JPH04211931A - Composite elastic material - Google Patents

Composite elastic material

Info

Publication number
JPH04211931A
JPH04211931A JP3035049A JP3504991A JPH04211931A JP H04211931 A JPH04211931 A JP H04211931A JP 3035049 A JP3035049 A JP 3035049A JP 3504991 A JP3504991 A JP 3504991A JP H04211931 A JPH04211931 A JP H04211931A
Authority
JP
Japan
Prior art keywords
gel
elastic material
composite elastic
elastic
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3035049A
Other languages
Japanese (ja)
Other versions
JP3022996B2 (en
Inventor
Yuichi Ishino
裕一 石野
Yoshiki Fukuyama
良樹 福山
Tasuku Saito
翼 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of JPH04211931A publication Critical patent/JPH04211931A/en
Application granted granted Critical
Publication of JP3022996B2 publication Critical patent/JP3022996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a composite elastic material having changeable viscoelastic property. CONSTITUTION:A composite elastic material having changeable viscoelastic property corresponding to the strength of an electric field to be applied to the material is provided. Sheetlike elastic bodies where elastic layers are provided on the surfaces and they possess electric insulation property are combined into at least one set so that those electrode layers are faced directly on each other at intervals. The title material possesses structure where an electrically viscous liquid or an electric responding gel is enclosed in a space between the electrode layers facing on each other.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は粘弾性特性が可変可能な
複合弾性材料に関するものである。 【0002】 【従来の技術】従来、制振・防振材料として使用される
弾性材料は損失係数が高く弾性率が所望の値を持つこと
が望まれ、この特性を有する高分子材料や高分子材料を
構成要素として持つ複合弾性材料が検討されて来た。こ
のような従来の弾性材料において、弾性率及び損失係数
は材料固有のものであり、一端材料が決まってしまえば
動かし得ない特性であった。 【0003】 【発明が解決しようとする課題】しかし、このような材
料に固有であり動かし得ない弾性率や損失係数を持つ弾
性材料を制振・防振材料として系に用いた振動系におい
て、固有振動数は振動系における質量が一定であれば変
えることはできないため、固有振動数近くの入力に対し
ては著しく制振・防振材料としての性能が悪くなる。こ
の観点から入力の周波数に応じて弾性率や損失係数を変
えられれば振動系の固有振動数や伝達関数も変えられる
ため、制振・防振材料の周波数特性が著しく改善できる
。 【0004】こうした観点から、本発明者らは電気粘性
流体が電場の強さに応じて流体の粘性(ビンガム流体に
おける見かけの粘度)を可変できること、または電気応
答性ゲルが電場の強さに応じて複素弾性率を可変できる
ことに着目し、電気粘性流体を封入した複合弾性材料は
電場の強さに応じて粘弾性特性を変化できるため、入力
の周波数に応じて振動系の固有振動数や伝達関数を変化
することができる優れた制振材料となるものと考え本発
明に至った。 【0005】 【課題を解決するための手段】本発明は印加する電場の
強さに応じて粘弾性特性を可変可能な複合材料の提供を
目的としたもので、表面に電極層が設けられた電気絶縁
性を有するシート状弾性体が少なくとも一組、それらの
電極層同士が間隔を置いて直接対向するように組み合わ
され、対向する電極層と電極層との間に電気粘性流体ま
たは電気応答性ゲルが封入された構造を有することを特
徴とする複合弾性材料により、この目的を達成した。 【0006】本発明の複合弾性材料の基本的な構成を添
付図面により説明すると、図1に示すように、表面に電
極層2が設けられた電気絶縁性を有するシート状弾性体
1が一組、それらの電極層同士が間隔を置いて直接対向
するように組み合わされ、対向する電極層2と電極層2
との間に電気粘性流体または電気応答性ゲル3が封入さ
れている。すなわち、電気絶縁性弾性体層−電極層−電
気粘性流体層または電気応答性ゲル層−電極層−電気絶
縁性弾性体層というように積層されたものであり、電圧
の印加は対抗する電極の一方に直流又は交流電源を接続
し、またもう一方の電極を接地することにより行われる
。本発明の実施態様としては、図2に示すように、多重
積層構造とすることも出来るが、この場合も電気粘性流
体層又は電気応答性ゲル層をはさんで対抗する電極の一
方は電源を接続し、もう一方の電極は接地する必要があ
る。 【0007】各層の厚さは電気絶縁性弾性体のヤング率
、電気粘性流体の粘度、電気粘性効果の強さと複合材料
に要求される粘弾性変化により設定されるが、電極層の
厚みはなるべく薄い方が好ましい。 【0008】また電気粘性流体を封入するために、複合
弾性材料の端部はシリコーンゴムなどの電気絶縁性が高
くヤング率の低いエラストマーなどのシール材4でシー
ルされている必要がある。また電気応答性ゲルを封入す
る場合は、電気応答性ゲルが流動性を有しないため、シ
ール材4は基本的には必要としないが、電気応答性ゲル
の変質劣化を防ぐ目的でシール材4はあったほうが望ま
しい。また対向する電極が外力によって接触する可能性
のある場合は端部だけではなく中間部にも部分的に電気
絶縁性を有する弾性体よりなるスペーサーを設けるのが
良い。 【0009】本発明において用いる電気絶縁性を有する
弾性体としては、体積固有抵抗が1010Ω・cm以上
あり且つヤング率が105 Pa以上ある高分子からな
る材料が好ましく、高分子としてはポリ塩化ビニル、ポ
リエチレンなどの熱可塑性樹脂、フェノール樹脂、メラ
ミン樹脂などの熱硬化性樹脂、天然ゴム、合成ゴムなど
のエラストマー及びこれらの混合物が例示され、更にこ
れらの高分子材料にガラス繊維や炭素繊維などの繊維、
カーボンブラック、炭カルなどの充填剤、その他、酸化
防止剤などの添加剤を充填した複合材料などが例示され
る。 【0010】電極層としては、導電性が102 S/c
m以上ある材料からなることが好ましく、アルミニウム
、銅、ステンレス、真鍮などの金属材料、導電性高分子
、炭素系材料などが例示される。 【0011】電気粘性流体としては水分を吸収したポリ
アクリル酸リチウム、シリカなどの分散相をシリコーン
油、塩素化パラフィンなどの分散媒に分散させた水系電
気粘性流体が知られているが、水分の蒸発に伴ない電気
粘性効果が弱くなる欠点があり、本発明のような目的に
は好ましくない。 【0012】従って本発明において使用する電気粘性流
体としては、例えば本発明者らが先に提案した炭素質粉
末を分散相とした電気粘性流体(特願昭63−3235
69)に代表されるような水分を含まなくても機能する
非水系電気粘性流体を使用する方が好ましい。 【0013】また本発明で使用する電気応答性ゲルとは
、本発明者らが特願平2−284389号で開示したも
ののように、電場の印加により複素弾性率が変化できる
ゲル状物質である。 【0014】この電気応答性ゲルの機能発現の原理は電
気粘性流体の原理と似通っており、電場が印加された際
、電気絶縁性高分子重合体中の炭素質粒子は分極し、粒
子間に静電気力が働くことにより粒子間に引力が生じ、
粒子の再配列を伴いながらゲルの粘弾性特性が変化する
ことによるものと考えられる。電気粘性流体の場合との
差異は媒質の粘度が著しく大きいか、架橋されているこ
とによる。従って電気粘性流体の分散相粉体として機能
するものは電気応答性ゲルの機能を発現するため充填さ
れる粉体として基本的には使用できる。しかし、電気粘
性流体の場合に指摘されているように、シリカゲルやポ
リアクリル酸リチウム粉体のように水分が電気粘性流体
の機能発現に不可欠であるいわゆる水系電気粘性流体の
分散相として機能する粉体は、耐熱性、耐久性の点で、
本発明で使用する電気応答性ゲルにも好ましくない。 【0015】この点から、本発明者らが非水系電気粘性
流体に好適な分散相として知見したC/H比が1.2〜
5、好ましくは2〜4の炭素質粉末が、本発明で使用す
る電気応答性ゲルの場合にも好適である。 【0016】炭素質粉末を分散させる媒質は、部分的に
架橋された電気絶縁性高分子重合体または非架橋の電気
絶縁性高分子重合体であり、炭素質粉末を分散させた電
気応答性材料とした場合、いずれも流動性が著しく小さ
くなり固体状態になるものが用いられる。 【0017】すなわち、部分的に架橋された電気絶縁性
高分子重合体としては、室温における針入度40(JI
S K2220による)以上、好ましくは60〜120
のもので、体積抵抗率が1012Ω・cm以上、好まし
くは1013〜1016Ω・cmを示すものが用いられ
る。 【0018】このようにして得られた電気応答性ゲルに
接触して設けられた電極に電場を印加することにより粘
弾性特性を変化させることができる。電場を印加しない
状態での弾性率が低い(104 dyne/cm2 〜
106 dyne/cm2 )材料では電場の印加によ
り弾性率が大きく上昇し、また電場を印加しない状態で
の弾性率が高い(106 dyne/cm2 以上)材
料では電場の印加によりtan δが大きく増加する。 【0019】 【作用】本発明の複合弾性材料における対向する電極間
に電圧を印加すると、その電圧に応じて封入された電気
粘性流体の粘性が変化する。その結果、そのような電気
粘性流体を構成要素とする複合弾性材料の粘弾性特性が
変化する。また電気応答性ゲルの場合は電圧に応じて電
気応答性ゲルの複素弾性率が変化するため、その結果電
気応答性ゲルを構成要素とする複合弾性材料の粘弾性特
性が変化する。 【0020】以下実施例により説明するが、本発明は以
下の実施例により何ら制約を受けるものではない。 【0021】 【実施例1】電気絶縁性を有するシート状弾性体として
長さ300mm、幅50mm、厚さ0.5mmの塩化ビ
ニルシートを2枚用いた。電極層としては長さ300m
m、幅50mm、厚さ0.1mmのアルミニウム箔を2
枚用いた。 【0022】電気粘性流体は以下の手順によって作製し
た。すなわち、コールタールを450℃で実質的に不活
性雰囲気中で熱処理し、得られた熱処理物をタール系中
油を使用し抽出・瀘過した。この抽出・瀘過残留物を5
00℃の温度、2リッター/分の窒素気流下で再熱処理
してC/H比が2.38の炭素質粉末を得た。かかる炭
素質粉末を更に粉砕後、風力分級機を使用して平均粒径
約3.5μmに調整した後、この炭素質粉末を室温での
粘度20cpのシリコーンオイルに約40重量%均一に
分散させ電気粘性流体を得た。 【0023】前記の塩化ビニルシート及びアルミニウム
箔をを重ね合せたものを2枚一組として第1図に示すよ
うに電極層(アルミニウム箔)同士が5mmの間隔を置
いて直接対向するように組み合わせ、対向する電極層と
電極層との間に前記電気粘性流体を封入した。電極層同
士の間隔を維持するため及び電気粘性流体を密封するた
め、複合弾性材料の端部は厚さ5mmのシリコーンゴム
で密封した。 【0024】作製された複合弾性材料の一端を固定し、
中間部(塩化ビニル)表面にストレインゲージを貼った
。ストレインゲージからの信号は増幅器を介してオシロ
スコープに導入した。電極に電圧を印加しながら固定さ
れていない複合材料のもう一端に衝撃を与えオシロスコ
ープ上に現われた自由減衰振動波形を解析し、複素弾性
率(E’,E”)、tanδの電場依存性を求めた。 測定結果を次に示す。 【0025】   電場(KV/mm)     E’(Pa)   
   E”(Pa)    tanδ      0 
          6.74×109     3.
20×109     0.47        0.
5         6.90×109     3.
63×109     0.50        0.
83        7.16×109     4.
32×109     0.60        1.
17        7.61×109     5.
46×109     0.72  【0026】上記
のように、本複合弾性材料は電場を印加するに従ってE
’は増加し、tanδも増加しており、制振性能に寄与
する材料の弾性率及び減衰率が電場によりコントロール
できる事を示している。 【0027】 【実施例2】実施例1における電気粘性流体の代わりに
以下に述べる電気応答性ゲルを用いた。コールタールを
450℃で実質的に不活性雰囲気中で熱処理した。得ら
れた熱処理物をタール中油を使用し抽出・瀘過し、抽出
・瀘過残留物を530℃の温度、2リッター/分の窒素
気流下で再加熱処理して炭素質粉末を得た。この炭素質
粉末の平均粒子径は18.8μm、C/H比は2.45
であった。この炭素質粉末50重量部を室温における針
入度80の2液タイプのシリコーンゲル(トーレ・ダウ
コーニングシリコーン社製SE1887、体積抵抗率:
4×1014Ω・cm)50重量部に分散、80℃で1
時間加熱し、電気応答性ゲルを得た。 【0028】電気応答性ゲルの部分以外は実施例1と同
様に作成した複合弾性材料について実施例1と同様な方
法により電圧印加時における粘弾性変化を測定したとこ
ろ、制振・防振性能に寄与する材料の弾性率及び減衰率
が電場によりコントロールできることが認められた。 【0029】 【発明の効果】印加電場により材料の粘弾性特性が可変
できる複合弾性材料が得られる。 【0030】
Description: FIELD OF INDUSTRIAL APPLICATION The present invention relates to a composite elastic material whose viscoelastic properties can be varied. [0002] Conventionally, elastic materials used as vibration damping/vibration isolating materials are desired to have a high loss coefficient and a desired elastic modulus. Composite elastic materials having materials as constituent elements have been studied. In such conventional elastic materials, the elastic modulus and loss coefficient are inherent to the material, and once the material is determined, they are immutable characteristics. [0003] Problems to be Solved by the Invention However, in a vibration system in which an elastic material having an elastic modulus or loss coefficient that is unique to such materials and cannot be moved is used as a vibration damping/vibration isolating material, Since the natural frequency cannot be changed if the mass in the vibration system is constant, the performance as a vibration damping/vibration isolating material deteriorates significantly for inputs near the natural frequency. From this point of view, if the elastic modulus and loss coefficient can be changed according to the input frequency, the natural frequency and transfer function of the vibration system can also be changed, and the frequency characteristics of vibration damping and vibration isolation materials can be significantly improved. From this point of view, the present inventors discovered that an electrorheological fluid can change the viscosity of the fluid (apparent viscosity in Bingham fluid) depending on the strength of the electric field, or that an electroresponsive gel can change the viscosity of the fluid depending on the strength of the electric field. Focusing on the fact that the complex modulus of elasticity can be varied by using electro-rheological fluid, composite elastic materials filled with electro-rheological fluid can change their viscoelastic properties depending on the strength of the electric field. The present invention was conceived based on the idea that it would be an excellent vibration damping material that can change the function. [Means for Solving the Problems] The present invention aims to provide a composite material whose viscoelastic properties can be varied depending on the strength of an applied electric field, and which has an electrode layer provided on its surface. At least one set of electrically insulating sheet-like elastic bodies are assembled so that their electrode layers are directly opposed to each other at intervals, and an electrorheological fluid or electroresponsive fluid is applied between the opposing electrode layers. This objective was achieved by means of a composite elastic material characterized by a gel-encapsulated structure. The basic structure of the composite elastic material of the present invention will be explained with reference to the accompanying drawings. As shown in FIG. , those electrode layers are combined so that they directly face each other with a space between them, and the opposing electrode layers 2 and 2
An electrorheological fluid or electroresponsive gel 3 is sealed between the two. That is, the layers are stacked in the following order: electrically insulating elastic layer - electrode layer - electrorheological fluid layer or electrically responsive gel layer - electrode layer - electrically insulating elastic layer. This is done by connecting a DC or AC power source to one electrode and grounding the other electrode. As an embodiment of the present invention, a multilayer structure can be adopted as shown in FIG. connected, and the other electrode must be grounded. The thickness of each layer is determined by the Young's modulus of the electrically insulating elastic material, the viscosity of the electrorheological fluid, the strength of the electrorheological effect, and the viscoelastic change required for the composite material, but the thickness of the electrode layer should be set as much as possible. The thinner the better. Furthermore, in order to seal in the electrorheological fluid, the ends of the composite elastic material must be sealed with a sealing material 4 such as an elastomer with high electrical insulation properties and a low Young's modulus, such as silicone rubber. Furthermore, when encapsulating an electrically responsive gel, the sealing material 4 is basically not required because the electrically responsive gel does not have fluidity. It is desirable to have one. Furthermore, if there is a possibility that the opposing electrodes may come into contact with each other due to an external force, it is preferable to provide a spacer made of an elastic material having electrical insulation properties not only at the ends but also partially in the middle. The elastic body having electrical insulation properties used in the present invention is preferably a material made of a polymer having a volume resistivity of 1010 Ω·cm or more and a Young's modulus of 105 Pa or more. Examples of the polymer include polyvinyl chloride, polyvinyl chloride, Examples include thermoplastic resins such as polyethylene, thermosetting resins such as phenolic resins and melamine resins, elastomers such as natural rubber and synthetic rubber, and mixtures thereof.Furthermore, fibers such as glass fibers and carbon fibers are added to these polymer materials. ,
Examples include composite materials filled with fillers such as carbon black and charcoal, and additives such as antioxidants. The electrode layer has a conductivity of 102 S/c.
It is preferable that the material is made of a material of m or more, and examples thereof include metal materials such as aluminum, copper, stainless steel, and brass, conductive polymers, and carbon-based materials. Water-based electrorheological fluids are known as electrorheological fluids in which a dispersed phase such as lithium polyacrylate or silica that has absorbed water is dispersed in a dispersion medium such as silicone oil or chlorinated paraffin. There is a drawback that the electrorheological effect becomes weaker due to evaporation, which is not preferable for purposes such as the present invention. Therefore, the electrorheological fluid used in the present invention is, for example, an electrorheological fluid containing carbonaceous powder as a dispersed phase, which was previously proposed by the present inventors (Japanese Patent Application No. 63-3235).
It is preferable to use a non-aqueous electrorheological fluid, such as No. 69), which functions even without containing water. The electroresponsive gel used in the present invention is a gel-like substance whose complex modulus of elasticity can be changed by the application of an electric field, as disclosed by the present inventors in Japanese Patent Application No. 2-284389. . The principle of function expression of this electroresponsive gel is similar to that of electrorheological fluid, and when an electric field is applied, the carbonaceous particles in the electrically insulating polymer are polarized, causing a gap between the particles. Electrostatic force causes attraction between particles,
This is thought to be due to changes in the viscoelastic properties of the gel accompanied by particle rearrangement. The difference from the case of electrorheological fluids is that the viscosity of the medium is significantly higher or that it is crosslinked. Therefore, a powder that functions as a dispersed phase powder of an electrorheological fluid can basically be used as a powder to be filled in order to exhibit the function of an electroresponsive gel. However, as has been pointed out in the case of electrorheological fluids, powders such as silica gel and lithium polyacrylate powders that function as the dispersed phase of so-called aqueous electrorheological fluids where water is essential for the performance of electrorheological fluids. In terms of heat resistance and durability, the body
It is also not preferred for the electroresponsive gel used in the present invention. From this point of view, the C/H ratio, which the present inventors found to be a suitable dispersed phase for nonaqueous electrorheological fluids, is 1.2 to 1.2.
5, preferably 2 to 4 carbonaceous powders are also suitable for the electroresponsive gel used in the present invention. The medium in which the carbonaceous powder is dispersed is a partially crosslinked electrically insulating polymer or a non-crosslinked electrically insulating polymer, and the medium is an electrically responsive material in which the carbonaceous powder is dispersed. In both cases, those with extremely low fluidity and solid state are used. That is, the partially crosslinked electrically insulating polymer has a penetration degree of 40 (JI) at room temperature.
S K2220) or more, preferably 60 to 120
A material having a volume resistivity of 10 12 Ω·cm or more, preferably 10 13 to 10 16 Ω·cm is used. [0018] By applying an electric field to an electrode provided in contact with the electroresponsive gel thus obtained, the viscoelastic properties can be changed. The elastic modulus is low when no electric field is applied (104 dyne/cm2 ~
106 dyne/cm2), the elastic modulus of the material increases greatly when an electric field is applied, and tan δ of a material that has a high elastic modulus without applying an electric field (106 dyne/cm2 or more) increases greatly when an electric field is applied. [Operation] When a voltage is applied between opposing electrodes in the composite elastic material of the present invention, the viscosity of the enclosed electrorheological fluid changes in accordance with the voltage. As a result, the viscoelastic properties of the composite elastic material including such an electrorheological fluid as a component change. Further, in the case of an electro-responsive gel, the complex elastic modulus of the electro-responsive gel changes depending on the voltage, and as a result, the viscoelastic properties of the composite elastic material containing the electro-responsive gel as a component change. [0020] The present invention will be explained below with reference to examples, but the present invention is not limited in any way by the following examples. [Example 1] Two vinyl chloride sheets each having a length of 300 mm, a width of 50 mm, and a thickness of 0.5 mm were used as sheet-like elastic bodies having electrical insulation properties. The length of the electrode layer is 300m.
m, width 50mm, thickness 0.1mm aluminum foil 2
I used one. [0022] The electrorheological fluid was prepared by the following procedure. That is, coal tar was heat-treated at 450° C. in a substantially inert atmosphere, and the resulting heat-treated product was extracted and filtered using tar-based medium oil. This extraction/filtration residue is
A carbonaceous powder having a C/H ratio of 2.38 was obtained by reheating at a temperature of 00° C. under a nitrogen flow of 2 liters/min. After further pulverizing the carbonaceous powder and adjusting the average particle size to about 3.5 μm using an air classifier, the carbonaceous powder was uniformly dispersed at about 40% by weight in silicone oil having a viscosity of 20 cp at room temperature. An electrorheological fluid was obtained. [0023] The above-mentioned vinyl chloride sheet and aluminum foil are stacked one on top of the other, and then combined as a set in such a way that the electrode layers (aluminum foil) are directly opposed to each other with an interval of 5 mm, as shown in Fig. 1. , the electrorheological fluid was sealed between opposing electrode layers. In order to maintain the spacing between the electrode layers and to seal the electrorheological fluid, the ends of the composite elastic material were sealed with 5 mm thick silicone rubber. [0024] Fixing one end of the produced composite elastic material,
A strain gauge was attached to the intermediate part (vinyl chloride) surface. The signal from the strain gauge was introduced into an oscilloscope via an amplifier. While applying a voltage to the electrode, an impact was applied to the other end of the unfixed composite material, and the free damping vibration waveform that appeared on the oscilloscope was analyzed, and the dependence of the complex modulus of elasticity (E', E'') and tan δ on the electric field was determined. The measurement results are shown below. Electric field (KV/mm) E' (Pa)
E”(Pa) tanδ 0
6.74×109 3.
20×109 0.47 0.
5 6.90×109 3.
63×109 0.50 0.
83 7.16×109 4.
32×109 0.60 1.
17 7.61×109 5.
46×109 0.72 [0026] As mentioned above, this composite elastic material changes E as an electric field is applied.
' increases, and tan δ also increases, indicating that the elastic modulus and damping rate of the material, which contribute to vibration damping performance, can be controlled by the electric field. Example 2 In place of the electrorheological fluid in Example 1, an electroresponsive gel described below was used. The coal tar was heat treated at 450°C in a substantially inert atmosphere. The obtained heat-treated product was extracted and filtered using oil in tar, and the extracted and filtered residue was reheated at a temperature of 530° C. under a nitrogen flow of 2 liters/min to obtain a carbonaceous powder. The average particle diameter of this carbonaceous powder is 18.8 μm, and the C/H ratio is 2.45.
Met. 50 parts by weight of this carbonaceous powder was mixed into a two-component type silicone gel (SE1887 manufactured by Toray Dow Corning Silicone Co., Ltd., volume resistivity:
4×1014Ω・cm) dispersed in 50 parts by weight, 1 at 80℃
After heating for a period of time, an electroresponsive gel was obtained. [0028] When a composite elastic material prepared in the same manner as in Example 1 except for the electro-responsive gel portion was measured for changes in viscoelasticity upon voltage application using the same method as in Example 1, it was found that the vibration damping and damping performance was It was found that the elastic modulus and damping rate of the contributing materials can be controlled by electric fields. Effects of the Invention: A composite elastic material whose viscoelastic properties can be varied by an applied electric field can be obtained. [0030]

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明の複合弾性材料の基本的な構成を説明する
ための図、図2は多重積層された本発明の実施態様を説
明するための図である。
FIG. 1 is a diagram for explaining the basic structure of the composite elastic material of the present invention, and FIG. 2 is a diagram for explaining a multi-layered embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  表面に電極層が設けられた電気絶縁性
を有するシート状弾性体が少なくとも一組、それらの電
極層同士が間隔を置いて直接対向するように組み合わさ
れ、対向する電極層と電極層との間に電気粘性流体また
は電気応答性ゲルが封入された構造を有することを特徴
とする複合弾性材料。
Claim 1: At least one set of electrically insulating sheet-like elastic bodies each having an electrode layer provided on its surface is assembled such that the electrode layers directly face each other with a gap between them, and the opposing electrode layers A composite elastic material characterized by having a structure in which an electrorheological fluid or an electroresponsive gel is enclosed between an electrode layer.
JP03035049A 1990-02-09 1991-02-06 Composite elastic material Expired - Fee Related JP3022996B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2856790 1990-02-09
JP2-28567 1990-02-09

Publications (2)

Publication Number Publication Date
JPH04211931A true JPH04211931A (en) 1992-08-03
JP3022996B2 JP3022996B2 (en) 2000-03-21

Family

ID=12252212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03035049A Expired - Fee Related JP3022996B2 (en) 1990-02-09 1991-02-06 Composite elastic material

Country Status (1)

Country Link
JP (1) JP3022996B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080881A (en) * 2000-09-07 2002-03-22 Fujikura Kasei Co Ltd Electric rheology gel
JP2003322196A (en) * 2002-04-26 2003-11-14 Fujikura Kasei Co Ltd Electric rheology element and electric rheology device comprising the same
JP2006075446A (en) * 2004-09-13 2006-03-23 Fujinon Corp Endoscope
JP2006328281A (en) * 2005-05-27 2006-12-07 Fujikura Kasei Co Ltd Electric rheology sheet
JP2015159923A (en) * 2014-02-27 2015-09-07 藤倉化成株式会社 flexible slider
CN109506519A (en) * 2018-12-17 2019-03-22 中国人民解放军61489部队 A kind of ER fluid filled and process aluminium armour

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080881A (en) * 2000-09-07 2002-03-22 Fujikura Kasei Co Ltd Electric rheology gel
JP4717989B2 (en) * 2000-09-07 2011-07-06 藤倉化成株式会社 Electrorheological gel
JP2003322196A (en) * 2002-04-26 2003-11-14 Fujikura Kasei Co Ltd Electric rheology element and electric rheology device comprising the same
JP4495392B2 (en) * 2002-04-26 2010-07-07 藤倉化成株式会社 Electrorheological element and electrorheological device provided with the same
JP2006075446A (en) * 2004-09-13 2006-03-23 Fujinon Corp Endoscope
JP4578904B2 (en) * 2004-09-13 2010-11-10 富士フイルム株式会社 Endoscope
JP2006328281A (en) * 2005-05-27 2006-12-07 Fujikura Kasei Co Ltd Electric rheology sheet
JP2015159923A (en) * 2014-02-27 2015-09-07 藤倉化成株式会社 flexible slider
CN109506519A (en) * 2018-12-17 2019-03-22 中国人民解放军61489部队 A kind of ER fluid filled and process aluminium armour
CN109506519B (en) * 2018-12-17 2023-09-22 中国人民解放军61489部队 Electrorheological fluid filled foam aluminum bulletproof plate

Also Published As

Publication number Publication date
JP3022996B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
US2707223A (en) Electric resistor
Atten et al. A conduction model of the electrorheological effect
Yang et al. Lead magnesium niobate‐filled silicone dielectric elastomer with large actuated strain
JP3039997B2 (en) Electro-rheological fluid application device, electro-rheological fluid application vibration control device, and electro-rheological fluid application fixing device
Agari et al. Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity
Tao et al. Finite-element analysis of electrostatic interactions in electrorheological fluids
EP0206736A2 (en) Conductive pyrolyzed dielectrics and articles made therefrom
JPH04211931A (en) Composite elastic material
Liang et al. Effects of carbon black content and size on conductive properties of filled high‐density polyethylene composites
Felici et al. A conduction model of electrorheological effect
Cho et al. Linear viscoelasticity of semiconducting polyaniline based electrorheological suspensions
Guzel et al. Polyindene/organo‐montmorillonite conducting nanocomposites. II. electrorheological properties
EP0549227B1 (en) Electroviscous fluid
US5445759A (en) Preparation of electrorheological fluids using fullerenes and other crystals having fullerene-like anisotropic electrical properties
JPH07190128A (en) Vibration control damper
US5352718A (en) Electrorheological semisolid
Ignat et al. Study on the electromechanical properties of polyimide composites containing T i O 2 nanotubes and carbon nanotubes
JPH0391541A (en) Variable modulus material
JPH055099A (en) Electrically viscoelastic semi-solid substance
JPH06228581A (en) Carbonaceous powder for use in electroviscous fluid
KR101567307B1 (en) Variable friction molding and variable friction structure
Aganbegović et al. Electrical Conductivity in Specially Doped Silicone Layers Under DC Stress
JPH06278239A (en) Visco-elastic variable composite material
JPH0742473B2 (en) Electrorheological liquid
JP3458148B2 (en) Carbonaceous powder for electrorheological fluid dispersed phase and electrorheological fluid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees