JPH055099A - Electrically viscoelastic semi-solid substance - Google Patents

Electrically viscoelastic semi-solid substance

Info

Publication number
JPH055099A
JPH055099A JP28037991A JP28037991A JPH055099A JP H055099 A JPH055099 A JP H055099A JP 28037991 A JP28037991 A JP 28037991A JP 28037991 A JP28037991 A JP 28037991A JP H055099 A JPH055099 A JP H055099A
Authority
JP
Japan
Prior art keywords
electrically
weight
parts
viscoelastic
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28037991A
Other languages
Japanese (ja)
Inventor
Yuichi Ishino
裕一 石野
Takayuki Maruyama
隆之 丸山
Tasuku Saito
翼 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP28037991A priority Critical patent/JPH055099A/en
Publication of JPH055099A publication Critical patent/JPH055099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PURPOSE:To provide an electrically viscoelastic semi-solid substance which comprises a gel produced by dispersing specific carbon powder in a partially cross-linked electrically insulating polymer, which changes its viscoelastic characteristics by the application of electric fields and which has extremely low fluidity. CONSTITUTION:An electrically viscoelastic semi-solid substance comprises an electrically responsible gel produced by dispersing (A) 20-70 pts.wt. of carbon powder having an average particle of 0.1-500mum and a carbon/hydrogen atomic ratio (C/H ratio) of 1.2-5 in (B) 80-30 pts.wt. of a partially cross-linked electrically insulating polymer having a penetration of >=40 at room temperature. The component A may be dispersed in an electrically insulating oil or polymer having a viscosity of >=500 centistokes at room temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電場の印加により粘弾性
特性が変化する電気粘弾性半固体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electro-viscoelastic semi-solid whose viscoelastic property is changed by applying an electric field.

【0002】[0002]

【従来の技術】従来、電気粘性流体を封入した電気制御
防振ゴムや電気制御ダンパーは、電場を印加することに
より、バネ特性、ロス特性を変化させることができ、さ
まざまな入力振動に対応して印加する電場を変化させる
ことによって優れた防振、制振性能が得られる部品とし
て実用化が検討されている。しかし、電気粘性流体は電
場を印加しない場合には流動性に富む材料であるため、
応用部品として機能させるためにはゴム、金属、プラス
チックなど他の固体材料の中に封入する必要があった。
2. Description of the Related Art Conventionally, an electrically controlled anti-vibration rubber or an electrically controlled damper in which an electrorheological fluid is enclosed can change the spring characteristic and loss characteristic by applying an electric field, and can cope with various input vibrations. Practical application is being considered as a part that can obtain excellent vibration damping and damping performance by changing the applied electric field. However, since an electrorheological fluid is a material that is highly fluid when no electric field is applied,
In order to function as an applied part, it was necessary to enclose it in another solid material such as rubber, metal or plastic.

【0003】他に、電場を印加し粘弾性特性を変化させ
ることができる材料としては電場屈曲性高分子ゲルが知
られているが、この電場屈曲性高分子ゲルは水、アセト
ン、ジメチルスルフォキサイドなどの溶媒中で機能する
のみで、応用デバイスはこのような溶媒中で動作させる
ものに限られる。
In addition, an electric field-flexible polymer gel is known as a material capable of changing the viscoelasticity by applying an electric field. The electric field-flexible polymer gel is water, acetone or dimethyl sulfone. It only functions in solvents such as cyside, and application devices are limited to those that operate in such solvents.

【0004】[0004]

【発明が解決しようとする課題】このように流動性の高
い電気粘性流体や、溶媒中にある高分子ゲルのように液
状のものが関与しないで、電場により粘弾性特性を変化
させることができる機能性材料が望まれていた。本発明
は上記の要望に応えるためになされたもので、本発明の
目的は印加する電場の強さに応じて粘弾性特性を変化さ
せることが可能な電気粘弾性半固体を提供することであ
る。
As described above, the viscoelastic characteristics can be changed by the electric field without the involvement of the electrorheological fluid having high fluidity and the liquid such as the polymer gel in the solvent. Functional materials have been desired. The present invention has been made to meet the above-mentioned demands, and an object of the present invention is to provide an electro-viscoelastic semi-solid capable of changing viscoelastic properties according to the strength of an applied electric field. ..

【0005】[0005]

【課題を解決するための手段】本発明者らは上記目的を
達成するため鋭意検討を重ねた結果、電気粘性流体にお
いて、分散媒である電気絶縁油の粘度を著しく大きくす
ること、さらには分散媒を部分的に架橋することによ
り、流動性が著しく減少することに着目し、電場の印加
により粘弾性特性を変化させることができる半固体状の
従来にない機能性材料を得て、本発明を完成するに至っ
た。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors in order to achieve the above object, as a result, in an electrorheological fluid, the viscosity of an electrically insulating oil, which is a dispersion medium, is remarkably increased, Focusing on the fact that the fluidity is remarkably reduced by partially crosslinking the medium, a semisolid non-conventional functional material capable of changing viscoelastic characteristics by applying an electric field was obtained, and the present invention was obtained. Has been completed.

【0006】本発明者らは、平均粒子径が0.1〜50
0μmで炭素/水素原子比(C/H比)が1.2〜5で
ある炭素質粉末20〜70重量部を室温における針入度
40以上の部分的に架橋された電気絶縁性高分子重合体
80〜30重量部に分散させたものからなることを特徴
とする電気応答性ゲル、又は上記の炭素質粉末20〜7
0重量部を室温における粘度5000センチストークス
以上の電気絶縁油又は電気絶縁性高分子重合体80〜3
0重量部に分散させたものからなることを特徴とする電
気応答性軟塑性体が、電圧の印加により粘弾性特性を変
化させることができ、かつ流動性の著しく低い電気粘弾
性半固体であることを見いだした。
The present inventors have found that the average particle size is 0.1 to 50.
A partially cross-linked electrically insulating polymer polymer having a penetration ratio of 40 or more at room temperature and 20 to 70 parts by weight of carbonaceous powder having a carbon / hydrogen atomic ratio (C / H ratio) of 1.2 to 5 at 0 μm. Electro-responsive gel characterized by being dispersed in 80 to 30 parts by weight of coalesce, or the above carbonaceous powder 20 to 7
0 parts by weight of electric insulating oil or electric insulating polymer 80 to 3 having a viscosity of 5000 centistokes or more at room temperature
An electrically responsive soft-plastic material characterized by being dispersed in 0 parts by weight is an electroviscoelastic semi-solid whose viscoelastic property can be changed by applying a voltage and which has extremely low fluidity. I found a thing.

【0007】本発明の電気応答性ゲル又は電気応答性軟
塑性体における機能発現の原理は電気粘性流体の原理と
似通っており、電場が印加された際、電気絶縁性高分子
重合体中の炭素質粒子は分極し、粒子間に静電気力が働
くことにより粒子間に引力が生じ、粒子の再配列を伴い
ながらゲル又は軟塑性体の粘弾性特性が変化することに
よるものと考えられる。電気粘性流体の場合との差異は
分散媒の粘度が著しく大きいか、架橋されていることに
よって粒子の動きが阻害され、電気粘性流体の場合のよ
うに電場が印加された際、粒子が電極間に完全に数珠状
になって繋がることはないものと考えられる。
The principle of function expression in the electro-responsive gel or electro-responsive soft-plastic material of the present invention is similar to the principle of electro-rheological fluid, and when an electric field is applied, carbon in the electro-insulating polymer is It is considered that the fine particles are polarized and an electrostatic force acts between the particles to generate an attractive force between the particles, and the viscoelastic property of the gel or the soft-plastic body changes while the particles are rearranged. The difference from the case of electrorheological fluid is that the viscosity of the dispersion medium is remarkably high, or the movement of particles is hindered by being cross-linked, and when an electric field is applied as in the case of electrorheological fluid, the particles move between the electrodes. It is thought that they will not be completely connected to each other in a beaded shape.

【0008】従って電気粘性流体の分散相粉体として機
能するものは本発明における電気応答性ゲル又は電気応
答性軟塑性体の機能を発現するため充填される粉体とし
て基本的には使用できる。しかし、電気粘性流体の場合
に指摘されているように、シリカゲルやポリアクリル酸
リチウム粉体のように水分が電気粘性流体の機能発現に
不可欠であるいわゆる水系電気粘性流体の分散相として
機能する粉体は、耐熱性、耐久性の点で、本発明におけ
る電気応答性ゲル又は電気応答性軟塑性体にも好ましく
ない。
Therefore, what functions as a dispersed phase powder of an electrorheological fluid can be basically used as a powder to be filled in order to exhibit the function of the electroresponsive gel or electroresponsive soft-plastic material in the present invention. However, as pointed out in the case of electrorheological fluids, powders that function as the dispersed phase of so-called water-based electrorheological fluids, such as silica gel and lithium polyacrylate powder, in which water is essential for manifesting the function of electrorheological fluids. From the viewpoint of heat resistance and durability, the body is not preferable as the electrically responsive gel or the electrically responsive soft plastic body in the present invention.

【0009】この点から、本発明者らは非水系電気粘性
流体に好適な分散相として知見したC/H比が1.2〜
5、好ましくは2〜4の炭素質粉末が、本発明における
電気応答性ゲル又は電気応答性軟塑性体の場合にも好適
であることを見出した。C/H比が1.2未満の場合は
本発明における電気応答性ゲル又は電気応答性軟塑性体
の機能を発現せず、またC/H比が5を越える場合は電
場を印加したときに電流が過剰に流れる。
From this point, the present inventors have found that the C / H ratio is 1.2 to 1.2, which is found as a suitable dispersed phase for a non-aqueous electrorheological fluid.
It has been found that 5, preferably 2 to 4 carbonaceous powders are also suitable for the electroresponsive gel or electroresponsive soft-plastic body according to the invention. When the C / H ratio is less than 1.2, the function of the electrically responsive gel or the electrically responsive soft-plastic material in the present invention is not exhibited, and when the C / H ratio exceeds 5, when an electric field is applied. Excessive current flows.

【0010】炭素質粉末の粒子径については、分散相の
沈降の心配がないので電気粘性流体の場合より大きくて
も良い。電気応答性ゲル又は電気応答性軟塑性体の機能
を発現するため充填される粉体の平均粒子径は0.1〜
500μmが好ましく、さらに好ましくは1〜100μ
mである。粉体粒子の平均粒子径が500μmを越える
と、分散媒に均一に分散することが困難で、0.1μm
未満の場合は電気応答性ゲル又は電気応答性軟塑性体の
機能が非常に小さくなる。
The particle size of the carbonaceous powder may be larger than that of the electrorheological fluid because there is no concern about sedimentation of the dispersed phase. The average particle size of the powder to be filled in order to exhibit the function of the electroresponsive gel or electroresponsive soft-plastic body is 0.1 to
500 μm is preferable, more preferably 1 to 100 μm.
m. When the average particle size of the powder particles exceeds 500 μm, it is difficult to disperse the particles uniformly in the dispersion medium, and the average particle size is 0.1 μm.
When it is less than the above, the function of the electroresponsive gel or the electroresponsive soft-plastic body becomes very small.

【0011】炭素質粉末の炭素含有量は80〜97重量
%のものが好ましく、特に好ましくは90〜95重量%
である。
The carbon content of the carbonaceous powder is preferably 80 to 97% by weight, particularly preferably 90 to 95% by weight.
Is.

【0012】一般に電気粘性流体の分散相の体積抵抗率
は半導体領域にあることが知られており、上記のC/H
比及び炭素含有量によって炭素質粉末の体積抵抗率が変
化する。すなわち、C/H比が小さく炭素含有量が少な
くなると炭素質粉末の体積抵抗率は上がり絶縁体に近く
なり、電場の印加に応答して粘弾性特性が変化する電気
粘弾性効果は発現しない。またC/H比が大きく炭素含
有量が大きくなると導電性が上がるが、電気粘弾性効果
を発現するために大きな消費電力が必要となり好ましく
ない。この意味で本発明に好ましい炭素質粉末の体積抵
抗率は105 〜1011Ω・cmで、更に好ましくは10
7 〜1010Ω・cmである。
It is generally known that the volume resistivity of the dispersed phase of the electrorheological fluid is in the semiconductor region.
The volume resistivity of the carbonaceous powder changes depending on the ratio and the carbon content. That is, when the C / H ratio is low and the carbon content is low, the volume resistivity of the carbonaceous powder increases and becomes close to that of an insulator, and the electroviscoelastic effect in which the viscoelastic characteristics change in response to the application of an electric field does not appear. Further, if the C / H ratio is large and the carbon content is large, the conductivity is increased, but a large power consumption is required to exhibit the electroviscoelastic effect, which is not preferable. In this sense, the volume resistivity of the carbonaceous powder preferred in the present invention is 10 5 to 10 11 Ω · cm, and more preferably 10
It is 7 to 10 10 Ω · cm.

【0013】本発明に好適な炭素質粉末の具体例として
は、(1)コールタールピッチ、石油系ピッチ、又はポ
リ塩化ビニルを熱分解して得られるピッチなどを微粉砕
したもの、(2)それらピッチ又はそれらのタール成分
を加熱処理して得られる炭素質メソフェーズ小球体粉
末、すなわち、加熱により形成される光学的異方性小球
体を溶剤でピッチ成分を溶解し分別することによって得
られる粉末、さらにこれを微粉砕したもの、ピッチ原料
を加熱処理によりバルクメソフェーズ(例えば特開昭59
-30887号参照)とし、それを微粉砕したもの、また一部
晶質化したピッチを微粉砕したもの、(3)熱硬化性樹
脂を低温で炭化したもの、例えばフェノール樹脂マイク
ロビーズの炭化物など、いわゆる低温処理炭素質粉末、
(4)無煙炭、歴青炭などの石炭類及びその熱処理物を
微粉砕したもの、(5)ポリエチレン、ポリプロピレン
又はポリスチレンなどの炭化水素系ビニル高分子とポリ
塩化ビニル又はポリ塩化ビニリデンなどの塩素含有高分
子との混合物を加圧下で加熱することによって得られる
炭素球、又はそれを微粉砕したもの、(6)ポリアクリ
ロニトリルの炭化物などが例示される。これらの中で、
特に好ましい炭素質粉末としては炭素質メソフェーズ小
球体粉末及びフェノール樹脂マイクロビーズの炭化物を
挙げることができる。さらに分散性を上げる目的又は電
流を下げる目的で炭素質粉末に種々の表面処理を行って
も良い。
Specific examples of the carbonaceous powder suitable for the present invention include (1) finely pulverized coal tar pitch, petroleum pitch, or pitch obtained by thermally decomposing polyvinyl chloride, (2) Carbonaceous mesophase spherule powder obtained by heat-treating those pitches or their tar components, that is, powder obtained by dissolving pitch components with a solvent to separate optically anisotropic spherules formed by heating. Further, this was pulverized, and the pitch raw material was subjected to a heat treatment to form a bulk mesophase (see, for example, JP-A-59
-30887) and finely pulverized it, finely pulverized partially crystallized pitch, and (3) carbonized thermosetting resin at low temperature, such as carbonized phenolic resin micro beads. , So-called low temperature treated carbonaceous powder,
(4) Finely pulverized coals such as anthracite, bituminous coal and heat-treated products thereof, (5) Hydrocarbon-based vinyl polymers such as polyethylene, polypropylene or polystyrene and chlorine containing polyvinyl chloride or polyvinylidene chloride Examples thereof include carbon spheres obtained by heating a mixture with a polymer under pressure, finely pulverized carbon spheres, and (6) carbide of polyacrylonitrile. Among these,
Particularly preferred carbonaceous powders include carbonaceous mesophase microsphere powders and carbides of phenolic resin microbeads. Further, the carbonaceous powder may be subjected to various surface treatments for the purpose of increasing the dispersibility or reducing the current.

【0014】本発明において、炭素質粉末を分散させる
分散媒は、部分的に架橋された電気絶縁性高分子重合体
と、非架橋の電気絶縁油又は電気絶縁性高分子重合体に
大別されるが、炭素質粉末を分散させた電気粘弾性材料
とした場合、いずれも流動性が著しく小さくなり半固体
状態になるものが用いられる。
In the present invention, the dispersion medium in which the carbonaceous powder is dispersed is roughly classified into a partially crosslinked electrically insulating polymer and a non-crosslinked electrically insulating oil or electrically insulating polymer. However, when an electro-viscoelastic material in which carbonaceous powder is dispersed is used, a material that has a significantly low fluidity and becomes a semi-solid state is used.

【0015】本発明の電気応答性ゲル又は電気応答性軟
塑性体に用いられる部分的に架橋された電気絶縁性高分
子重合体としては、室温における針入度(稠度)の値が
40(JIS K2220による)以上、好ましくは50〜20
0、さらに好ましくは60〜120のもので、体積抵抗
率が1010〜1017、好ましくは1012〜1017、さら
に好ましくは1014〜1016Ω・cmを示すものが用い
られる。
The partially crosslinked electrically insulating high molecular polymer used in the electrically responsive gel or electrically responsive soft-plastic material of the present invention has a penetration value (consistency) of 40 (JIS) at room temperature. K2220) or above, preferably 50 to 20
0, more preferably 60 to 120, and having a volume resistivity of 10 10 to 10 17 , preferably 10 12 to 10 17 , and more preferably 10 14 to 10 16 Ω · cm.

【0016】具体的には、部分架橋ポリジメチルシロキ
サン又は部分架橋ポリメチルフェニルシロキサンなどか
らなる部分架橋シリコーン系ポリマー、部分架橋ポリメ
チルトリフロロプロピルシロキサンなどの部分架橋フロ
ロシリコーン系ポリマー、部分架橋炭化水素系ポリマ
ー、部分架橋ハロゲン化炭化水素系ポリマー、部分架橋
ホスファゼン系ポリマー、部分架橋ウレタン系ポリマー
などが例示されるが、中でも信頼性、加工性の面から部
分的に架橋されたゲル状のシリコーン系ポリマーが好ま
しく、特に好適なものは2液性又は1液性シリコーンゲ
ルを挙げることができる。
Specifically, partially crosslinked polydimethylsiloxane, partially crosslinked polymethylphenylsiloxane and other partially crosslinked silicone polymers, partially crosslinked polymethyltrifluoropropylsiloxane and other partially crosslinked fluorosilicone polymers, and partially crosslinked hydrocarbons. Examples of the polymers include partially crosslinked halogenated hydrocarbon polymers, partially crosslinked phosphazene polymers, and partially crosslinked urethane polymers. Among them, partially crosslinked gel-like silicones from the viewpoint of reliability and processability. Polymers are preferable, and particularly preferable examples include two-component or one-component silicone gel.

【0017】本発明の電気応答性軟塑性体に用いられる
電気絶縁油又は電気絶縁性高分子重合体としては粘度が
5000センチストークス以上、好ましくは104 〜1
8センチストークス、更に好ましくは104 〜106
センチストークスで、体積抵抗率が1010〜1017Ω・
cm、好ましくは1012〜1017Ω・cm、さらに好ま
しくは1013〜1017Ω・cmのものが用いられる。
The electrically insulating oil or electrically insulating high molecular polymer used in the electrically responsive soft-plastic material of the present invention has a viscosity of 5000 centistokes or more, preferably 10 4 to 1
0 8 centistokes, more preferably 10 4 to 10 6
Centistokes, volume resistivity 10 10 ~ 10 17 Ω ·
cm, preferably 10 12 to 10 17 Ω · cm, and more preferably 10 13 to 10 17 Ω · cm.

【0018】具体的にはポリジメチルシロキサン又はポ
リメチルフェニルシロキサンなどからなるシリコーン
油、シリコーン系ポリマー、ポリメチルトリフロロプロ
ピルシロキサンからなるフロロシリコーン油、炭化水素
油、炭化水素系ポリマー、ハロゲン化炭化水素油、ハロ
ゲン化炭化水素系ポリマー、ホスファゼン油、ホスファ
ゼン系ポリマーが例示されるが、中でもシリコーン油、
シリコーン系ポリマー、フロロシリコーン油が好まし
く、特に好適なのはポリジメチルシロキサン油、ポリメ
チルトリフロロシロキサン油、ポリジメチルシロキサン
ポリマーを挙げることができる。
Specifically, silicone oils such as polydimethylsiloxane or polymethylphenylsiloxane, silicone polymers, fluorosilicone oils comprising polymethyltrifluoropropylsiloxane, hydrocarbon oils, hydrocarbon polymers, halogenated hydrocarbons. Examples thereof include oils, halogenated hydrocarbon polymers, phosphazene oils, and phosphazene polymers. Among them, silicone oils,
Silicone-based polymers and fluorosilicone oils are preferable, and polydimethylsiloxane oil, polymethyltrifluorosiloxane oil, and polydimethylsiloxane polymer are particularly preferable.

【0019】本発明の炭素質粉末と分散媒との割合は炭
素質粉末が20〜70重量部、好ましくは40〜60重
量部、分散媒が30〜80重量部、好ましくは60〜4
0重量部であり、炭素質粉末の割合が20重量部未満の
場合は粘弾性変化が小さく、70重量部を越える場合は
粉体が分散媒に分散しにくいので好ましくない。
The ratio of the carbonaceous powder of the present invention to the dispersion medium is 20 to 70 parts by weight of the carbonaceous powder, preferably 40 to 60 parts by weight, and 30 to 80 parts by weight of the dispersion medium, preferably 60 to 4 parts.
When the proportion of the carbonaceous powder is less than 20 parts by weight, the viscoelastic change is small, and when it exceeds 70 parts by weight, the powder is difficult to disperse in the dispersion medium, which is not preferable.

【0020】また本発明の効果を損なわない範囲で、分
散剤、架橋剤、酸化防止剤などの種々の添加剤を配合す
ることもできる。
Further, various additives such as a dispersant, a cross-linking agent and an antioxidant may be blended within a range that does not impair the effects of the present invention.

【0021】このようにして得られた電気応答性ゲル又
は電気応答性軟塑性体に接触して一対の電極を設け、そ
の電極に電場を印加することにより、粘弾性特性を変化
させることができる。電場を印加しない状態での貯蔵弾
性率G'が剪断歪10%、動的周波数8Hzの条件で測定
した際、103 〜105 dyne/cm2の範囲の材料は電圧印
加によるG'の上昇度合が損失弾性率G"の上昇度合よりも
高く、結果としてtanδ(G"/G')は減少する。一方G'
が同様の条件で測定した際105 〜106 dyne/cm2の範
囲の材料は電圧印加によるG'とG"の上昇度合がほぼ等し
くtan δはあまり変化しない。G'が106 dyne/cm2以上
の材料は電圧印加によるG'の上昇は少なく、G"のみ上昇
し、結果としてtan δが増加する。
By providing a pair of electrodes in contact with the electroresponsive gel or electroresponsive soft-plastic material thus obtained and applying an electric field to the electrodes, the viscoelastic characteristics can be changed. .. When the storage elastic modulus G'when no electric field is applied is measured under the conditions of shear strain 10% and dynamic frequency 8 Hz, the material in the range of 10 3 to 10 5 dyne / cm 2 has an increase of G'by voltage application. The degree is higher than the degree of increase of the loss elastic modulus G ″, and as a result, tan δ (G ″ / G ′) decreases. Meanwhile G '
When measured under the same conditions as above, the materials in the range of 10 5 to 10 6 dyne / cm 2 have almost the same degree of increase in G ′ and G ″ due to voltage application, and tan δ does not change much. G ′ is 10 6 dyne / cm 2. For materials of cm 2 or more, the increase in G ′ due to the voltage application is small, and only G ″ is increased, resulting in an increase in tan δ.

【0022】以下、実施例によりさらに具体的に説明す
る。なお本発明は以下の実施例に何ら制約されるもので
はない。
Hereinafter, the present invention will be described more specifically by way of examples. The present invention is not limited to the following examples.

【0023】[実施例1]コールタールを20L(リッ
ター)のオートクレーブを使用し450℃で実質的に不
活性雰囲気中で熱処理し、得られた熱処理物をタール中
油を使用し抽出・瀘過した。この抽出・瀘過残留物を内
容積2Lのバッチ型回転反応炉を使用し、530℃の温
度、2L/分の窒素気流下で再加熱処理して炭素質粉末
を得た。この炭素質粉末の平均粒子径は18.8μm、
C/H比は2.45、炭素含有量は94.5重量%であ
った。
Example 1 Coal tar was heat-treated in a substantially inert atmosphere at 450 ° C. using a 20 L (liter) autoclave, and the heat-treated product was extracted and filtered using tar-middle oil. .. The extraction / filtration residue was reheated at a temperature of 530 ° C. under a nitrogen stream of 2 L / min using a batch type rotary reactor having an internal volume of 2 L to obtain a carbonaceous powder. The average particle size of this carbonaceous powder is 18.8 μm,
The C / H ratio was 2.45 and the carbon content was 94.5% by weight.

【0024】この炭素質粉末50重量部を室温における
針入度80の2液タイプのシリコーンゲル(トーレ・ダ
ウコーニングシリコーン社製SE1887、体積抵抗
率:4×1014Ω・cm)50重量部に分散、80℃で
1時間加熱し、電気応答性ゲルを得た。この電気応答性
ゲルについて、室温で直流電場を印加しながら、レオメ
トッリクス社製RDS−II型粘弾性測定装置を用いて
粘弾性変化(貯蔵弾性率G'、損失弾性率G"、tan δ=G"
/G')を測定した。使用したフィクスチャーは半径1
2.5mmのパラレルプレート、剪断歪みは10%、動
的周波数は8Hz、電極間距離は1.5mmであった。
表1に実施例1の電気応答性ゲルの測定結果を示す。
50 parts by weight of this carbonaceous powder was added to 50 parts by weight of a two-component type silicone gel having a penetration of 80 at room temperature (SE1887 manufactured by Toray Dow Corning Silicone Co., volume resistivity: 4 × 10 14 Ω · cm). Dispersion and heating at 80 ° C. for 1 hour gave an electrically responsive gel. About this electro-responsive gel, while applying a DC electric field at room temperature, a viscoelastic change (storage elastic modulus G ', loss elastic modulus G ", tan δ = G was measured using a RDS-II type viscoelasticity measuring device manufactured by Rheometry. "
/ G ') was measured. The fixture used has a radius of 1
The parallel plate was 2.5 mm, the shear strain was 10%, the dynamic frequency was 8 Hz, and the distance between the electrodes was 1.5 mm.
Table 1 shows the measurement results of the electroresponsive gel of Example 1.

【表1】 [Table 1]

【0025】[実施例2]実施例1と同様の炭素質粉末
50重量部を室温における針入度60の2液タイプのシ
リコーンゲル(トーレ・ダウコーニングシリコーン社製
SE1890、体積抵抗率:1×1015Ω・cm)50
重量部に分散、80℃で1時間加熱し電気応答性ゲルを
得た。この電気応答性ゲルについて、実施例1と同様な
方法で粘弾性変化を測定した結果を表2に示す。
[Example 2] 50 parts by weight of carbonaceous powder similar to Example 1 was added to a two-pack type silicone gel having a penetration of 60 at room temperature (SE1890 manufactured by Toray Dow Corning Silicone Co., volume resistivity: 1x). 10 15 Ω · cm) 50
It was dispersed in parts by weight and heated at 80 ° C. for 1 hour to obtain an electrically responsive gel. Table 2 shows the results of measuring the change in viscoelasticity of this electrically responsive gel in the same manner as in Example 1.

【表2】 [Table 2]

【0026】[実施例3]コールタールを20Lのオー
トクレープを使用し450℃で実質的に不活性雰囲気中
で熱処理した。得られた熱処理物をタール中油を使用し
抽出・瀘過した。この抽出・瀘過残留物を内容積2Lの
バッチ型回転反応炉を使用し、500℃の温度、2L/
分の窒素気流下で再加熱処理し、さらに粉砕、分級処理
して炭素質粉末を得た。この炭素質粉末の平均粒子径は
3.8μm、C/H比は2.38、炭素含有量は94.
7重量%であった。
Example 3 Coal tar was heat treated using a 20 L autoclave at 450 ° C. in a substantially inert atmosphere. The obtained heat-treated product was extracted and filtered using tar medium oil. Using a batch type rotary reactor with an internal volume of 2 L, the extraction / filtration residue was heated at a temperature of 500 ° C., 2 L /
The carbonaceous powder was obtained by reheating under a nitrogen stream for a minute and then pulverizing and classifying. This carbonaceous powder had an average particle size of 3.8 μm, a C / H ratio of 2.38, and a carbon content of 94.
It was 7% by weight.

【0027】この炭素質粉末50重量部を実施例1と同
じ室温における針入度80のシリコーンゲル50重量部
に分散、80℃で1時間加熱し電気応答性ゲルを得た。
この電気応答性ゲルについて、実施例1と同様な方法で
粘弾性変化を測定した結果を表3に示す。
50 parts by weight of this carbonaceous powder was dispersed in 50 parts by weight of a silicone gel having a penetration of 80 at the same room temperature as in Example 1 and heated at 80 ° C. for 1 hour to obtain an electrically responsive gel.
Table 3 shows the results of measuring the change in viscoelasticity of this electrically responsive gel in the same manner as in Example 1.

【表3】 [Table 3]

【0028】[実施例4]実施例3と同様の炭素質粉末
50重量部を実施例2と同じ室温における針入度60の
シリコーンゲル50重量部に分散、80℃で1時間加熱
し電気応答性ゲルを得た。この電気応答性ゲルについ
て、実施例1と同様な方法で粘弾性変化を測定した結果
を表4に示す。
[Example 4] 50 parts by weight of carbonaceous powder similar to that of Example 3 was dispersed in 50 parts by weight of silicone gel having a penetration of 60 at the same room temperature as in Example 2 and heated at 80 ° C for 1 hour to obtain an electrical response. A gel was obtained. Table 4 shows the results of measuring the change in viscoelasticity of this electrically responsive gel in the same manner as in Example 1.

【表4】 [Table 4]

【0029】[実施例5]市販のフェノール樹脂マイク
ロビーズを窒素気流中600℃で熱処理し、平均粒子径
8μm、C/H比2.28、 炭素含有量91.4重量%
の炭素質粉末を得た。この炭素質粉末50重量部を実施
例2と同じ室温における針入度60のシリコーンゲル5
0重量部に分散、80℃で1時間加熱し電気応答性ゲル
を得た。この電気応答性ゲルについて、実施例1と同様
な方法で粘弾性変化を測定した結果を表5に示す。
[Example 5] Commercially available phenol resin microbeads were heat-treated in a nitrogen stream at 600 ° C to give an average particle size of 8 µm, a C / H ratio of 2.28, and a carbon content of 91.4% by weight.
Of carbonaceous powder was obtained. 50 parts by weight of this carbonaceous powder was added to silicone gel 5 having a penetration of 60 at the same room temperature as in Example 2.
It was dispersed in 0 parts by weight and heated at 80 ° C. for 1 hour to obtain an electroresponsive gel. Table 5 shows the results of measuring the change in viscoelasticity of this electrically responsive gel in the same manner as in Example 1.

【表5】 [Table 5]

【0030】[実施例6]実施例3と同様の炭素質粉末
50重量部を室温における粘度10,000センチスト
ークス(cSt)のポリメチルトリフロロプロピルシロ
キサンからなるフロロシリコーン油(東芝シリコーン社
製FQF501−1M、体積抵抗率3×1012Ω・c
m、誘電率7.1)50重量部に分散し電気応答性軟塑
性体を得た。この電気応答性軟塑性体について、実施例
1と同様な方法で粘弾性変化を測定した結果を表6に示
す。
Example 6 Fluorosilicone oil (FQF501 manufactured by Toshiba Silicone Co., Ltd.) made of polymethyltrifluoropropylsiloxane having a viscosity of 10,000 centistokes (cSt) at room temperature was used with 50 parts by weight of carbonaceous powder similar to that in Example 3. -1M, volume resistivity 3 × 10 12 Ω · c
m, dielectric constant 7.1) and dispersed in 50 parts by weight to obtain an electrically responsive soft plastic body. Table 6 shows the results of measuring the viscoelastic change of this electrically responsive soft-plastic material by the same method as in Example 1.

【表6】 [Table 6]

【0031】[実施例7]実施例3と同様の炭素質粉末
50重量部を室温における粘度10,000センチスト
ークス(cSt)のポリジメチルシロキサンからなるシ
リコーン油(東芝シリコーン社製TSF451−1M、
体積抵抗率1×1014Ω・cm)50重量部に分散し電
気応答性軟塑性体を得た。この電気応答性軟塑性体につ
いて、実施例1と同様な方法で粘弾性変化を測定した結
果を表7に示す。
[Example 7] 50 parts by weight of carbonaceous powder similar to that in Example 3 was added to a silicone oil made of polydimethylsiloxane having a viscosity of 10,000 centistokes (cSt) at room temperature (TSF451-1M manufactured by Toshiba Silicone Co., Ltd.,
A volume resistivity of 1 × 10 14 Ω · cm) was dispersed in 50 parts by weight to obtain an electrically responsive soft plastic body. Table 7 shows the results of measuring the viscoelastic change of this electrically responsive soft-plastic material in the same manner as in Example 1.

【表7】 [Table 7]

【0032】[実施例8]実施例1で用いた炭素質粉末
50重量部を室温における粘度1.5×106 センチス
トークス(cSt)のポリジメチルシロキサンポリマー
(ゼネラルエレクトリック社製SE30)50重量部に
分散し電気応答性軟塑性体を得た。この電気応答性軟塑
性体について、実施例1と同様な方法で粘弾性変化を測
定した結果を表8に示す。
Example 8 50 parts by weight of the carbonaceous powder used in Example 1 was added to 50 parts by weight of polydimethylsiloxane polymer (SE30 manufactured by General Electric Co.) having a viscosity of 1.5 × 10 6 centistokes (cSt) at room temperature. To obtain an electrically responsive soft plastic body. Table 8 shows the results of measuring the change in viscoelasticity of this electrically responsive soft-plastic material by the same method as in Example 1.

【表8】 [Table 8]

【0033】[比較例1]実施例3と同様の炭素質粉末
42.9重量部を室温における粘度10センチストーク
ス(cSt)のポリジメチルシロキサンからなるシリコ
ーン油(東芝シリコーン社製TSF451−10)5
7.1重量部に分散し電気粘性流体を得た。この電気粘
性流体について、実施例1と同様な方法で粘弾性変化を
測定した結果を表9に示す。
[Comparative Example 1] Silicone oil (TSF451-10 manufactured by Toshiba Silicone Co.) consisting of 42.9 parts by weight of carbonaceous powder similar to that of Example 3 and composed of polydimethylsiloxane having a viscosity of 10 centistokes (cSt) at room temperature 5
Dispersion in 7.1 parts by weight gave an electrorheological fluid. Table 9 shows the results of measuring the viscoelastic change of this electrorheological fluid in the same manner as in Example 1.

【表9】 [Table 9]

【0034】[比較例2]実施例3と同様の炭素質粉末
20.7重量部を室温における粘度1,000センチス
トークス(cSt)のポリジメチルシロキサンからなる
シリコーン油(東芝シリコーン社製TSF451−10
00)79.3重量部に分散し、電気粘性流体を得た。
この電気粘性流体について、実施例1と同様な方法で粘
弾性変化を測定した結果を表10に示す。
[Comparative Example 2] Silicone oil (TSF451-10 manufactured by Toshiba Silicone Co., Ltd.) made of polydimethylsiloxane having a viscosity of 1,000 centistokes (cSt) at room temperature was prepared by adding 20.7 parts by weight of carbonaceous powder similar to that of Example 3.
00) was dispersed in 79.3 parts by weight to obtain an electrorheological fluid.
Table 10 shows the results of measuring the viscoelastic change of this electrorheological fluid in the same manner as in Example 1.

【表10】 [Table 10]

【0035】表1〜8に示すように、実施例1〜8の電
気応答性ゲル又は電気応答性軟塑性体は電場を印加しな
い状態でも貯蔵弾性率G'を持つ粘り気のある半固体物質
で、さらに電場の印加により貯蔵弾性率G'及び損失弾性
率G"が増加する。一方表9〜10に示すように比較例1
〜2の電気粘性流体では電場の印加によりG'、G"が増加
するが、電場を印加しない時の貯蔵弾性率G'がほとんど
0であり、粘り気のない流動性に富む流体である。また
実施例1、3、4、6、7のようにG'が103〜105 d
yne/cm2の範囲の材料は電圧印加によりtan δが減少す
る傾向にある。実施例2、5のようにG'が105 〜10
6 dyne/cm2の範囲の材料は電圧印加によりtan δはあま
り変化しない。実施例8のようにG'が106dyne/cm2
上の材料は電圧印加によりtan δが増加する。
As shown in Tables 1-8, the electro-responsive gels or electro-responsive soft plastics of Examples 1-8 are viscous semi-solid substances having a storage elastic modulus G'even when no electric field is applied. Further, the storage elastic modulus G ′ and the loss elastic modulus G ″ are increased by applying an electric field. On the other hand, as shown in Tables 9 to 10, Comparative Example 1
In the electrorheological fluids of ~ 2, G'and G "increase by the application of an electric field, but the storage elastic modulus G'when no electric field is applied is almost 0, and the fluid is viscous and rich in fluidity. G'is 10 3 to 10 5 d as in Examples 1, 3, 4, 6, and 7.
For materials in the range of yne / cm 2 , tan δ tends to decrease with voltage application. G'is 10 5 to 10 as in Examples 2 and 5.
For materials in the range of 6 dyne / cm 2 , tan δ does not change much when a voltage is applied. As in Example 8, the material having G ′ of 10 6 dyne / cm 2 or more has an increased tan δ when a voltage is applied.

【0036】このように、半固体状ながら、電場の印加
により粘弾性特性を変化させることができる機能性材料
が得られた。このことにより、従来電気粘性流体を封入
することによって得られていた電気制御防振ゴム、電気
制御ダンパーなどの機能が、本発明における固体状の電
気応答性ゲル又は電気応答性軟塑性体を利用することに
より、封入するのではなく、電極材料と積層構造を形成
させることによって得られ、電気制御により振動特性を
変化させることができる部品の構造簡素化が図れる。
As described above, a functional material which can change its viscoelastic characteristics by applying an electric field while being semi-solid was obtained. As a result, the functions of the electrically controlled anti-vibration rubber, electrically controlled damper, etc., which have been conventionally obtained by enclosing the electrorheological fluid, use the solid state electrically responsive gel or electrically responsive soft plastic body of the present invention. By doing so, it is possible to simplify the structure of a component that can be obtained by forming a laminated structure with an electrode material instead of encapsulating and changing the vibration characteristics by electrical control.

【0037】[0037]

【発明の効果】本発明によれば、電場の印加により、粘
弾性特性が変化させることができる半固体状の機能性材
料が得られ、振動制御、ロボットなどの電気制御により
力学特性を変化させる部品の構造簡素化が図れる。
According to the present invention, a semi-solid functional material whose viscoelastic property can be changed by applying an electric field can be obtained, and the mechanical property can be changed by vibration control, electric control of a robot or the like. The structure of parts can be simplified.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C10N 20:06 Z 8217−4H 30:02 40:14 50:10 60:10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C10N 20:06 Z 8217-4H 30:02 40:14 50:10 60:10

Claims (1)

【特許請求の範囲】 【請求項1】 平均粒子径が0.1〜500μmで炭素
/水素原子比(C/H比)が1.2〜5である炭素質粉
末20〜70重量部を室温における針入度40以上の部
分的に架橋された電気絶縁性高分子重合体80〜30重
量部に分散させた電気応答性ゲルからなる電気粘弾性半
固体。 【請求項2】 平均粒子径が0.1〜500μmで炭素
/水素原子比(C/H比)が1.2〜5である炭素質粉
末20〜70重量部を室温における粘度5000センチ
ストークス以上の電気絶縁油又は電気絶縁性高分子重合
体80〜30重量部に分散させた電気応答性軟塑性体か
らなる電気粘弾性半固体。
Claims: 1. At room temperature, 20 to 70 parts by weight of carbonaceous powder having an average particle diameter of 0.1 to 500 µm and a carbon / hydrogen atomic ratio (C / H ratio) of 1.2 to 5 is used. An electroviscoelastic semi-solid comprising an electrically responsive gel dispersed in 80 to 30 parts by weight of a partially crosslinked electrically insulating polymer having a penetration of 40 or more. 2. 20 to 70 parts by weight of a carbonaceous powder having an average particle diameter of 0.1 to 500 μm and a carbon / hydrogen atomic ratio (C / H ratio) of 1.2 to 5 is added to a room temperature viscosity of 5000 centistokes or more. An electrically viscoelastic semi-solid comprising an electrically responsive soft-plastic material dispersed in 80 to 30 parts by weight of the electrically insulating oil or electrically insulating polymer.
JP28037991A 1990-10-24 1991-10-02 Electrically viscoelastic semi-solid substance Pending JPH055099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28037991A JPH055099A (en) 1990-10-24 1991-10-02 Electrically viscoelastic semi-solid substance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-284389 1990-10-24
JP28438990 1990-10-24
JP28037991A JPH055099A (en) 1990-10-24 1991-10-02 Electrically viscoelastic semi-solid substance

Publications (1)

Publication Number Publication Date
JPH055099A true JPH055099A (en) 1993-01-14

Family

ID=26553751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28037991A Pending JPH055099A (en) 1990-10-24 1991-10-02 Electrically viscoelastic semi-solid substance

Country Status (1)

Country Link
JP (1) JPH055099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505871A (en) * 1993-11-23 1996-04-09 General Atomics Electrorheological elastomeric composite materials
JP2006075446A (en) * 2004-09-13 2006-03-23 Fujinon Corp Endoscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505871A (en) * 1993-11-23 1996-04-09 General Atomics Electrorheological elastomeric composite materials
JP2006075446A (en) * 2004-09-13 2006-03-23 Fujinon Corp Endoscope
JP4578904B2 (en) * 2004-09-13 2010-11-10 富士フイルム株式会社 Endoscope

Similar Documents

Publication Publication Date Title
KR940008392B1 (en) Electrobiscous fluids
EP0445594A1 (en) An electrorheological fluid
US5073282A (en) Electrorheological fluids
EP0589637A1 (en) Improved electrorheological fluid formulations using organosiloxanes
JPH055099A (en) Electrically viscoelastic semi-solid substance
Guzel et al. Polyindene/organo‐montmorillonite conducting nanocomposites. II. electrorheological properties
JP3012699B2 (en) Electrorheological fluid
JPH07190128A (en) Vibration control damper
US5352718A (en) Electrorheological semisolid
JP3022996B2 (en) Composite elastic material
JPH0742473B2 (en) Electrorheological liquid
JP2761774B2 (en) Electrorheological fluid
Yavuz et al. Synthesis, characterization, and partial hydrolysis of polyisoprene‐co‐poly (tert‐butyl methacrylate) and electrorheological properties of its suspensions
JP3572111B2 (en) Oily medium for electrorheological fluid and electrorheological fluid using the same
JPH0391541A (en) Variable modulus material
JP2799606B2 (en) Electrorheological fluid
JP2911947B2 (en) Carbon powder for electrorheological fluid
US5252239A (en) ER fluids having chemically defoliated vermiculite treated with an alkyl ammonium halide and methods of making and using the same
JP3378945B2 (en) Electrorheological fluid
US5122292A (en) Methods of varying the frequency to produce predetermined electrorheological responses
JP4495392B2 (en) Electrorheological element and electrorheological device provided with the same
JPH07207292A (en) Carbonaceous powder for disperse phase of electroviscous fluid and electroviscous fluid
Unal et al. Electrorheological response of polyindene/colemanite conducting composite
JPH08253788A (en) Electroviscous liquid
JPH11349978A (en) Electroviscous fluid