JPH0421203B2 - - Google Patents

Info

Publication number
JPH0421203B2
JPH0421203B2 JP10170782A JP10170782A JPH0421203B2 JP H0421203 B2 JPH0421203 B2 JP H0421203B2 JP 10170782 A JP10170782 A JP 10170782A JP 10170782 A JP10170782 A JP 10170782A JP H0421203 B2 JPH0421203 B2 JP H0421203B2
Authority
JP
Japan
Prior art keywords
shape
machining
computer
given
numerical control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10170782A
Other languages
Japanese (ja)
Other versions
JPS58219606A (en
Inventor
Keiichi Shiotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10170782A priority Critical patent/JPS58219606A/en
Publication of JPS58219606A publication Critical patent/JPS58219606A/en
Publication of JPH0421203B2 publication Critical patent/JPH0421203B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Description

【発明の詳細な説明】 本発明は、形状自動加工方式、特にNC(数値
制御)工作機械を用いて複雑な形状を持つ金型な
どを自動加工する場合のNC指令を、計算機によ
り自動作成するのに適した形状自動加工方式に関
するものである。
[Detailed Description of the Invention] The present invention uses a computer to automatically create NC commands when automatically machining molds with complex shapes using an automatic shape processing method, particularly an NC (numerical control) machine tool. The present invention relates to an automatic shape processing method suitable for.

従来、この種の形状自動加工方式には、第1図
の概要構成図に示されるものが知られている。第
1図において、計算機10は入力データを入力す
るためのキーボード12から入力信号100の供
給を受け、数値制御工作機械14に出力信号10
2を供給するもので、CPU(中央処理装置)1
6、入力回路18、出力回路20、プログラムメ
モリー22、CPU16の演算結果の出力表示装
置24により構成されている。
Conventionally, as this type of automatic shape processing method, one shown in the schematic configuration diagram of FIG. 1 is known. In FIG. 1, a computer 10 receives an input signal 100 from a keyboard 12 for inputting input data, and outputs an output signal 100 to a numerically controlled machine tool 14.
2, CPU (Central Processing Unit) 1
6, an input circuit 18, an output circuit 20, a program memory 22, and an output display device 24 for the calculation results of the CPU 16.

第1図に示す概要構成において、入力信号10
0として第2図に示すパートサーフエス26、ド
ライブサーフエス28、チエツクサーフエス30
の座標あるいは式のパラメータを与える従来方式
の動作について以下説明する。
In the schematic configuration shown in FIG.
Part Surf S 26, Drive Surf S 28, and Check Surf S 30 shown in FIG.
The operation of the conventional method for giving the coordinates or parameters of the equation will be explained below.

先ず、入力信号100としてパートサーフエス
データ26、ドライブサーフエスデータ28、チ
エツクサーフエスデータ30をキーボード12か
ら計算機10へ全ての加工面に対して逐一与え
る。各々の加工面に対して与えられたパートサー
フエスデータ26は切り込み深さを制御する信
号、ドライブサーフエスデータ28はカツタ32
が機械加工している間該カツタの移動を導く制御
信号、チエツクサーフエスデータ30はある与え
られた動作命令を制御する信号となる。
First, part surf system data 26, drive surf system data 28, and check surf system data 30 are given as input signals 100 from the keyboard 12 to the computer 10 one by one for all machining surfaces. The part surf S data 26 given to each machined surface is a signal that controls the depth of cut, and the drive surf S data 28 is a signal that controls the cutter 32.
The check surface data 30, the control signals that guide the movement of the cutter during machining, are the signals that control a given operating command.

第3図に示した形状例の場合、上記制御信号を
少なくとも14組与える。この形状を自動演算する
ためのプログラムは予めメモリー22に記憶させ
てあり、計算機10に入力信号100を与える
と、かかる形状を数値制御工作機械14を用いて
加工するためのNC指令が自動的に演算作成され
る。
In the case of the example shape shown in FIG. 3, at least 14 sets of the above control signals are applied. A program for automatically calculating this shape is stored in the memory 22 in advance, and when an input signal 100 is given to the computer 10, an NC command for machining this shape using the numerically controlled machine tool 14 is automatically issued. Calculation is created.

また、第1図に示す概要構成において、第3図
に示す形状例を加工するための入力信号100と
して、第4図に示す形状(A)34、形状(B)36、形
状(C)38のデータ及びオペレーシヨン∩、 、∪
を与える他の従来例について説明する。先ず、入
力信号100として、第4図に示す形状(A)34、
形状(B)36、形状(C)38のデータとオペレータ
∩、 、∪をキーボード12から計算機10へ与
えると、計算機10は(A)∩(B)(C)なる演算を行い、
かかる形状を創成する。さらに、加工制御信号を
入力信号100として与えることにより、上記創
成された形状を数値制御工作機械14を用いて加
工するためのNC指令が自動的に演算作成され
る。
In addition, in the schematic configuration shown in FIG. 1, as the input signal 100 for processing the example shape shown in FIG. 3, the shape (A) 34, shape (B) 36, and shape (C) 38 shown in FIG. Data and operations ∩, , ∪
Another conventional example that provides the following will be explained. First, as the input signal 100, the shape (A) 34 shown in FIG.
When data of shape (B) 36 and shape (C) 38 and operators ∩, , ∪ are given to the calculator 10 from the keyboard 12, the calculator 10 performs the calculation (A)∩(B)(C),
Create such a shape. Further, by providing a machining control signal as the input signal 100, an NC command for machining the created shape using the numerically controlled machine tool 14 is automatically created.

第1図、第2図、第4図に基づいて説明した従
来の形状自動加工方式は、入力信号100として
全ての加工面に対し、第2図に示すパートサーフ
エス26、ドライブサーフエス28、チエツクサ
ーフエス30を全て判断してデータとして与える
必要があり、複雑な形状の場合、データ作成時間
の増大、サーフエスの判断ミスなどが増加し問題
が多かつた。
The conventional shape automatic machining method explained based on FIGS. 1, 2, and 4 uses the part surf S 26, drive surf S 28, It is necessary to judge all the check surfaces 30 and provide them as data, and in the case of complex shapes, there are many problems such as an increase in data preparation time and an increase in errors in surface judgment.

また、第3図に示す形状例を加工するための入
力信号100として、第4図に示す形状(A)34、
形状(B)36、形状(C)38のデータおよびオペレー
シヨン∩、 、∪を与える従来例の場合、第2図
従来例と比較すれば、サーフエスの判断ミスは除
去されるも、加工の概念との隔たりが存在するこ
とおよび第2図従来例と同様複雑な形状の場合、
データ作成時間の増大は避けられないなど問題が
多かつた。
In addition, as the input signal 100 for processing the shape example shown in FIG. 3, the shape (A) 34 shown in FIG.
In the case of the conventional example in which the data of shape (B) 36 and shape (C) 38 and operations ∩, , ∪ are given, when compared with the conventional example shown in Fig. 2, the error in surf S judgment is eliminated, but the concept of machining is If there is a gap between the
There were many problems, such as an unavoidable increase in data creation time.

本発明は前述した従来の課題に鑑み為されたも
のであり、その目的は加工を行うことによつて新
たに創成される面を上面に持つ空間的に閉じた形
状を入力信号として計算機に与え、また、加工に
基づくオペレーシヨンを制御信号として計算機へ
与えることにより、複雑な形状の場合でも、加工
の概念から隔たることなく短時間で誤り少なく被
加工形状を演算し、自動加工するための数値制御
指令を作成可能とする形状自動加工方式を提供す
ることにある。
The present invention was made in view of the above-mentioned conventional problems, and its purpose is to provide a computer with a spatially closed shape having a newly created surface on the top surface as an input signal. In addition, by giving operations based on machining as control signals to a computer, even in the case of complex shapes, the workpiece shape can be calculated in a short time and with fewer errors, without departing from the concept of machining, for automatic machining. The object of the present invention is to provide an automatic shape processing method that enables creation of numerical control commands.

上記目的を達成するために、本発明は、計算機
を用いて数値制御指令を作成し、この数値制御指
令で数値制御工作機械を制御して所望形状の加工
を自動的に行う形状自動加工方式において、加工
を行うことによつて新たに創成される面を上面に
持つ空間的に閉じた立体的な形状を被加工物の初
期形状に対し制御指令として上記計算機に与えて
被加工物を加工する数値制御指令を作成し、さら
に上記立体的な形状の制御指令を繰返し上記計算
機に与え、ここで立体形状同士の重複部分抽出、
非重複部分抽出、加算処理、減算処理等の演算処
理することによつて目的とする最終的な形状につ
いての数値制御指令を作成し、自動的に加工する
ことを特徴とする。
In order to achieve the above object, the present invention provides an automatic shape machining method in which a numerical control command is created using a computer, and a numerically controlled machine tool is controlled by the numerical control command to automatically machine a desired shape. The workpiece is machined by giving the computer a spatially closed three-dimensional shape with a new surface on the upper surface as a control command for the initial shape of the workpiece. A numerical control command is created, and the control command for the three-dimensional shape is repeatedly given to the computer, which extracts the overlapping parts between the three-dimensional shapes,
The present invention is characterized in that numerical control commands for the desired final shape are created and automatically processed by performing arithmetic processing such as non-overlapping portion extraction, addition processing, subtraction processing, etc.

以下、図面に基づいて本発明の好適な実施例を
説明する。第5図は、本発明の一実施例を示す概
念図であつて、第1図と同一部分には同一符号を
付してその説明は省略する。第5図において、制
御信号104はCRT(陰極線管)へのライトペン
40による入力、あるいはデイジタイザー42、
キーボード12によつて入力され、この制御信号
は加工形状を制御するものである。以下、第5図
に基づき本発明形状自動加工方式の制御の方法に
ついて説明する。従来例と比較するために、自動
加工によつて作成する形状例として第3図に示す
形状を考える。まず、入力7信号100として第
6図に示す形状(P)44、形状(Q)のデータ
を与える。このデータの与え方は、通常のNC制
御装置における立体形状の入力方法に従つて行え
ばよいが、この例の場合なら6つの頂点の座標を
入力することによつても行える。ここで、この発
明においては、この入力信号100として、加工
を行うことによつて新たに創成される面の中で、
その面の法線ベクトルがZ軸と垂直ではない面を
上面に持つ空間的に閉じた形状を与える。すなわ
ち、第3図の形状において、図における上方がZ
軸方向とすれば、その上面はその面の法線ベクト
ルがZ軸と平行でありこれに該当し、側面はその
面にの法線ベクトルはZ軸と垂直となるためこれ
に該当しない。従つて、第3図における最も上の
上向きの面を上面とする空間的に閉じた形状、す
なわち第6図左に示す形状(P)44を1つの入
力データとして与え、第3図における中間の上向
きの面を上面とする閉じた形状、すなわち第6図
右に示す形状(Q)をもう1つの入力データとし
て与える。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings. FIG. 5 is a conceptual diagram showing one embodiment of the present invention, and the same parts as those in FIG. In FIG. 5, a control signal 104 is input to a CRT (cathode ray tube) by a light pen 40, or a digitizer 42,
This control signal is input via the keyboard 12 and controls the machining shape. Hereinafter, a method of controlling the automatic shape machining method of the present invention will be explained based on FIG. For comparison with the conventional example, consider the shape shown in FIG. 3 as an example of a shape created by automatic processing. First, data of shape (P) 44 and shape (Q) shown in FIG. 6 are given as input 7 signals 100. This data can be given in accordance with a normal three-dimensional shape input method in an NC control device, but in this example, it can also be done by inputting the coordinates of six vertices. Here, in the present invention, among the surfaces newly created by processing the input signal 100,
Gives a spatially closed shape whose top surface has a surface whose normal vector is not perpendicular to the Z-axis. That is, in the shape of Fig. 3, the upper part in the figure is Z.
In the case of the axial direction, the top surface corresponds to this because the normal vector to that surface is parallel to the Z-axis, and the side surface does not fall under this because the normal vector to that surface is perpendicular to the Z-axis. Therefore, by giving as one input data a spatially closed shape whose uppermost surface is the uppermost surface in FIG. 3, that is, the shape (P) 44 shown on the left in FIG. A closed shape with the upward facing surface as the top surface, that is, the shape (Q) shown on the right in FIG. 6, is given as another input data.

一方、数値制御工作機械14を制御するNC指
令は、第7図に示すように現在値(Pi)48から
目標値(Pi+1)50へカツタ32が移動するよう
にサーボモータへ出力する信号として演算される
ものである。
On the other hand, the NC command that controls the numerically controlled machine tool 14 is output to the servo motor so that the cutter 32 moves from the current value (P i ) 48 to the target value (P i+1 ) 50 as shown in FIG. It is calculated as a signal.

そして、被加工形状を自動演算するためのプロ
グラムはあらかじめメモリー22に記憶されてお
り、計算機10に入力信号及び制御信号104を
与えることによつてNC指令が自動的に演算作成
される。
A program for automatically calculating the shape of the workpiece is stored in advance in the memory 22, and by giving input signals and control signals 104 to the computer 10, NC commands are automatically calculated and created.

この例では、制御信号104としてオペレーシ
ヨン←を与えている。そこで、このオペレーシヨ
ン←について第6図に基づいて説明すると、この
オペレーシヨン←は(P・xy)+Qを示す。こ
こで、Pは上述の形状(P)44を、Qは上述の
形状(Q)46、オペレーシヨン・はAND、オ
ペレーシヨン+はOR、Qxyは形状(Q)のX、
Y平面への射影形状をZ軸方向へ無限に移動させ
た形状、xyは形状QxyのNOTを意味する。従
つて、形状データ同士の演算によつて、(P・
xy)は第6図の形状(P)から形状(Q)のx、
y平面における重複部分を除いて形状、すなわち
第3図に示す形状から第6図の形状(Q)を除い
た形状を意味する。そして、これに形状(Q)を
加算することによつて式(P・xy)+Qは第3
図の形状を意味することになる。なお、AND
(・)、OR(+)などのについての演算は周知の
計算機の動作と同様に回路的、ソフト的に行うこ
とができる。
In this example, the operation ← is given as the control signal 104. Therefore, this operation ← will be explained based on FIG. 6. This operation ← indicates (P·xy)+Q. Here, P is the above-mentioned shape (P) 44, Q is the above-mentioned shape (Q) 46, operation is AND, operation + is OR, Qxy is X of shape (Q),
A shape obtained by moving the projected shape onto the Y plane infinitely in the Z-axis direction, where xy means NOT the shape Qxy. Therefore, by calculating the shape data, (P・
xy) is x from shape (P) to shape (Q) in Figure 6,
It means a shape excluding the overlapping portion in the y plane, that is, a shape obtained by removing the shape (Q) in FIG. 6 from the shape shown in FIG. 3. Then, by adding the shape (Q) to this, the formula (P xy) + Q becomes the third
It means the shape of the figure. In addition, AND
Operations such as (•) and OR (+) can be performed using circuits or software, similar to the operations of well-known computers.

このように、この発明によれば加工によつて新
たに創成される面を上面に持つ空間的に閉じた立
体的な形状(例えば第6図に示す形状(P)、形
状(Q))を与え、これを演算することによつて
加工形状(例えば第3図に示す形状)を把握する
ことができる。このため、数値制御指令を非常に
効率的に作成することができる。
As described above, according to the present invention, a spatially closed three-dimensional shape (for example, the shape (P) and shape (Q) shown in FIG. 6) having a surface newly created by processing on the upper surface can be created. By calculating this, it is possible to understand the machined shape (for example, the shape shown in FIG. 3). Therefore, numerical control commands can be created very efficiently.

第9図は入力信号100として与える形状は一
実施例で説明したものと同一とし、制御信号10
4としてオペレーシヨン1を与えて自動的に演算
したNC指令の結果を示す。ここでオペレーシヨ
ン1(P・xy)+(P・Q)を回路的、ソフト
的に実行する信号である。
In FIG. 9, the shape given as the input signal 100 is the same as that explained in one embodiment, and the control signal 100 is
4 shows the result of the NC command automatically calculated by giving operation 1. Here, it is a signal for executing operation 1 (P.xy)+(P.Q) in terms of circuitry and software.

以上のように、本発明の形状自動加工方式で
は、金型などの複雑な形状を演算してNC指令を
作成でき、その指令で数値制御工作機械によつて
自動加工を行うことが容易になり、所望の形状を
短期間で作成可能となる等の効果が得られる。
As described above, the automatic shape machining method of the present invention can create NC commands by calculating complex shapes such as molds, and can easily perform automatic machining using numerically controlled machine tools using these commands. Effects such as being able to create a desired shape in a short period of time can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の形状自動加工方式を説明する概
要構成図、第2図はその従来方式の入力信号図、
第3図は凹形状図、第4図は従来方式の他の入力
信号図、第5図は本発明形状自動加工方式の一実
施例を説明する概要構成図、第6図は本発明の入
力信号例を示す概要図、第7図はNC指令を説明
する図、第8図、第9図は本発明による作用の説
明図である。 各図中、同一部材には同一符号を付し、10は
計算機、12はキーボード、14は数値制御工作
機械、16はCPU、18は入力回路、20は出
力回路、22はメモリ、24は出力表示装置、2
6はパートサーフエス(データ)、28はドライ
ブサーフエス(データ)、30はチエツクサーフ
エス(データ)、32はカツタ、34は形状(A)、
36は形状(B)、38は形状(C)へ、40はライトペ
ン、42はデイジタイザ、44は形状(P)、4
6は形状(Q)、48は現在値(Pi)、50は目標
値(Pi+1)、100は入力信号、102は出力信
号、104は制御信号である。
Fig. 1 is a schematic configuration diagram explaining a conventional shape automatic processing method, Fig. 2 is an input signal diagram of the conventional method,
Fig. 3 is a concave shape diagram, Fig. 4 is a diagram of other input signals of the conventional method, Fig. 5 is a schematic configuration diagram explaining an embodiment of the automatic shape processing method of the present invention, and Fig. 6 is an input signal diagram of the present invention. FIG. 7 is a schematic diagram showing an example of a signal, FIG. 7 is a diagram explaining an NC command, and FIGS. 8 and 9 are diagrams explaining the operation according to the present invention. In each figure, the same members are given the same reference numerals, 10 is the computer, 12 is the keyboard, 14 is the numerical control machine tool, 16 is the CPU, 18 is the input circuit, 20 is the output circuit, 22 is the memory, and 24 is the output Display device, 2
6 is part surf S (data), 28 is drive surf S (data), 30 is check surf S (data), 32 is cutter, 34 is shape (A),
36 to shape (B), 38 to shape (C), 40 to light pen, 42 to digitizer, 44 to shape (P), 4
6 is a shape (Q), 48 is a current value (P i ), 50 is a target value (P i+1 ), 100 is an input signal, 102 is an output signal, and 104 is a control signal.

Claims (1)

【特許請求の範囲】 1 計算機を用いて数値制御指令を作成し、この
数値制御指令で数値制御工作機械を制御して所望
形状の加工を自動的に行う形状自動加工方式にお
いて、 加工を行うことによつて新たに創成される面を
上面に持つ空間的に閉じた立体的な形状を、被加
工物の初期形状に対し制御指令として上記計算機
に与えて被加工物を加工する数値制御指令を作成
し、 さらに上記立体的な形状の制御指令を繰返し上
記計算機に与え、ここで立体的な形状同士の重複
部分抽出、非重複部分抽出、加算処理、減算処理
等の演算処理することによつて目的とする最終的
な形状についての数値制御指令を作成し、自動的
に加工することを特徴とする形状自動加工方式。
[Claims] 1. Machining is performed in an automatic shape machining method in which numerical control commands are created using a computer, and a numerically controlled machine tool is controlled by the numerical control commands to automatically machine a desired shape. A spatially closed three-dimensional shape with a newly created surface on the top is given to the computer as a control command for the initial shape of the workpiece, and a numerical control command for machining the workpiece is given to the computer. Furthermore, the control command for the three-dimensional shape is repeatedly given to the computer, which performs arithmetic processing such as extraction of overlapping parts, extraction of non-overlapping parts, addition processing, subtraction processing, etc. between the three-dimensional shapes. An automatic shape machining method that is characterized by creating numerical control commands for the desired final shape and automatically machining it.
JP10170782A 1982-06-14 1982-06-14 Automatic shape working system Granted JPS58219606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10170782A JPS58219606A (en) 1982-06-14 1982-06-14 Automatic shape working system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10170782A JPS58219606A (en) 1982-06-14 1982-06-14 Automatic shape working system

Publications (2)

Publication Number Publication Date
JPS58219606A JPS58219606A (en) 1983-12-21
JPH0421203B2 true JPH0421203B2 (en) 1992-04-09

Family

ID=14307775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10170782A Granted JPS58219606A (en) 1982-06-14 1982-06-14 Automatic shape working system

Country Status (1)

Country Link
JP (1) JPS58219606A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213902A (en) * 1985-03-19 1986-09-22 Toshiba Mach Co Ltd Nc device with automatic three-dimensional programming function
JPS61213901A (en) * 1985-03-19 1986-09-22 Toshiba Mach Co Ltd Generation system for nc tool track
JPS61274859A (en) * 1985-05-28 1986-12-05 Tokyo Optical Co Ltd Lens grinding apparatus
JPS63127814A (en) * 1986-11-17 1988-05-31 Mitsubishi Heavy Ind Ltd Numerically controlled hobbing machine
JP2675634B2 (en) * 1989-07-31 1997-11-12 オ−クマ株式会社 Digitized data processing device

Also Published As

Publication number Publication date
JPS58219606A (en) 1983-12-21

Similar Documents

Publication Publication Date Title
JP5000543B2 (en) Machine tool control method and apparatus therefor
JP3563077B2 (en) Numerical control command creation device and method
JPH0421203B2 (en)
US6745098B2 (en) Machining based on master program merged from parts programs
JP3053491B2 (en) Numerical control method
JP2696206B2 (en) Automatic part program creation method
JPH06100929B2 (en) NC data creation method for machining uncut parts in NC data creation device
JP2836633B2 (en) Machining process decision device in numerical control information creation function
JPH06119031A (en) Nc data generating method for working of cut remaining part
JPH04114208A (en) Animation plotting system for nc program
US6681144B1 (en) Process and system for working a workpiece through numerically controlled machine tools
JPH0579460B2 (en)
JP2841364B2 (en) Processing device positioning method
JPH08150540A (en) Interference preventing device for machine tool
Tönshoff et al. Virtual Reality For NC-programming
KR100440153B1 (en) Method of generating a roughing work program for computer numerical control
JPS60259362A (en) Copying machine for closed area software potential line
KR100246885B1 (en) Numerical controlled machining apparatus and method for edge cut-off
JPH05346814A (en) Three-dimensional machining method
JP2022159935A (en) Machine tool, information processor and information processing program
JPS6232503A (en) Numerical controller
JPH05265532A (en) Method for setting limit data in numerical controller
JPH0561517A (en) Numerical controller
JPH01251207A (en) Data processor
JPH0216604A (en) Return control method for pc