuit. 12...First three-terminal control element, 13...Main winding, 14...Second three-terminal control element, 15...Auxiliary winding, 19...Delay device, 21, 22...
switching circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 モータの主巻線に接続した第1の三端子制御
素子と、補助巻線に接続した第2の三端子制御素
子と、制動時に前記第1、第2三端子制御素子の
ゲート端子に交流電源のゼロボルトクロス点に対
してその2回に1回と同期した信号を供給するス
イツチング回路と、制動開始から所定時間、前記
二つの三端子制御素子をオフ状態にするデイレイ
装置とを備え、前記スイツチング回路により、制
動開始から所定時間後に前記の三端子制御素子の
ゲート端子に前記信号を供給し、制動時に途中か
ら、前記両三端子制御素子のどちらか一方へのゲ
ート端子への供給を停止することとしたモータの
制動装置。
1 A first three-terminal control element connected to the main winding of the motor, a second three-terminal control element connected to the auxiliary winding, and an alternating current applied to the gate terminals of the first and second three-terminal control elements during braking. A switching circuit that supplies a signal synchronized with the zero volt cross point of the power supply every two times, and a delay device that turns off the two three-terminal control elements for a predetermined period of time from the start of braking, A switching circuit supplies the signal to the gate terminal of the three-terminal control element after a predetermined time from the start of braking, and stops supplying the signal to the gate terminal of either of the two three-terminal control elements halfway during braking. Braking device for the motor.
JP16963883A 1983-09-14 1983-09-14 Brake device of motor Granted JPS6062888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16963883A JPS6062888A (en) 1983-09-14 1983-09-14 Brake device of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16963883A JPS6062888A (en) 1983-09-14 1983-09-14 Brake device of motor

Publications (2)

Publication Number Publication Date
JPS6062888A JPS6062888A (en) 1985-04-11
JPH0421437B2 true JPH0421437B2 (en) 1992-04-10

Family

ID=15890200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16963883A Granted JPS6062888A (en) 1983-09-14 1983-09-14 Brake device of motor

Country Status (1)

Country Link
JP (1) JPS6062888A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253215A (en) * 1975-10-25 1977-04-28 Brother Ind Ltd Control circuit of condenser motor
JPS52104716A (en) * 1976-02-28 1977-09-02 Fujitsu Ltd Driving method of a.c. induction motor
JPS5851785A (en) * 1981-09-21 1983-03-26 Toshiba Corp Brake circuit for 3-phase induction motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253215A (en) * 1975-10-25 1977-04-28 Brother Ind Ltd Control circuit of condenser motor
JPS52104716A (en) * 1976-02-28 1977-09-02 Fujitsu Ltd Driving method of a.c. induction motor
JPS5851785A (en) * 1981-09-21 1983-03-26 Toshiba Corp Brake circuit for 3-phase induction motor

Also Published As

Publication number Publication date
JPS6062888A (en) 1985-04-11

Similar Documents

Publication Publication Date Title
KR100238770B1 (en) Electric motor controller with bypass contactor
KR900004091A (en) DC current sensing method and apparatus of any one pole in the conductor, and electronic commutating motor controller responsive to the sensing motor current
MY114099A (en) Motor system capable of obtaining high efficiency and method for controlling a motor.
JPH0421437B2 (en)
US4560913A (en) Sparkless circuit for low horsepower electronic motor brake
US2740932A (en) Two speed motor control
GB2092401A (en) Control apparatus for single phase AC induction motor
US6064173A (en) Application-specific electronic motor starter
SU1176432A2 (en) Device for dynamic braking of induction motor
SU1714782A1 (en) Dc electric drive unit
JP3457023B2 (en) Brake control method for condenser run motor
JPS6125357Y2 (en)
JPH07312887A (en) Controller for motor
SU1377994A1 (en) Electric drive
JP2643176B2 (en) Multi-phase AC rectifier circuit
KR200156162Y1 (en) Driving apparatus for a/c permanant magnet type servo-motor
JPH0614418Y2 (en) Voltage switching device
JPH0324158B2 (en)
JPS60152290A (en) Throwing-in method of power source for motor
JP2634020B2 (en) Induction motor control device
JPS57183204A (en) Protecting system at ac electric motor vehicle regenerating time
JPS59132788A (en) Brake device for motor
JPH0410315B2 (en)
JPH0441756Y2 (en)
SU877767A1 (en) Device for control of multiphase induction electric motor