JPH02179401A - Measuring method of object - Google Patents
Measuring method of objectInfo
- Publication number
- JPH02179401A JPH02179401A JP63335433A JP33543388A JPH02179401A JP H02179401 A JPH02179401 A JP H02179401A JP 63335433 A JP63335433 A JP 63335433A JP 33543388 A JP33543388 A JP 33543388A JP H02179401 A JPH02179401 A JP H02179401A
- Authority
- JP
- Japan
- Prior art keywords
- image
- contour line
- contour
- binary
- determined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 239000000470 constituent Substances 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 claims description 2
- 230000005484 gravity Effects 0.000 abstract description 8
- 238000001514 detection method Methods 0.000 abstract description 6
- 238000005259 measurement Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 4
- 230000036544 posture Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Image Analysis (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は物体の計測方法に係り、詳しくは、対象物体の
任意の部分の長さを計測するのに好適な物体の計測方法
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring an object, and more particularly, to a method for measuring an object suitable for measuring the length of an arbitrary part of a target object.
ロボットビジョンシステムなどにおける画像処理では、
ITVカメラで撮像した対象物体の位置や姿勢が変化し
た場合でも、対象物体の特定部分を見つけて、その長さ
を計測したいという要求がある。この種の従来技術とし
ては、I ’I’ Vカメラで撮影して得られる入力画
像の2値化画像について、予め定めた幾何学的関係にも
とづいて線分を引き、対象物体の特定部分の長さを求め
る方法が一般に知られている。Image processing in robot vision systems, etc.
There is a demand for finding a specific part of a target object and measuring its length even if the position or orientation of the target object imaged by an ITV camera changes. This type of conventional technology involves drawing line segments based on predetermined geometric relationships on a binary image of an input image obtained by photographing with an I'I'V camera, and identifying specific parts of the target object. Methods for determining length are generally known.
上記従来方法でも、ITVカメラで撮影された画面内に
一つの対象しか存在しない場合や、ノイズが全くない場
合には問題がない、しかし、画面内に複数の対象が存在
したり、ノイズがある場合には、線分を引いて輪郭部と
の交点を見つけた時に、その交点が現在検出しようとし
ている対象との交点であるか、他の対象との交点である
のか、更に、ノイズとの交点であるのか全く区別がつか
ず、誤検出する恐れがあった。Even with the above conventional method, there is no problem when there is only one object in the screen taken by the ITV camera or there is no noise at all.However, if there are multiple objects in the screen or there is noise. In this case, when you draw a line segment and find the intersection with the contour, you need to know whether the intersection is with the object you are currently trying to detect or with another object, and whether it is an intersection with noise. It was impossible to distinguish whether it was an intersection or not, and there was a risk of false detection.
本発明の目的は、対象の位置や姿勢が変化した場合でも
、画面内の複数の対象について、指定した特定部分の長
さを忠実に求める方法を提供することにある。An object of the present invention is to provide a method for faithfully determining the length of a designated specific portion of a plurality of objects within a screen, even when the positions and postures of the objects change.
上記目的を達成するために本発明では、ITVカメラ等
の撮像装置からの入力画像を処理して対象の輪郭線を抽
出し、該輪郭線の構成画素に、各対象の輪郭線毎に異っ
た番号を付与した輪郭線画像を作成し、該輪郭線画像上
で、計測すべき対象の重心位置等を基準にして線分を引
き、該線分と輪郭線との交点のうち、a′目IIIすべ
き対象と同じ番号の輪郭線の交点の座標のみを求め、該
座標から計測すべき対象の特定部分の長さを求めること
を特徴とする。In order to achieve the above object, the present invention processes an input image from an imaging device such as an ITV camera to extract a contour line of a target, and sets the constituent pixels of the contour line differently for each contour line of each target. Create a contour image with a number given to it, draw a line segment on the contour image based on the center of gravity of the object to be measured, etc., and draw a' among the intersections of the line segment and the contour line. The method is characterized in that only the coordinates of the intersection of contour lines having the same number as the object to be measured are determined, and the length of a specific portion of the object to be measured is determined from the coordinates.
対象毎に番号の付いた輪郭線画像を作成し、所謂定規の
役割を果す線分を該輪郭線画像上に引き、これと輪郭線
との交点のうち、現在検出中の対象と同じ番号の輪郭線
の交点の座標のみを有効とする。これにより、線分を引
いて輪郭線と交叉した時、その交点が現在計測すべき対
象の交点であるか、他の対象やノイズの交点であるのか
区別することができ、I T Vカメラ等で撮影して得
られる画面内に複数の対象やノイズが存在している場合
でも、誤検出の恐れがなくなる。Create a numbered contour image for each object, draw a line segment that serves as a so-called ruler on the contour image, and draw a line segment with the same number as the object currently being detected among the intersections between this and the contour line. Only the coordinates of the intersection of contour lines are valid. With this, when a line segment is drawn and intersects with the contour line, it is possible to distinguish whether the intersection point is the intersection of the current object to be measured or the intersection of another object or noise. This eliminates the risk of false detection even when multiple objects or noise are present in the image captured by the camera.
以下、本発明の一実施例について図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図に本発明の一実施例のフローチャー1−を示す。FIG. 1 shows a flowchart 1- of an embodiment of the present invention.
第1図では、対象の重心回りに一定の角度おきに線分を
引く場合を示したが、このように対象の重心を用いるこ
とにより、対象の位置や姿勢によらずに計Lil1lを
行うことができる。なお、重心の他に、対象の慣性主軸
の方向などを用いてもよい。Figure 1 shows the case where line segments are drawn at constant angles around the center of gravity of the object, but by using the center of gravity of the object in this way, it is possible to perform the total Lil1l regardless of the position or posture of the object. Can be done. Note that in addition to the center of gravity, the direction of the principal axis of inertia of the object may be used.
第2図は本発明の計d1す方法を実現するハードウェア
の概略構成を示したものである。ITVカメラ100は
対象物体を撮影して画像情報を入力する。通常、この種
のITVカメラ100で撮影して得られる画面内には、
複数の対象やノイズが存在する。2値化回路101は、
人力された画像情報の黒画素はII I 11、白画素
は′0″に2値化する回路である。処理装置102は所
n’+I CP Uであり、こぎでは第1図におけるス
テップ13以降の処理を実行する。データメモリ103
はRA M等で構成され、2値化された入力画像情報や
輪郭線画像情報を格納する他、処理装置102での処理
の途中結果データなどを格納するのに使用されるプログ
ラムメモリ104はROM等で構成され、処理装置10
2の処理で必要とするプログラム類を保持してい、る。FIG. 2 shows a schematic configuration of hardware for realizing the method of calculating d1 of the present invention. The ITV camera 100 photographs a target object and inputs image information. Usually, in the screen obtained by shooting with this type of ITV camera 100,
There are multiple objects and noises. The binarization circuit 101 is
This is a circuit that binarizes the black pixels of the manually inputted image information into II I 11 and the white pixels into '0'. Data memory 103
The program memory 104 is composed of a RAM, etc., and is used to store binary input image information and contour image information, as well as intermediate result data of processing in the processing device 102. etc., and the processing device 10
It holds the programs required for the process in step 2.
以下に、第1図のフローチャートにおける処理について
詳述する。The processing in the flowchart of FIG. 1 will be described in detail below.
ITVカメラ100からの入力画像情報は2値化回路1
01で2値画像情報(以下、単に2値画像という)に変
換され、データメモリ103に格納される(ステップ1
1.12)。このデータメモリ103に格納された2値
画像を用いて、処理装置102では以下の処理が実行さ
れる。Input image information from the ITV camera 100 is input to the binarization circuit 1
01, it is converted into binary image information (hereinafter simply referred to as a binary image) and stored in the data memory 103 (step 1
1.12). Using the binary image stored in the data memory 103, the processing device 102 executes the following processing.
まず、2値画像をラスクスキャンして、黒画素から白画
素もしくは白画素から黒画素への変化点(輪郭部)を検
出し1輪郭線画像を得る(ステップ13)。輸ψζ線画
像は1輪郭部の黒画素もしくは白画素のみを″“1″、
それ以外はすべて1101+とすることで表わされる。First, a binary image is rask-scanned to detect a change point (outline part) from a black pixel to a white pixel or from a white pixel to a black pixel to obtain one outline image (step 13). In the transverse ζ line image, only black pixels or white pixels in one contour are set to ``1''.
All other values are represented by 1101+.
通常、IT■カメラ100で撮影して得られる入力画像
(画面)には1Mi数個の対象やノイズが存在する。そ
こで、得ら才すた輪郭線画像における複数個の対象やノ
イズをそれぞれ分離する(ステップ14)。これは、軸
郭線画像の輪郭部を構成する画素(即ち、II 111
の画素)を追跡して、閉ループとなる輪郭線を順次探索
し、各閉ループを構成する輪郭線の画素群に、例えば見
つかった閉ループ順に番号を割り当てることで実現する
。なお、輪郭線の探索の際、その長を算出しながら行い
、閉ループとなる輪郭線の中で、予め定めた閾値よりも
輪郭線の長さが短かいものをノイズとして除去する。第
33図は入力画像に3個の対象が存在するとき、各対象
を分離して得られる輪郭線画像の一例を示したものであ
る。Normally, an input image (screen) obtained by photographing with the IT camera 100 includes several objects and noise of 1Mi. Therefore, a plurality of objects and noises in the obtained contour image are separated (step 14). This is the pixel that constitutes the contour part of the axis contour image (i.e., II 111
This is achieved by tracing the contours that form a closed loop sequentially, and assigning numbers to the pixel groups of the contours forming each closed loop, for example, in the order of the found closed loops. Note that the contour search is performed while calculating its length, and among contour lines forming a closed loop, those whose length is shorter than a predetermined threshold are removed as noise. FIG. 33 shows an example of a contour image obtained by separating each object when there are three objects in the input image.
次に、第3図に示すように、各対象の11−郭線毎に異
なる番号の付加された輪郭線画像について、計i11!
lすべき対象の位置や姿勢を表わす幾何学的特徴を抽出
する(ステップ15)、こNでは、計測すべき対象の重
心位置を検出するとしたが、対象の慣性主軸の方向など
でもよい。次に、角度θを0に初期設定した後(ステッ
プ16)、この計測すべき対象の重心回りに一定の角度
Δ0(例えば10°)おきに所定長の線分を引き、対象
の輪郭線に至る距離を計測する(ステップ17〜20)
。Next, as shown in FIG. 3, a total of i11! contour images with different numbers added for each 11-contour line of each object!
Geometric features representing the position and orientation of the object to be measured are extracted (step 15).In this step, the center of gravity of the object to be measured is detected, but the direction of the principal axis of inertia of the object may also be detected. Next, after initially setting the angle θ to 0 (step 16), line segments of a predetermined length are drawn at constant angles Δ0 (for example, 10°) around the center of gravity of the object to be measured, and the outline of the object is Measure the distance (steps 17-20)
.
第4図はこれを説明する図で、Gが重心、aが線分の長
さを示している。二へで、線分2は所謂定規の役割を果
すものであるが、この線分を第3図に示すような+16
郭線画像上で引き、これと輪郭線とが交叉した時、現在
計819すべき対象の番号の輪郭線の交点の座標のみを
求め、それら交点間の距離を算出する(ステップ18)
、これにより、対象毎の計測データが得られる。距離計
測は、角度0が360°に達すると終了とする(ステッ
プ19)。なお、求めたデータは物体の形状識別等に用
いられるが、これは本発明の目的とするところでないの
で、説明を省略する。FIG. 4 is a diagram for explaining this, in which G indicates the center of gravity and a indicates the length of the line segment. 2, line segment 2 plays the role of a so-called ruler, and this line segment is +16 as shown in Figure 3.
When this is drawn on the contour image and the contour line intersects with the contour line, only the coordinates of the intersection point of the contour line of the target number currently to be 819 are determined, and the distance between these intersection points is calculated (step 18).
, This allows measurement data for each object to be obtained. The distance measurement ends when the angle 0 reaches 360° (step 19). Note that the obtained data is used for identifying the shape of the object, etc., but since this is not the purpose of the present invention, the explanation will be omitted.
以上説明したように、本発明によれば、対象毎に番号の
付いた輪郭線画像を作成しておき1輪郭線画像上に線分
を引いて輪郭線との交点を求める時、現在検出中の対象
と同じ番号の輪郭線の交点座標のみを求めるので、IT
Vカメラ等で撮影された画面内に複数の対象が存在した
場合にも、誤検出の恐れが全くなくなる。As explained above, according to the present invention, a numbered contour image is created for each object, and when a line segment is drawn on one contour image to find the intersection with the contour, the current detection Since only the intersection coordinates of the contour lines with the same number as the object are calculated, IT
Even if there are multiple objects in a screen photographed with a V-camera or the like, there is no possibility of false detection.
第1図は本発明の物体の計測方法の一実施例を説明する
ためのフローチャート、第2図は本発明方法を実現する
ハードウェアの概略構成を示す図。
第:3図は対象毎に番号の付いた輪郭線画像の一例を示
す図、第4図は輪郭線画像上での線分の引き方の一例を
示す図である。
100・・・ITVカメラ、 101・・・2値化回
路、102・・・処理装置、 103・・・データメ
モリ、104・・・プログラムメモリ。
第1図
σジFIG. 1 is a flowchart for explaining an embodiment of the object measuring method of the present invention, and FIG. 2 is a diagram showing a schematic configuration of hardware for realizing the method of the present invention. FIG. 3 is a diagram showing an example of a contour image in which each object is numbered, and FIG. 4 is a diagram showing an example of how to draw line segments on the contour image. 100... ITV camera, 101... Binarization circuit, 102... Processing device, 103... Data memory, 104... Program memory. Figure 1 σji
Claims (1)
を抽出し、該輪郭線の構成画素に、各対象の輪郭線毎に
異った番号を付与した輪郭線画像を作成し、該輪郭線画
像上で線分を引き、該線分と輪郭線との交点のうち、計
測すべき対象と同じ番号の輪郭線の交点の座標のみを求
め、該座標から計測すべき対象の特定部分の長さを求め
ることを特徴とする物体の計測方法。(1) Processing the input image from the imaging device to extract the contour of the object, and creating a contour image in which the constituent pixels of the contour are given different numbers for each contour of the object, A line segment is drawn on the contour image, and among the intersections between the line segment and the contour line, only the coordinates of the intersection point of the contour line with the same number as the object to be measured are determined, and the object to be measured is identified from the coordinates. A method of measuring an object characterized by finding the length of a part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63335433A JPH0715371B2 (en) | 1988-12-29 | 1988-12-29 | Object measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63335433A JPH0715371B2 (en) | 1988-12-29 | 1988-12-29 | Object measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02179401A true JPH02179401A (en) | 1990-07-12 |
JPH0715371B2 JPH0715371B2 (en) | 1995-02-22 |
Family
ID=18288507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63335433A Expired - Lifetime JPH0715371B2 (en) | 1988-12-29 | 1988-12-29 | Object measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0715371B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6404922B1 (en) | 1998-05-15 | 2002-06-11 | Nec Corporation | Curve length measuring device and measuring method therefore and storage medium which stores control program for measuring length of curve |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60138405A (en) * | 1983-12-27 | 1985-07-23 | Mitsubishi Electric Corp | Circumferential length measuring instrument |
-
1988
- 1988-12-29 JP JP63335433A patent/JPH0715371B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60138405A (en) * | 1983-12-27 | 1985-07-23 | Mitsubishi Electric Corp | Circumferential length measuring instrument |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6404922B1 (en) | 1998-05-15 | 2002-06-11 | Nec Corporation | Curve length measuring device and measuring method therefore and storage medium which stores control program for measuring length of curve |
Also Published As
Publication number | Publication date |
---|---|
JPH0715371B2 (en) | 1995-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10430650B2 (en) | Image processing system | |
US5793901A (en) | Device and method to detect dislocation of object image data | |
JPH03294976A (en) | Reference mark pattern detecting device | |
JP2003244521A (en) | Information processing method and apparatus, and recording medium | |
JPS60179881A (en) | Recognizing method of approximately circular outline | |
JPH02179401A (en) | Measuring method of object | |
CN114998743A (en) | Method, device, equipment and medium for constructing visual map points | |
JP3627249B2 (en) | Image processing device | |
JPH0875454A (en) | Range finding device | |
JPH065545B2 (en) | Figure recognition device | |
JP2000194861A (en) | Method and device for recognizing image | |
JPH06201715A (en) | Moving object detecting device | |
JP2897612B2 (en) | Work detection method | |
JP2959017B2 (en) | Circular image discrimination method | |
KR960001753B1 (en) | Directionally characteristic recognition system by binary image | |
JP2787149B2 (en) | 3D shape recognition device | |
JPH0624028B2 (en) | Position measurement method of feature point corners for pattern recognition | |
JPS6247512A (en) | Three dimensional position recognizing device | |
JP2000182056A (en) | Picture processor | |
JPS58158761A (en) | Pattern position detecting method | |
JPH06241749A (en) | Visual line intersection extracting device | |
CN118918048A (en) | Image correction method, device, computer equipment and storage medium | |
JPS62221077A (en) | Pattern detector | |
JPH05113315A (en) | Detecting method for center position of circular image data | |
JPS59108907A (en) | Position detecting device for three dimensional body |