JPH0421193A - Device for recognizing object - Google Patents

Device for recognizing object

Info

Publication number
JPH0421193A
JPH0421193A JP12638890A JP12638890A JPH0421193A JP H0421193 A JPH0421193 A JP H0421193A JP 12638890 A JP12638890 A JP 12638890A JP 12638890 A JP12638890 A JP 12638890A JP H0421193 A JPH0421193 A JP H0421193A
Authority
JP
Japan
Prior art keywords
maximum
coordinates
straight line
maximum diameter
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12638890A
Other languages
Japanese (ja)
Inventor
Kazuo Funakubo
一夫 舟久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12638890A priority Critical patent/JPH0421193A/en
Publication of JPH0421193A publication Critical patent/JPH0421193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)

Abstract

PURPOSE:To rapidly find out a maximum diameter by setting up plural straight lines passing the center point of a circumscribed rectangle of a binary image and finding out a maximum mutual distance of peripheral points maximizing distances between respective peripheral points and these straight lines. CONSTITUTION:When a circumscribed rectangle extracting part 4 finds out the circumscribed rectangle 11 of a binary image 10, a maximum diameter extracting part 5 finds out the coordinates (5, 5) of the center point 9. A straight line 12a passing the point 9 with 0 deg. inclination theta and parallel with the X axis is set up. Then, the coordinates (2, 0), (3, 0) of positively maximum peripheral points and the coordinates (2, 9), (3, 9) of negatively maximum peripheral points are found out through the straight line 12a regarded as zero. Then, a straight line 12b is set up and coordinates (2, 0), (10, 8) are similarly found out. Then, a straight line 12c is set up and coordinates (0,3), (0,4), (0,5), (0,6) and coordinates (10,7), (10,8) are found out. Then, a straight line 12d is set up and the coordinates (6, 2), (8, 4) and coordinates (2, 9) are found out. Then, the extracting part 5 determines the maximum diameter. In this case, the maximum diameter is obtained from points (2, 0) and (10, 8).

Description

【発明の詳細な説明】 (a業上の利用分野〕 本発明は、光学的手法によって得られた認識対象物の画
像データにディジタル処理を施して認識対象物を判定す
る物体認識装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application in Industry A) The present invention relates to an object recognition device that performs digital processing on image data of a recognition target obtained by an optical method to determine a recognition target.

〔従来の技術] この種の従来の物体認識装置は、先ず、CCDカメラ等
て認識対象物を撮像し、得られた画像データを取り込ん
で画像メモリに保存し、次いで、用意されたソフトウェ
ア、あるいは、ハードウェアによって2値化処理を施し
、認識対象物の2値画像としての各画素のアドレスを求
め、さらに、最大径という特徴量を求めて認識対象物を
判定していた。
[Prior Art] This type of conventional object recognition device first captures an image of a recognition target using a CCD camera or the like, captures the obtained image data and stores it in an image memory, and then uses prepared software or , the recognition target object was determined by performing binarization processing using hardware, determining the address of each pixel as a binary image of the recognition target object, and further determining a feature quantity such as the maximum diameter.

この従来の物体認識装置では最大径を求めるために、全
周囲画素への座標のあらゆる組合せに対して距離計算を
していた。以下、この最大径を求める手法を第6図を用
いて説明する。
In order to find the maximum diameter, this conventional object recognition device calculates distances for all combinations of coordinates to all surrounding pixels. Hereinafter, a method for determining this maximum diameter will be explained using FIG. 6.

第6図において、認識対象物の2値画像が0〜lOで示
したX座標と、0〜9て示したY座標とて表わし得る画
素(以下、点と称する)の集合体として斜線部の形状を
していたとする。
In Fig. 6, the binary image of the recognition target is represented by the shaded area as an aggregation of pixels (hereinafter referred to as points) that can be represented by the X coordinate indicated by 0 to lO and the Y coordinate indicated by 0 to 9. Suppose it has a shape.

先ず、点(7)をスタート座標とし、この点(2,O)
と他の外周点との2点間距離、すなわち、(2,O)と
(2,1)、(2,0)と(2,2)、    (2,
o)   と  (0,3)、    (2゜0 ) 
 と  (0,4)、   ・・・  (2,O)  
 と  (4,1)(2,O)と(3,O)の各2点間
処理を、外周点列に沿って一周するように求める。そし
て、この中で2点間距離が最大となる2点の座標値およ
びその距離、この場合には座標値(2,O)と(10,
8)および距@9J1を記憶する。
First, let point (7) be the starting coordinate, and this point (2, O)
and other peripheral points, that is, (2, O) and (2, 1), (2, 0) and (2, 2), (2,
o) and (0,3), (2゜0)
and (0,4), ... (2,O)
The two-point processing of (4,1)(2,O) and (3,O) is calculated so as to go around the outer circumferential point sequence. Then, among these, the coordinate values of the two points with the maximum distance between the two points and their distance, in this case the coordinate values (2, O) and (10,
8) and store the distance @9J1.

次に、点(8)をスタート座標とし、この点(2,1)
と他の外周点との2点間距離を、上述したと同様、外周
点列に沿って一周するように求め、そして、2点間距離
が最大となる2点の座標値およびその距離を記憶する。
Next, set the point (8) as the starting coordinate, and this point (2,1)
In the same way as described above, calculate the distance between two points and other outer peripheral points by going around the outer peripheral point sequence, and then memorize the coordinate values and distances of the two points where the distance between the two points is maximum. do.

以下、順にスタート座標を移し、各々の場合について2
点間距離を求めると共に、2点間距離が最大となる2点
の座標値およびその距離を記憶する。
Below, we will move the start coordinates in order and calculate 2 for each case.
The distance between the points is determined, and the coordinate values of the two points with the maximum distance between the two points and the distance therebetween are stored.

このようにして全ての外周点列の2点間距離の算出およ
び記憶を終了した段階で、距離が最大のものを2値画像
の最大径としている。
When the distances between two points of all the outer peripheral point sequences have been calculated and stored in this way, the one with the maximum distance is set as the maximum diameter of the binary image.

この手法において、外周点列数をn個とした場合、距離
を計算する回数には下式で与えられる。
In this method, when the number of peripheral point sequences is n, the number of times the distance is calculated is given by the following formula.

第6図に例示した画像の場合、n=36であるから63
0回も計算することになる。
In the case of the image illustrated in Figure 6, n=36, so 63
You will have to calculate it 0 times.

(発明が解決しようとする課題) 従来の物体認識装置は、上述したように、外周点列数を
nとすると、この中から2個の外周点を取り出して組み
合わせたnC2回だけ距離計算しなければならなかった
。このため、2値画像の形状が比較的簡単なもの、ある
いは、2値画像の形状が小さいものであれば問題になら
ない程度に少ない処理時間で最大径を求めることができ
る。しかしながら、2値画像の形状が複雑であったり、
大きかったりすると計算量が膨大になるため、処理時間
がかかり過ぎて認識に遅滞を生じるという問題点があっ
た。
(Problems to be Solved by the Invention) As described above, in the conventional object recognition device, when the number of outer peripheral points is n, distance calculations must be performed nC twice by extracting and combining two outer peripheral points from among them. I had to. Therefore, if the shape of the binary image is relatively simple or the shape of the binary image is small, the maximum diameter can be determined in a small enough processing time to cause no problem. However, the shape of the binary image is complex,
If the size is large, the amount of calculation becomes enormous, which causes a problem in that too much processing time is required, resulting in a delay in recognition.

この発明は、上記のような問題点を解決するためになさ
れたもので、認識対象物の最大径という特徴量を高速で
算出することのできる物体認識装置を得ることを目的と
する。
The present invention was made in order to solve the above-mentioned problems, and an object of the present invention is to obtain an object recognition device that can quickly calculate a feature amount such as the maximum diameter of an object to be recognized.

(課題を解決するための手段) この発明に係る物体認識装置は、2値化した時のランレ
ングスデータのアドレスより2値画像の外接四角形を算
出する手段と、算出された外接四角形の中央部の点を通
り、互いに所定の角度たけずれている複数本の直線を設
定し、これらの直線から2値画像の各外周点までの距離
を計算すると共に、直線を境にしてこの距離が正の側に
最大になる外周点と負の側に最大になる外周点とを直線
毎に求め、かつ、これらの外周点の相互距離を算出して
、最大のものを最大径とする手段とを備えたものである
(Means for Solving the Problems) An object recognition device according to the present invention includes means for calculating a circumscribed rectangle of a binary image from an address of run length data when binarized, and a central part of the calculated circumscribed rectangle. Set multiple straight lines that pass through the point and are offset by a predetermined angle from each other, calculate the distance from these straight lines to each peripheral point of the binary image, and check if this distance is positive with the straight line as the border. Means is provided for determining, for each straight line, the outer circumferential point that is the largest on the side and the outer circumferential point that is the largest on the negative side, calculating the mutual distance of these outer circumferential points, and setting the largest one as the maximum diameter. It is something that

(作用) この発明においては、2値画像の外接四角形の中央部の
点を通る複数の直線を設定し、これらの直線から各外周
点までの距離を計算してそれぞれ距離が最大になる外周
点を求め、これらの外周点の相互距離を算出して最大の
ものを最大径と決定するようにしたため、認識対象物の
形状が複雑であっても、あるいは、2値画像が大きくと
も、高速にて最大径を求めることができる。
(Function) In this invention, a plurality of straight lines passing through the central point of the circumscribed rectangle of the binary image are set, and the distances from these straight lines to each peripheral point are calculated to find the peripheral point at which the distance is the maximum. , and calculate the mutual distance between these peripheral points and determine the largest one as the maximum diameter. Therefore, even if the shape of the recognition target is complex or the binary image is large, it can be recognized at high speed. The maximum diameter can be found by

(実施例) 第1図はこの発明の一実施例の構成を示すブロック図で
ある。
(Embodiment) FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

同図において、画像取込み部(1)はCCDカメラ等の
撮像手段であり、認識対象物を撮像してその映像信号を
得、さらに、この撮像信号をD/A変換して出力する。
In the figure, an image capturing section (1) is an imaging means such as a CCD camera, which images an object to be recognized, obtains a video signal thereof, and further converts this imaging signal into a D/A and outputs it.

2値化部(2)はディジタルデータを2値化処理し、認
識対象物の2値画像を得る。
The binarization unit (2) binarizes the digital data to obtain a binary image of the recognition target object.

また、ランレングスアドレスデータ作成部(3)は、2
値化された認識対象物の画素の繋りをランレングスアド
レスデータとしてとらえ、その開始、終了のアドレスを
算出する。外接四角形抽出部(4)はランレングスアド
レスデータに基づいて2値画像の外接四角形を算出する
。最大径抽出部(5)は2値化画像の外接四角形と、上
記ランレングスアドレスデータとを用いて2値画像の最
大径を求める。認識部(6)は最大径を特徴量として認
識対象物を判定する。
In addition, the run length address data creation section (3) includes 2
The connection of pixels of the recognized object that has been converted into a value is taken as run-length address data, and the start and end addresses are calculated. A circumscribing rectangle extraction unit (4) calculates a circumscribing rectangle of the binary image based on the run-length address data. The maximum diameter extraction unit (5) uses the circumscribed rectangle of the binary image and the run length address data to find the maximum diameter of the binary image. The recognition unit (6) determines the recognition target object using the maximum diameter as a feature quantity.

この実施例を構成する要素のうち、画像取込み部(1)
、2値化部(2)、ランレングスアドレスデータ作成部
(3)、外接四角形抽出部(4)および認識部(6)に
ついては、その詳細について既に提案されている公知で
あったり、あるいは、ディジタル処理から容易に類推で
きるものであることからその説明を省略し、本発明の最
大の特徴部分である最大径抽出部(5)の具体的な処理
について第2図乃至第5図を用いて詳細に説明する。
Among the elements constituting this embodiment, the image capture unit (1)
, the binarization unit (2), the run-length address data creation unit (3), the circumscribed rectangle extraction unit (4), and the recognition unit (6), the details of which have already been proposed or known, or Since it can be easily inferred from digital processing, its explanation will be omitted, and the specific processing of the maximum diameter extraction section (5), which is the most distinctive part of the present invention, will be explained using FIGS. 2 to 5. Explain in detail.

先ず、第2図に示したように、認識対象物の2値画像(
10)が0〜lOで示したX座標と、0〜9で示したY
座標とで表わし得る点の集合として太線で囲まれた形状
を有している。外接四角形抽出部(4)がこの2値画像
(10)の外接四角形(11)を求めたとすれば、最大
径抽出部(5)は中央部の点(9)の座i(5,5)を
求める。
First, as shown in Figure 2, a binary image (
10) is the X coordinate indicated by 0 to lO and the Y coordinate indicated by 0 to 9.
It has a shape surrounded by thick lines as a set of points that can be represented by coordinates. If the circumscribed rectangle extraction unit (4) finds the circumscribed rectangle (11) of this binary image (10), the maximum diameter extraction unit (5) calculates the locus i (5, 5) of the central point (9). seek.

次に、第3図(a)  に示すように、中央部の点(9
)を通り傾きθ=0°であるX軸に平行な直線(12a
)を設定する(画素を点と見做したことに対応して真直
ぐな画素列を直線と見做す)。続いて、2値画像(10
)の外周点列から直線(12a)に対して垂線を下ろし
、直線(12a)を境にして正側と負側で各々垂線の長
さを求め、正の側で最大になる外周点の座標(2,O)
、(3,O)と、負の側で最大になる外周点の座標(2
,9)、(39)を求めて記憶する。
Next, as shown in Figure 3(a), point (9) in the center
) and parallel to the X-axis with an inclination θ=0° (12a
) (corresponding to the fact that pixels are regarded as points, a straight pixel row is regarded as a straight line). Next, a binary image (10
) Drop a perpendicular line to the straight line (12a) from the line (12a), find the length of each perpendicular on the positive and negative sides of the straight line (12a), and find the coordinates of the peripheral point that is maximum on the positive side. (2, O)
, (3, O) and the coordinates (2
, 9), and (39) are determined and stored.

次に、第3図(b)  に示すように、点(9)を中心
として回転させた傾きθ=45°の直線(12b)を設
定し、上述した同様に、2値画像(10)の外周点列か
ら直線(12b)に対して垂線を下ろし、正側と負側で
その長さを求めると共に、正の側で最大になる外周座標
(2,O)と、負の側で最大になる外周点の座1(10
,8)と求めて記憶する。
Next, as shown in Figure 3(b), a straight line (12b) rotated around point (9) with an inclination θ = 45° is set, and in the same manner as described above, the binary image (10) is Drop a perpendicular line to the straight line (12b) from the outer circumference point sequence, find its length on the positive side and negative side, and find the outer circumference coordinate (2, O) that is maximum on the positive side and maximum on the negative side. Locus 1 (10
, 8) and memorize it.

次に、第3図(C) に示すように、点(9)を中心と
して回転させた傾きθ=90°の直線(12c)を設定
し、上述したと同様にして、正の側で最大になる外周点
の座標(0,3)、(0,4)、(05)、(o、s)
と負の側で最大になる外周点の座! (10,7) 、
  (10,8)とを求めて記憶する。
Next, as shown in Figure 3 (C), set a straight line (12c) rotated around point (9) with an inclination θ = 90°, and do the same thing as above to find the maximum value on the positive side. The coordinates of the outer peripheral point are (0, 3), (0, 4), (05), (o, s)
And the location of the peripheral point that is maximum on the negative side! (10,7),
(10, 8) and store it.

次に、第3図(d)に示すように、点(9)を中心とし
て回転させた傾きθ;135°の直線(12d)を設定
し、上述したと同様にして、正の側で最大になる外周点
の座標(6,2)、(8,4)と、負の側で最大になる
外周点の座標(2,9)とを求めて記憶する。
Next, as shown in Fig. 3(d), set a straight line (12d) rotated around point (9) with an inclination θ of 135°, and do the same as described above to obtain the maximum value on the positive side. The coordinates (6, 2), (8, 4) of the outer circumferential point where the values are, and the coordinates (2,9) of the outer circumferential point that are maximum on the negative side are determined and stored.

以上のようにして求められた点は認識対象物の最大径を
与える候補点の集合となる。第4図にこれらの候補点を
一覧図表として示す。
The points obtained in the above manner become a set of candidate points that give the maximum diameter of the recognition target. FIG. 4 shows a list of these candidate points.

次に、最大径抽出部(5)は第4図中の候補点から順次
2個を選択して2点間の距離を演算し、その内の最大距
離を最大径と決定する。この場合、最大径を与える点は
(2,O)と(10,8)である。
Next, the maximum diameter extraction section (5) sequentially selects two candidate points in FIG. 4, calculates the distance between the two points, and determines the maximum distance among them as the maximum diameter. In this case, the points giving the maximum diameter are (2,O) and (10,8).

以上の演算操作により、物体認識における重要な特徴量
を、従来の手法と比較して所要時間を1局に短縮するこ
とができ、その分だけ高速に算出される。
Through the above calculation operations, it is possible to reduce the time required for calculating important feature quantities in object recognition to one test compared to conventional methods, and the calculation speed is correspondingly faster.

なお、上記実施例では、従来装置と同しく最大径という
特徴量を求めたが、この手法によれはフエレ径という特
徴量も同時に求められる。このフェレ径とは、第2図に
おける外接四角形(11)のX方向幅及びY方向幅を言
う。
Note that in the above embodiment, the feature quantity of the maximum diameter was obtained as in the conventional apparatus, but according to this method, the feature quantity of the Feer diameter can also be obtained at the same time. The Feret diameter refers to the width in the X direction and the width in the Y direction of the circumscribed rectangle (11) in FIG. 2.

しかして、この実施例においては、認識対象物のフェレ
径を求めるに際して、傾きを指定してその傾きに対する
フェレ径を求めることができる。
Therefore, in this embodiment, when determining the Feret diameter of the recognition target, it is possible to specify an inclination and determine the Feret diameter corresponding to the inclination.

つまり、第5図における2値画像の外周点列より直線(
12d) に下ろした垂線の正方向と負方向の最大長が
直線(12d)に対して垂直のフェレ径となる。また、
直線(12d)  に対して垂直の直線(13)を設定
し、2値画像の外周点列より直線(13)に下ろした垂
線の正方向と負方向の最大長か直線(12d)に対する
水平方向フェレ径(14)となる。
In other words, a straight line (
12d) The maximum length in the positive and negative directions of the perpendicular line drawn to (12d) becomes the Feret diameter perpendicular to the straight line (12d). Also,
Set a straight line (13) perpendicular to the straight line (12d), and determine the maximum length in the positive and negative directions of the perpendicular line drawn from the outer peripheral point sequence of the binary image to the straight line (13), or the horizontal direction to the straight line (12d). The Feret diameter is (14).

なおまた、上記実施例では、外接四角形の中央部の点を
通り、互いに45°たけずれた4本の直線を設定し、こ
れらの直線に対して距離か最大になる外周点を求めたが
、認識対象物の形状が単純である場合には互いに60°
たけずれた3本の直線を設定して同様な演算をすればよ
く、さらに、認識対象物が極めて複雑である場合には互
いに30°だけずれた6本の直線を設定して同様な演算
をすればよい。
Furthermore, in the above example, four straight lines passing through the center point of the circumscribed rectangle and offset by 45 degrees from each other were set, and the outer peripheral point at which the distance from these straight lines was the maximum was found. If the shape of the recognition target is simple, the angle is 60° to each other.
All you have to do is set three straight lines that are offset from each other and perform the same calculation. Furthermore, if the recognition target is extremely complex, you can set six straight lines that are offset by 30 degrees from each other and perform the same calculation. do it.

〔発明の効果〕〔Effect of the invention〕

以上の説明によって明らかなように、本発明によれば、
物体認識における重要な特微量である最大径を高速にて
求めることができると共に、フェレ径という特微量も同
時に求められるという効果がある。
As is clear from the above description, according to the present invention,
This method has the advantage that the maximum diameter, which is an important feature quantity in object recognition, can be determined at high speed, and the feature quantity called Feret diameter can also be obtained at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の構成を示すブロック図、
第2図は同実施例で最大径を求めるための2値画像例を
示す図、第3図(a)〜(d)は同実施例で最大径を求
める具体的手法を説明するための説明図、第4図は同実
施例で最大径を求めるために抽出した候補点の一覧図表
、第5図は同実施例で最大径を求める過程で同時に求め
られるフエレ径の説明図、第6図は従来の物体認識装置
に採用されている最大径を求める手法を説明するための
説明図である。 1):画像取込み部 2):2値化部 3):ランレングスアトレスデータ作成部4)・外接四
角形抽田部 5 、最大径抽出部 (6:u識部 (9:中央部の画素 (10) : 2値画像 (11) :外接四角形 (12a) 〜(12d)  :直線 (14) 、 (15)  ・フェレ径なお、各図中、
同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.
Figure 2 is a diagram showing an example of a binary image for determining the maximum diameter in the same example, and Figures 3 (a) to (d) are explanations for explaining a specific method for determining the maximum diameter in the same example. Figure 4 is a list of candidate points extracted to determine the maximum diameter in the same example, Figure 5 is an explanatory diagram of the Fuerre diameter that is simultaneously determined in the process of determining the maximum diameter in the same example, and Figure 6 FIG. 2 is an explanatory diagram for explaining a method for determining the maximum diameter employed in a conventional object recognition device. 1): Image capture unit 2): Binarization unit 3): Run length address data creation unit 4), circumscribed rectangle extraction unit 5, maximum diameter extraction unit (6: u identification unit (9: central pixel ( 10): Binary image (11): Circumscribed rectangle (12a) to (12d): Straight line (14), (15) - Feret diameter In each figure,
The same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 認識対象物の画像データを取込む手段と、この画像デー
タを2値化する手段と、2値化した時のランレングスデ
ータのアドレスを算出する手段と、このアドレスより2
値画像の外接四角形を算出する手段と、この外接四角形
の中央部の点を通り、互いに所定の角度だけずれた複数
の直線を設定し、これらの直線から前記2値画像の各外
周点までの距離を算出すると共に、前記直線を境にして
前記距離が正の側に最大になる外周点と負の側に最大に
なる外周点とを前記直線毎に求め、かつ、これらの外周
点の相互距離を算出して、最大のものを前記2値画像の
最大径と決定する手段と、この最大径に基づいて前記認
識対象物を判定する手段とを備えたことを特徴とする物
体認識装置。
A means for capturing image data of a recognition target, a means for binarizing this image data, a means for calculating an address of run length data when binarized, and a means for calculating an address of run length data from this address.
A means for calculating a circumscribed rectangle of a value image, a plurality of straight lines passing through a point in the center of this circumscribed rectangle and deviated from each other by a predetermined angle, and calculating a distance from these straight lines to each peripheral point of the binary image. In addition to calculating the distance, for each straight line, find the outer circumferential point where the distance is maximum on the positive side and the outer circumferential point where the distance is maximum on the negative side with the straight line as a boundary, and calculate the mutual relationship between these outer circumferential points. An object recognition device comprising: means for calculating distances and determining the maximum distance as the maximum diameter of the binary image; and means for determining the recognition target based on the maximum diameter.
JP12638890A 1990-05-16 1990-05-16 Device for recognizing object Pending JPH0421193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12638890A JPH0421193A (en) 1990-05-16 1990-05-16 Device for recognizing object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12638890A JPH0421193A (en) 1990-05-16 1990-05-16 Device for recognizing object

Publications (1)

Publication Number Publication Date
JPH0421193A true JPH0421193A (en) 1992-01-24

Family

ID=14933907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12638890A Pending JPH0421193A (en) 1990-05-16 1990-05-16 Device for recognizing object

Country Status (1)

Country Link
JP (1) JPH0421193A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198202B1 (en) 1994-08-04 2001-03-06 Canon Kabushiki Kaisha Vibration actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198202B1 (en) 1994-08-04 2001-03-06 Canon Kabushiki Kaisha Vibration actuator

Similar Documents

Publication Publication Date Title
JPH03294976A (en) Reference mark pattern detecting device
JPH0810132B2 (en) Target pattern rotation angle detection method
JPH0421193A (en) Device for recognizing object
JP3627249B2 (en) Image processing device
JPH065545B2 (en) Figure recognition device
JPS5946036B2 (en) Multiple pattern recognition device
JP2001243479A (en) Method and device for image processing and recording medium having image processing program recorded thereon
JPH08202878A (en) Picture processor
JP3109237B2 (en) Line segment constituent pixel extraction method and line segment judgment method in image
JP2959017B2 (en) Circular image discrimination method
JPH0624028B2 (en) Position measurement method of feature point corners for pattern recognition
JP3080097B2 (en) Parallel line figure extraction method
JPH08194825A (en) Outline information extracting device
JPH0410074A (en) Picture pattern inclination detecting method
JPH041282B2 (en)
JPH02179401A (en) Measuring method of object
JPS616776A (en) Recognizing device of two-dimensional sight
JPH0731733B2 (en) Rectangle detector
JPH03158709A (en) Recognizing device for solid body shape
JPH07104137B2 (en) Method of detecting the rotation angle of the target pattern
JPH10275238A (en) Recognition method for fringe part of object
JPH06309463A (en) Real time shape recognizing device
JPS63250783A (en) Detector for object in image
JPS60179883A (en) Recognizing method of approximately circular outline
JPS61294985A (en) Detecting device for rotation slippage