JPH04210488A - Electrolytic electrode - Google Patents

Electrolytic electrode

Info

Publication number
JPH04210488A
JPH04210488A JP2410066A JP41006690A JPH04210488A JP H04210488 A JPH04210488 A JP H04210488A JP 2410066 A JP2410066 A JP 2410066A JP 41006690 A JP41006690 A JP 41006690A JP H04210488 A JPH04210488 A JP H04210488A
Authority
JP
Japan
Prior art keywords
rhodium
titanium
oxide
layer
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2410066A
Other languages
Japanese (ja)
Other versions
JP3048647B2 (en
Inventor
Yoichi Kamegaya
洋一 亀ケ谷
Masayuki Oguri
雅之 小栗
Tomomi Asaki
知美 朝木
Koki Sasaki
幸記 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2410066A priority Critical patent/JP3048647B2/en
Publication of JPH04210488A publication Critical patent/JPH04210488A/en
Application granted granted Critical
Publication of JP3048647B2 publication Critical patent/JP3048647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To prolong the service life of an electrolytic electrode and to highly efficiently generate chlorine even under the conditions where the available chlorine content is high by coating a titanium base body with a porous alloy layer and an oxide layer consisting essentially of a rhodium oxide layer and a palladium oxide layer. CONSTITUTION:A thin titanium hydride layer is formed on the surface of an electrode base body consisting of titanium and a titanium-based alloy, and a porous platinum coating layer having 8-19 g/cm<3> apparent density is provided thereon. A rhodium compd. soln. is then applied and heat-treated in an oxygen- contg. atmosphere to form a rhodium oxide layer on the platinum coating layer. A soln. contg. a palladium compd. and a rhodium compd., if necessary, is applied on the rhodium oxide layer and heat-treated to form an oxide coating layer contg. 80-100mol% palladium oxide and 0-20 mol% rhodium oxide on the rhodium oxide layer, and an electrolytic electrode is obtained. This electrode is advantageously used as an electrolytic anode for a dil. aq. chloride soln. such as brine and seawater.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001]本発明は新規な電解用電極に関し、さらに
詳しくは、海水や食塩水などの希薄塩化物水溶液を電解
して陽極に塩素を発生させる際のアノードとして有用な
電解用電極及びその製造法に関する。 [0002]海水や食塩水の希薄塩化物水溶液を電解し
てアノードに塩素を発生させ、この塩素と水酸イオンと
の反応により生成する次亜塩素酸イオンの殺菌性、漂白
刃を利用して、例えば海中構造物への生物の付着防止、
プールや上下水道の水処理等を行なうことは公知である
。このうち、食塩水を電解液として使用する場合、食塩
の利用率を上げるため、電解槽出口での有効塩素濃度は
通常110000pp前後の値とされる。 [0003]希簿塩化物水溶液の電解用アノード材料と
して、従来、白金被覆チタン電極、白金−イリジウム被
覆電極、白金−酸化パラジウム被覆電極、及び酸化ルテ
ニウム−酸化チタン被覆層1等が知られているが、これ
らは電解液中での電流効率が低く及び/又はその持続性
に欠けており、しかも電極の消耗も大きい等の欠点があ
る。 [00043本発明者らは、上記の如き欠点のない電解
用電極を開発すべく鋭意研究を行なった結果、本発明を
完成するに至った。 [0005]すなわち、本発明は、 (a)  チタン又はチタン基合金よりなる電極基体と
、(b)  酸化チタン層を介して該電極基体表面に設
けられた見掛密度が8〜1.9g/cm3の範囲内にあ
る多孔性白金被覆層と、 (c)  該多孔性白金被覆層の表面を被覆する酸化ロ
ジウム層と、 (d)  酸化パラジウム80〜100モル%及び酸化
ロジウム0〜20モル%を含有する酸化物被覆層とから
なることを特徴とする電解用電極を提供するものである
。 [0006)本発明によれば、上記本発明の電解用電極
は、 (i)  表面に薄い水素化チタン層を形成せしめたチ
タン又はチタン基合金よりなる@極基体上に見掛密度が
8〜19g/cm3の範囲内にある多孔性白金被覆層を
設け、必要により酸素含有雰囲気中で焼成した後、(i
 i)  該多孔性白金被覆層表面に、酸素含有雰囲気
中で熱分解して酸化ロジウムを生成しつるロジウム化合
物の溶液を塗布した後、酸素含有雰囲気中で熱処理して
、該白金被覆層上に酸化ロジウム層を形成し、(t t
 i)  さらに、酸素含有雰囲気中で熱分解して酸化
パラジウムを生成しうるパラジウム化合物及び場合によ
り酸素含有雰囲気中で熱分解して酸化ロジウムを生成し
つるロジウム化合物を含有する溶液を塗布した後、酸素
含有雰囲気中で熱処理して、該酸化ロジウム層上に酸化
パラジウム及び場合により酸化ロジウムを含有する酸化
物層を形成することによって製造することができる。 [00073以下、本発明の電解用電極をその製造法に
基いてさらに詳しく説明する。 [00081本発明において使用される電極基体の材質
としては、チタン又はチタン基合金が挙げられる。チタ
ン基合金としては、チタンを主体とする耐食性のある導
電性の合金が使用され、例えばTi −Ta−Nb、 
Ti−Pd、 T i −Z r、 T i −W、 
T 1−A1等の組合わせからなる、通常電極材料とし
て使用されているTi基合金が挙げられる。 [0009]これらの電極剤は板状、有孔板状、棒状、
網板状等の所望形状に加工して電極基材として用いるこ
とができる。 [001ON上記の如き電極基体には、通常行なわれて
いるように、予め前処理を施した後、中間層を設けるの
が望ましい。そのような前処理の好適具体例としては以
下に述べるものが挙げられる。 [00111先ず、前述したチタン又はチタン合金より
なる電極基体(以下、チタン基体ということがある)表
面を常法に従い、例えば1−リクロルエチレン、トリク
ロルエタン等で洗浄し又はアルカリ溶液中での電解によ
り脱脂した後、フッ化水素濃度が約1〜約20重量%の
フッ化水素酸又はフッ化水素酸と硝酸、硫酸等の他の酸
との混酸で処理することにより、チタン基体表面の酸化
膜を除去するとともにチタン結晶粒界単位の粗面化を行
なう。該酸処理はチタン基体の表面状態に応じて常温な
いし約40℃の温度において数分間ないし十数分間行な
うことができる。なお、粗面化を十分行なうためにブラ
スト処理を併用してもよい。 [0012]このように酸処理されたチタン基体表面を
濃硫酸と接触させて、該チタン結晶粒界内部表面を突起
状に細かく粗面化するとともに該チタン基体表面に水素
化チタンの薄い層を形成する。 [0013]使用する濃硫酸は一般に40〜80M量%
、好ましくは50〜60重量%粒度の濃度のものが適当
であり、この濃硫酸には必要により、処理の安定化を図
る目的で少量の硫酸ナトリウムその他の硫酸塩等を添加
してもよい。該濃硫酸との接触は通常チタン基体を濃硫
酸の浴中に浸漬することにより行なうことができ、その
際の浴温は一般に約100〜約150℃、好ましくは約
110〜約130℃の範囲内の温度とすることができ、
また浸漬時間は通常0.5〜約10分間、好ましくは約
1〜約3分間で充分である。この硫酸処理により、チタ
ン結晶粒界内部表面を突起状に細かく粗面化するととも
に、チタン基体の表面にごく薄い水素化チタンの皮膜を
形成させることができる。 [0014]硫酸処理されたチタン基体は硫酸浴から取
り出し、好ましくは窒素、アルゴン等の不活性ガス雰囲
気中で急冷してチタン基体の表面温度を約60℃以下に
低下させる。この急冷には洗浄も兼ねて大量の冷水を用
いるのが適当である。 [0015]このようにしてごく薄い水素化チタンの皮
膜を形成したチタン基体は、希フッ化水素酸又は希フッ
化物水溶液(例えばフッ化ナトリウム、フッ化カリウム
等)中で浸漬処理して該水素化チタン皮膜を生長させ該
皮膜の均−化及び安定化を図る。ここで使用しうる希フ
ッ化水素酸又はフッ化物水溶液中のフッ化水素の濃度は
一般に0.05〜3重量%、好ましくは0.3〜1重量
%の範囲内とすることができ、また、これらの溶液によ
る浸漬処理の際の温度は一般に10〜40℃、好ましく
は20〜30℃の範囲である。該処理はチタン基体表面
に通常0.5〜10ミクロン、好ましくは1〜3ミクロ
ンの厚さの水素化チタンの均一皮膜が形成されるまで行
なうことができる。この水素化チタン(TiHy、ここ
でyは1.5〜2の数である)は水素化の程度に応じて
灰褐色から黒褐色を呈するので、上記範囲の厚さの水素
化チタンの皮膜の生成は、経験的に該基体表面の色調の
変化を標準色源との明度対比によってコントロールする
ことができる。 [0016]このようにしてチタン基体表面を粗面化す
ると共に水素化チタンの皮膜を形成したチタン基体は、
適宜水洗等の処理を行なった後、その表面を多孔性白金
層で被覆する。 [00173この多孔性白金層により被覆は通常電気メ
ツキ法により行なうことができる。この電気メツキ法に
使用しうるメツキ浴の組成としては、例えばH2Pt・
C16、<NH4) 2P t Cl 6、K= P 
t CI6、Pt(NHl):!(NO2h等の白金化
合物を硫酸溶液(pH4〜3)又はアンモニア水溶液に
白金換算で約2〜約20g/lの濃度になるように溶解
し、さらに必要に応じて浴の安定化のために硫酸ナトリ
ウム(酸性浴の場合)、亜硫酸ナトリウム、硫酸ナトリ
ウム(アルカリ性浴の場合)等を少量添加した酸性又は
アルカリ性のメツキ浴が挙げられる。かかる組成のメツ
キ浴を用いての白金電気メツキは、チタン基体表面に形
成された水素化チタン皮膜の分解をできるだけ抑制する
ため、所謂ストライクメツキ等の高速メツキ法を用い約
30〜約60℃の範囲内の比較的低温で行なうのが望ま
しい。 [0018]この電気メツキにより、チタン基体の水素
化チタン皮膜上に多孔性の白金被覆層を形成せしめるこ
とができる。その際の白金被覆層の見掛密度は8〜19
g/crti3、好ましくは12〜18g/CIall
の範囲内にあるのが適当である。該多孔性被覆層の見掛
密度が8g/cm3より小さいと白金の結合強度が低下
して剥離しやすくなり、反対に19g/cm3を越える
と後述する酸化パラジウムの安定な担持が困難となる。 白金被覆層の見掛密度のコントロールは、例えば白金メ
ツキ浴の浴組成及び/又はメツキ条件(電流密度や電流
波形等)を経験的に調整することによって行なうことが
できる。 [0019Nなお、より多孔性の高い白金金属被覆層を
得たい場合には、多孔質の白金金属層を形成した後、更
に化学的もしくは電気化学的方法によって多孔質状態を
高めることができる。 [00201また、上記白金の電気メツキは上記基体上
への白金の被覆量が通常少なくとも0.2mg/cm2
以上となるまで継続する。白金の被覆量が0.2mg/
cm2より少ないと後述する焼成処理に際して水素化チ
タン皮膜部の酸化がすすみ過ぎて導電性が低下する傾向
がみられる。白金の被覆量の上限は特に制限されないが
、必要以上に多くしてもそれに伴うだけの効果は得られ
ず、却って不経済となり、通常は5 mg/cm2以下
の被覆量で充分である。白金の好適な被覆量は1〜3m
g/C[112である。 [00211ここで、多孔性の白金被覆層における白金
の被覆量は、ケイ光X線分析法を用い次の如くして求め
た量である。すなわち、前述した如く前処理したチタン
基体上に前記の方法で種々の厚さに白金メツキを施し、
そのメッキ量湿式分析法及びケイ光X線分析法により定
量し、両方法による分析値をグラフにプロットして標準
検量線を作成しておき、次いで実際の試料をケイ光X線
分析にかけてその分析値及び標準検量線から白金の被覆
量を求める。 [0022]また、白金被覆層の見掛密度(δg/cm
3)は、上記の如くして求めた白金の被覆量(0g7c
m3)と試料の断面顕微鏡観察で求めた白金被覆層の厚
さ(tem)からδ=ω/lによって求めたものである
。 [0023]かようにして多孔性の白金被覆層を設けた
チタン基体は次いで大気中で焼成することにより、該白
金被覆層の下の水素化チタンの皮膜の層を熱分解して該
層中の水素化チタンを実質的に殆んどをチタン金属に戻
し、さらに白金被覆層との境界部近傍のチタンを低酸化
状態の酸化チタンに変えることができる。この焼成は一
般に約300〜約600℃、好ましくは約300〜約4
00℃の温度で10分〜4時間程度加熱することにより
行なうことができる。 [0024]これによりチタン基体表面にごく薄い導電
性の酸化チタン層が形成される。この酸化チタン層の厚
さは一般に100〜1,000人、好ましくは200〜
600Aの範囲内にあるのが好適であり、また酸化チタ
ンの組成はTiOxとしてXが一般に1 < x < 
2、特に1 、9 < x < 2の範囲にあるのが望
ましい。 [0025]また別法として、白金の分散被覆を行なっ
たチタン基体は、上記の如き焼成処理を行わずに直接穴
の工程に付してもよい。この場合には、次工程での熱分
解処理時にチタン基体表面の水素化チタンの皮膜の層は
、チタン金属及び低酸化状態の酸化チタンに変換される
。 [00261このようにしてチタン基体上に形成される
多孔性白金被覆層の該被覆層表面は次いで酸化ロジウム
層で被覆する。 [0027]該酸酸化ロジウム被覆の形成は、例えば、
酸素含有雰囲気、好ましくは空気中で熱分解して酸化ロ
ジウムを生成しつるロジウム化合物を含有する溶液を多
孔性白金被覆層上に塗布し、浸透させ、適宜乾燥した後
に、酸素含有雰囲気中で熱処理することにより行なうこ
とができる。ここで使用しうるロジウム化合物としては
、例えば、硝酸ロジウム、塩化ロジウム等が挙げられる
が、一般には硝酸ロジウムが好適である。 (0028]かかるロジウム化合物の溶液としては、−
般に、ロジウム化合物の低級アルコール(例えば、メタ
ノール、エタノール等)溶液が好適である。もしロジウ
ム化合物が低級アルコールに溶解しにくい場合には、ロ
ジウム化合物を一旦硝酸、塩酸等の酸の水溶液に溶解し
た後、低級アルコールと混合してロジウム化合物の溶液
を調製することができる。該溶液中におけるロジウム化
合物の濃度はロジウム金属換算で多孔性白金層に浸透し
やすい、通常、5〜100g/l、特に10〜50g/
lの範囲内が好都合である。 [002930ジウム化合物の塗布は通常の方法、例え
ば刷毛塗り、スプレー、浸漬等の手段により行なうこと
ができる。その際、塗布した溶液の多孔性白金被覆層の
孔内への浸透を促進するために、場合によっては基体に
高周波の振動を加えるようにしてもよい。 [00301多孔性白金被覆面にロジウム化合物の溶液
が塗布された基体は、必要により約20〜約150℃の
範囲内の温度で乾燥した後、酸素含有ガス雰囲気、例え
ば空気中で焼成する。焼成は、例えば、電気炉、ガス炉
、赤外線炉などの適当な加熱炉中で、一般に約450〜
約650℃、好ましくは、約550〜約600℃の範囲
内の温度に加熱することによって行なうことができる。 加熱時間は焼成すべき基体の大きさに応じて大体3分〜
30分間程度とすることができる。 [00311この焼成により、多孔性白金被覆層の表面
(孔の内及び/又は外面)に酸化ロジウムの被覆層が形
成され、それと同時に白金被覆層の下の酸化チタンの薄
層が生長する。 [0032]酸化ロジウムの被覆量は、多孔性白金被覆
層の全表面を完全に被覆するだけの量とする必要はなく
、ロジウム金属に換算して一般に0.1〜2mg/cn
12、好ましくは、0 、2〜0 、7 mg/cm2
の範囲内が好都合である。 [0033]このようにして多孔性白金被覆層表面に酸
化ロジウム層が形成されたチタン基体の該表面にはさら
に、酸化パラジウムを主体とする酸化物層が被覆形成せ
しめられる。 [0034]かかる酸化物層の形成は、通常、酸素含有
ガス雰囲気中で熱分解して酸化パラジウムを生成しうる
パラジウム化合物を含有する溶液を塗布し、適宜乾燥し
た後、酸素含有ガス雰囲気中で熱処理することにより行
なうことができる。ここで用いつるパラジウム化合物と
しては、例えば、硝酸パラジウム、塩化パラジウム、酢
酸パラジウム、アビエチン酸パラジウム、ジニトロジア
ンミンパラジウム等が挙げられるが、中でも硝酸パラジ
ウム及びジニトロアンミンパラジウムが好適である。 [0035]かかるパラジウム化合物を含有する溶液と
しては特にメタノール、エタノール等の低級アルコール
溶液が好適であるが、用いるパラジウム化合物が低級ア
ルコールに難溶性である場合には予め硝酸、塩酸等の酸
の水溶液に溶解した後に低級アルコールと混合してパラ
ジウム化合物を含有する溶液を調製してもよい。該溶液
中におけるパラジウム化合物の濃度はパラジウム金属換
算で酸化ロジウムの被覆層が設けられた多孔性白金被覆
層に浸透しやすい、通常、5〜100g/l、特に10
〜50g/lの範囲内が適当である。 [0036]また、該溶液には、前述した如きロジウム
化合物を添加することができる。それによって形成され
る電極の耐久性をさらに高めることができる。ロジウム
化合物の使用量は該溶液を用いて形成される酸化物層に
おける酸化パラジウムと酸化ロジウムの合計量を基準に
して酸化ロジウムが20モル%以下、好ましくは2〜1
0モル%の範囲内となるような量とすることができる。 [0037]以上述べた如くして調製されるパラジウム
化合物及び場合によりロジウム化合物を含有する溶液か
らの酸化パラジウムを主体とする酸化物被覆層の形成(
該溶液の塗布、乾燥、焼成)は、酸化ロジウム層の形成
について前述したと同様にして行なうことができる。 [0038]これにより、酸化ロジウムの被覆層が設け
られた多孔性白金被覆層上に、酸化パラジウム80〜1
゜00モル%、好ましくは90〜98モル%及び酸化ロ
ジウム0〜20モル%、好まし、くは2〜10モル%を
含有する酸化物被覆層を設けることができる。 [0039]該酸化物層における酸化パラジウムの被覆
層はパラジウム金属に換算し7て一般に0.05〜2m
g/cm”、好ましくは0.4〜1.5mg/Cm”の
範囲内が好適である。また、該酸化物層における酸化ロ
ジウムの被覆層はロジウム金属に換算して通常0〜0.
5mg/cm2、特に0.01〜0.4mg/cm’の
範囲内とすることができる。 [00401なお、本明細書において電極基体の多孔性
白金被覆層上に形成される酸化ロジウム層及び酸化パラ
ジウムを主体とする酸化物層の各被覆層における酸化ロ
ジウム(ロジウム換算)、及び酸化パラジウム(パラジ
ウ1.、換算)の被覆量は白金の場合と同様にしてケイ
光X線分析法を用い次のようにして求めた値である。 [0041ffすなわち、各酸化物を前述した如く前処
理したチタン基体上に前記の方法で種々の量を担持させ
、その量を湿式分析法及びケイ光X線分析法により定量
し、両方法による分析値をグラフにプロットして標準検
量線を作成しておき、次いで、実際の試料をケイ光X線
分析にかけて、その分析値及び検量線から各被覆量を求
める。 [00421以上に述べたチタン又はチタン基合金より
なる基体上に、多孔性白金層、酸化ロジウム層及び酸化
パラジウムを主体とする酸化物層の少なくとも3層の被
覆層を有する本発明の電極は、電極寿命が長く耐久性に
優れており、しかも有効塩素の高濃度条件下でも高い塩
素発生効率を示し、例えば食塩水、海水などの希薄塩化
物水溶液の電解用ア、ノードとして有利に使用すること
ができる。 [00431次に実施例により本発明をさらに具体的に
説明する。 [00441
[0001] The present invention relates to a novel electrode for electrolysis, and more specifically, an electrode for electrolysis useful as an anode when generating chlorine at the anode by electrolyzing a dilute aqueous chloride solution such as seawater or saline, and a method for manufacturing the same. Regarding. [0002] Chlorine is generated at the anode by electrolyzing a dilute aqueous chloride solution of seawater or salt water, and the sterilizing properties of hypochlorite ions produced by the reaction between this chlorine and hydroxide ions are utilized by using a bleaching blade. , for example, preventing the attachment of living things to underwater structures.
It is well known that water treatment for swimming pools, water and sewage systems, etc. is performed. When saline is used as the electrolytic solution, the effective chlorine concentration at the outlet of the electrolytic cell is usually around 110,000 pp in order to increase the utilization rate of the saline. [0003] Conventionally, platinum-coated titanium electrodes, platinum-iridium-coated electrodes, platinum-palladium oxide-coated electrodes, and ruthenium oxide-titanium oxide coating layer 1 have been known as anode materials for electrolysis of diluted chloride aqueous solutions. However, these have drawbacks such as low current efficiency and/or lack of sustainability in the electrolytic solution, and high electrode wear. [00043 The present inventors have completed the present invention as a result of intensive research to develop an electrode for electrolysis without the above-mentioned drawbacks. [0005] That is, the present invention provides: (a) an electrode base made of titanium or a titanium-based alloy; and (b) an electrode base provided on the surface of the electrode base via a titanium oxide layer with an apparent density of 8 to 1.9 g/ (c) a rhodium oxide layer covering the surface of the porous platinum coating layer; (d) 80 to 100 mol% palladium oxide and 0 to 20 mol% rhodium oxide. The present invention provides an electrode for electrolysis characterized by comprising an oxide coating layer containing. [0006] According to the present invention, the electrode for electrolysis of the present invention has an apparent density of 8 to 8 on a polar substrate made of titanium or a titanium-based alloy with a thin titanium hydride layer formed on the surface. After providing a porous platinum coating layer within the range of 19 g/cm3 and firing in an oxygen-containing atmosphere if necessary, (i
i) A solution of a rhodium compound that thermally decomposes to produce rhodium oxide in an oxygen-containing atmosphere is applied to the surface of the porous platinum coating layer, and then heat-treated in an oxygen-containing atmosphere to form a rhodium compound on the platinum coating layer. Form a rhodium oxide layer and (t t
i) Further, after applying a solution containing a palladium compound that can thermally decompose in an oxygen-containing atmosphere to produce palladium oxide and optionally a rhodium compound that can thermally decompose in an oxygen-containing atmosphere to produce rhodium oxide, It can be manufactured by heat-treating in an oxygen-containing atmosphere to form an oxide layer containing palladium oxide and optionally rhodium oxide on the rhodium oxide layer. [00073] Hereinafter, the electrode for electrolysis of the present invention will be explained in more detail based on its manufacturing method. [00081 The material of the electrode substrate used in the present invention includes titanium or a titanium-based alloy. As the titanium-based alloy, a corrosion-resistant and conductive alloy mainly composed of titanium is used, such as Ti-Ta-Nb,
Ti-Pd, Ti-Zr, Ti-W,
Examples include Ti-based alloys, which are usually used as electrode materials and consist of combinations such as T1-A1. [0009] These electrode materials are plate-shaped, perforated plate-shaped, rod-shaped,
It can be processed into a desired shape such as a mesh plate and used as an electrode base material. [001ON] It is desirable that the electrode substrate as described above be pretreated in advance and then provided with an intermediate layer, as is usually done. Preferred specific examples of such pretreatment include those described below. [00111 First, the surface of the electrode substrate (hereinafter sometimes referred to as titanium substrate) made of titanium or titanium alloy described above is washed with, for example, 1-lichloroethylene, trichloroethane, etc., or electrolyzed in an alkaline solution. After degreasing with hydrogen fluoride, the surface of the titanium substrate is oxidized by treatment with hydrofluoric acid or a mixed acid of hydrofluoric acid and other acids such as nitric acid and sulfuric acid with a hydrogen fluoride concentration of about 1 to about 20% by weight. The film is removed and the surface of titanium grain boundaries is roughened. The acid treatment can be carried out at a temperature of room temperature to about 40° C. for several minutes to more than ten minutes depending on the surface condition of the titanium substrate. Incidentally, in order to sufficiently roughen the surface, blasting treatment may be used in combination. [0012] The surface of the titanium substrate thus acid-treated is brought into contact with concentrated sulfuric acid to roughen the inner surface of the titanium grain boundaries into protrusions and to form a thin layer of titanium hydride on the surface of the titanium substrate. Form. [0013] The concentrated sulfuric acid used is generally 40 to 80 M%
, preferably at a particle size of 50 to 60% by weight. If necessary, a small amount of sodium sulfate or other sulfate may be added to this concentrated sulfuric acid for the purpose of stabilizing the treatment. The contact with the concentrated sulfuric acid can usually be carried out by immersing the titanium substrate in a bath of concentrated sulfuric acid, and the bath temperature at that time is generally in the range of about 100 to about 150°C, preferably about 110 to about 130°C. The temperature within can be
Further, the immersion time is usually 0.5 to about 10 minutes, preferably about 1 to about 3 minutes. This sulfuric acid treatment makes it possible to roughen the inner surface of the titanium crystal grain boundaries into fine protrusions and form a very thin titanium hydride film on the surface of the titanium substrate. [0014] The sulfuric acid-treated titanium substrate is removed from the sulfuric acid bath and rapidly cooled, preferably in an inert gas atmosphere such as nitrogen or argon, to reduce the surface temperature of the titanium substrate to about 60° C. or less. It is appropriate to use a large amount of cold water for this rapid cooling, which also serves as washing. [0015] The titanium substrate on which a very thin titanium hydride film has been formed is treated by immersion in dilute hydrofluoric acid or dilute fluoride aqueous solution (for example, sodium fluoride, potassium fluoride, etc.) to remove the hydrogen. The titanium oxide film is grown to even out and stabilize the film. The concentration of hydrogen fluoride in the dilute hydrofluoric acid or fluoride aqueous solution that can be used here can generally be in the range of 0.05 to 3% by weight, preferably 0.3 to 1% by weight, and The temperature during the immersion treatment with these solutions is generally in the range of 10 to 40°C, preferably 20 to 30°C. This treatment can be carried out until a uniform titanium hydride film having a thickness of usually 0.5 to 10 microns, preferably 1 to 3 microns, is formed on the surface of the titanium substrate. This titanium hydride (TiHy, where y is a number from 1.5 to 2) exhibits a grayish brown to blackish brown color depending on the degree of hydrogenation, so a titanium hydride film with a thickness within the above range is formed. It is possible to empirically control the change in color tone of the substrate surface by contrasting the brightness with a standard color source. [0016] The titanium substrate whose surface was roughened in this way and a titanium hydride film was formed,
After appropriate treatments such as washing with water, the surface is coated with a porous platinum layer. [00173] Coating with this porous platinum layer can normally be carried out by electroplating. The composition of the plating bath that can be used in this electroplating method is, for example, H2Pt.
C16, <NH4) 2P t Cl 6, K= P
t CI6, Pt(NHl):! (A platinum compound such as NO2h is dissolved in a sulfuric acid solution (pH 4 to 3) or an aqueous ammonia solution to a concentration of about 2 to about 20 g/l in terms of platinum, and if necessary, sulfuric acid is added to stabilize the bath.) Examples include acidic or alkaline plating baths to which small amounts of sodium (for acidic baths), sodium sulfite, sodium sulfate (for alkaline baths) are added.Platinum electroplating using plating baths with such compositions can be applied to titanium substrates. In order to suppress the decomposition of the titanium hydride film formed on the surface as much as possible, it is desirable to use a high-speed plating method such as so-called strike plating at a relatively low temperature within the range of about 30 to about 60°C. [0018] A porous platinum coating layer can be formed on the hydrogenated titanium film of the titanium substrate by electroplating.The apparent density of the platinum coating layer at that time is 8 to 19.
g/crti3, preferably 12-18 g/CIall
It is appropriate that the value be within the range of . If the apparent density of the porous coating layer is less than 8 g/cm 3 , the bonding strength of platinum decreases and it becomes easy to peel off, whereas if it exceeds 19 g/cm 3 , it becomes difficult to stably support palladium oxide, which will be described later. The apparent density of the platinum coating layer can be controlled, for example, by empirically adjusting the bath composition and/or plating conditions (current density, current waveform, etc.) of the platinum plating bath. [0019N Note that if it is desired to obtain a platinum metal coating layer with higher porosity, the porous state can be further increased by a chemical or electrochemical method after forming the porous platinum metal layer. [00201 Furthermore, in the electroplating of platinum, the coating amount of platinum on the substrate is usually at least 0.2 mg/cm2.
Continue until above. Platinum coating amount is 0.2mg/
If it is less than cm 2 , the oxidation of the titanium hydride film portion will proceed too much during the firing process described below, and the conductivity will tend to decrease. Although there is no particular upper limit to the amount of platinum coated, if the amount is increased more than necessary, the corresponding effect will not be obtained and it will be rather uneconomical, so a coating amount of 5 mg/cm2 or less is usually sufficient. The preferred coating amount of platinum is 1 to 3 m.
g/C [112. [00211 Here, the amount of platinum covered in the porous platinum coating layer is the amount determined as follows using fluorescent X-ray analysis. That is, platinum plating is applied to various thicknesses by the method described above on a titanium substrate pretreated as described above,
Quantify the amount of plating using wet analysis and fluorescent X-ray analysis, plot the analytical values from both methods on a graph to create a standard calibration curve, and then subject the actual sample to fluorescent X-ray analysis. Calculate the amount of platinum coating from the value and standard calibration curve. [0022] Also, the apparent density of the platinum coating layer (δg/cm
3) is the platinum coating amount (0g7c) determined as above.
m3) and the thickness (tem) of the platinum coating layer determined by cross-sectional microscopic observation of the sample, as δ=ω/l. [0023] The titanium substrate provided with the porous platinum coating layer is then fired in the air to thermally decompose the titanium hydride film layer below the platinum coating layer, and the titanium hydride film layer under the platinum coating layer is thermally decomposed. Substantially most of the titanium hydride can be returned to titanium metal, and further, the titanium near the boundary with the platinum coating layer can be changed to titanium oxide in a low oxidation state. This firing is generally from about 300°C to about 600°C, preferably from about 300°C to about 4°C.
This can be done by heating at a temperature of 00°C for about 10 minutes to 4 hours. [0024] As a result, a very thin conductive titanium oxide layer is formed on the surface of the titanium substrate. The thickness of this titanium oxide layer is generally 100 to 1,000, preferably 200 to 1,000.
The composition of titanium oxide is preferably within the range of 600 A, and the composition of titanium oxide is generally such that X is 1 < x <
2, particularly preferably in the range 1, 9 < x < 2. [0025] Alternatively, the platinum dispersion coated titanium substrate may be directly subjected to the drilling process without being subjected to the firing process as described above. In this case, during the thermal decomposition treatment in the next step, the titanium hydride film layer on the surface of the titanium substrate is converted into titanium metal and titanium oxide in a low oxidation state. [00261 The surface of the porous platinum coating thus formed on the titanium substrate is then coated with a rhodium oxide layer. [0027] Formation of the acid rhodium oxide coating may include, for example,
A solution containing a rhodium compound that thermally decomposes in an oxygen-containing atmosphere, preferably air, to form rhodium oxide is applied onto the porous platinum coating layer, allowed to penetrate, and after drying as appropriate, heat treatment in an oxygen-containing atmosphere. This can be done by doing. Examples of the rhodium compound that can be used here include rhodium nitrate, rhodium chloride, etc., but rhodium nitrate is generally preferred. (0028) The rhodium compound solution is -
Generally, a solution of a rhodium compound in a lower alcohol (eg, methanol, ethanol, etc.) is suitable. If the rhodium compound is difficult to dissolve in lower alcohols, a solution of the rhodium compound can be prepared by first dissolving the rhodium compound in an aqueous solution of an acid such as nitric acid or hydrochloric acid, and then mixing it with the lower alcohol. The concentration of the rhodium compound in the solution is usually 5 to 100 g/l, particularly 10 to 50 g/l, which easily penetrates into the porous platinum layer in terms of rhodium metal.
It is convenient within the range of l. [002930 The application of the dium compound can be carried out by conventional methods such as brushing, spraying, dipping and the like. At this time, in order to promote penetration of the applied solution into the pores of the porous platinum coating layer, high-frequency vibration may be applied to the substrate depending on the case. [00301 The substrate having the porous platinum coated surface coated with the solution of the rhodium compound is optionally dried at a temperature within the range of about 20 to about 150°C and then fired in an oxygen-containing gas atmosphere, such as air. Firing is generally carried out in a suitable heating furnace, such as an electric furnace, a gas furnace, an infrared furnace, etc.
This can be done by heating to a temperature in the range of about 650<0>C, preferably from about 550<0>C to about 600<0>C. The heating time is approximately 3 minutes or more depending on the size of the substrate to be fired.
It can be about 30 minutes. [00311] By this firing, a rhodium oxide coating layer is formed on the surface of the porous platinum coating layer (inner and/or outer surface of the pores), and at the same time, a thin layer of titanium oxide under the platinum coating layer grows. [0032] The coating amount of rhodium oxide does not need to be enough to completely cover the entire surface of the porous platinum coating layer, and is generally 0.1 to 2 mg/cn in terms of rhodium metal.
12, preferably 0, 2-0, 7 mg/cm2
It is convenient to be within the range of . [0033] The surface of the titanium substrate on which the rhodium oxide layer has been formed on the surface of the porous platinum coating layer is further coated with an oxide layer mainly consisting of palladium oxide. [0034] The formation of such an oxide layer is usually carried out by applying a solution containing a palladium compound that can be thermally decomposed to produce palladium oxide in an oxygen-containing gas atmosphere, drying as appropriate, and then applying the solution in an oxygen-containing gas atmosphere. This can be done by heat treatment. Examples of the palladium compound used here include palladium nitrate, palladium chloride, palladium acetate, palladium abietate, dinitrodiammine palladium, and the like, among which palladium nitrate and dinitrodiammine palladium are preferred. [0035] As a solution containing such a palladium compound, a lower alcohol solution such as methanol or ethanol is particularly suitable. However, if the palladium compound to be used is sparingly soluble in lower alcohols, it may be prepared in advance in an aqueous solution of an acid such as nitric acid or hydrochloric acid. A solution containing a palladium compound may be prepared by dissolving the palladium compound in a solution and then mixing it with a lower alcohol. The concentration of the palladium compound in the solution is usually 5 to 100 g/l, especially 10 g/l, which easily penetrates the porous platinum coating layer provided with the rhodium oxide coating layer in terms of palladium metal.
A range of 50 g/l is suitable. [0036] Furthermore, a rhodium compound as described above can be added to the solution. The durability of the electrode formed thereby can be further improved. The amount of rhodium compound used is 20 mol% or less, preferably 2 to 1 mol% of rhodium oxide, based on the total amount of palladium oxide and rhodium oxide in the oxide layer formed using the solution.
The amount can be set within the range of 0 mol%. [0037] Formation of an oxide coating layer mainly consisting of palladium oxide from a solution containing a palladium compound and optionally a rhodium compound prepared as described above (
Coating, drying, and firing of the solution can be performed in the same manner as described above for forming the rhodium oxide layer. [0038] As a result, palladium oxide 80 to 1
An oxide coating layer containing 0.00 mol%, preferably 90-98 mol% and rhodium oxide 0-20 mol%, preferably 2-10 mol% can be provided. [0039] The coating layer of palladium oxide in the oxide layer is generally 0.05 to 2 m in terms of palladium metal.
g/cm", preferably within the range of 0.4 to 1.5 mg/cm". Moreover, the coating layer of rhodium oxide in the oxide layer is usually 0 to 0.0 in terms of rhodium metal.
5 mg/cm2, particularly within the range of 0.01 to 0.4 mg/cm'. [00401 In this specification, rhodium oxide (rhodium equivalent) and palladium oxide ( The coating amount of platinum (converted to platinum) is a value determined as follows using fluorescent X-ray analysis in the same manner as in the case of platinum. [0041ff That is, various amounts of each oxide were supported on the titanium substrate pretreated as described above using the method described above, and the amounts were quantified by wet analysis and fluorescent X-ray analysis, and analyzed by both methods. The values are plotted on a graph to create a standard calibration curve, and then the actual sample is subjected to fluorescent X-ray analysis, and each coating amount is determined from the analytical values and the calibration curve. [00421 The electrode of the present invention has at least three coating layers of a porous platinum layer, a rhodium oxide layer, and an oxide layer mainly composed of palladium oxide on a substrate made of titanium or a titanium-based alloy described above, It has a long electrode life and excellent durability, and also shows high chlorine generation efficiency even under conditions of high concentration of available chlorine, making it advantageous for use as an electrode for electrolysis of dilute chloride aqueous solutions such as salt water and seawater. I can do it. [00431 Next, the present invention will be explained in more detail with reference to Examples. [00441

【実施例]実施例I J I32種相当のチタン板素材(to5xwlOX 
1+omIn)をトリクロルエチレンで脱脂洗浄した後
、20℃の8重量%HF水溶液で2分間処理し、次いで
120℃の60重量%H2SO4溶液中で3分間処理し
た。次いで、チタン基体を硫酸溶液から取り出し、窒素
雰囲気中で冷水を噴霧し急冷した。更に20℃の0.3
%重量%HF水溶液中に2分間浸漬した後水洗した。 (OO45]水洗後P t (NH3h (NO2)2
を硫酸溶液に溶解してpt含有量5g/l、pH磐2.
50℃に調整した状態のPtめっき浴中で30mA/c
m2で約6分間のめっきを行なって、見掛密度16g/
cm3で電着量が1− 、7 mg/ cm2の多孔性
の白金被覆層をチタン基体上に形成した。 [0046]このようにして多孔性白金被覆層を設けた
チタン基体を400℃の大気中で1時間加熱処理した。 [0047]次いで、ロジウム濃度50g/l  (金
属換算)及び硝酸濃度95g/lに調整された硝酸ロジ
ウム水溶液とエタノールを混合し、ロジウム濃度25g
/l(金属換算)を含有する塗布液を調製した。この塗
布液をマイフロピベラ1へで1cm2当り2.7μl秤
量し、それを該基体に塗布し該多孔性白金被覆層に浸透
させた後、室温で30分間減圧乾燥し、更に600℃の
大気中で10分間焼成した。この塗布−乾燥〜焼成工程
を5回繰返し、多孔性白金被覆層表面にロジウム換算で
1cm2当り0.4mgの酸化ロジウム層を形成した。 [00481次いで、パラジウム濃度100g/l(金
属換算)及び硝酸濃度445g/lに調整された硝酸パ
ラジウム水溶液とエタノールを混合しパラジウム濃度2
5g/l(金属換算)を含有する溶液を調製し、さらに
ロジウム濃度50g/l(金属換算)及び硝酸濃度95
g/lの硝酸ロジウム水溶液を添加混合し、パラジウム
対ロジウムのモル比(金属換算)が20:1である硝酸
パラジウムと硝酸ロジウムを含有する塗布液を調製する
。この塗布液を用いて、前記と同様の塗布−乾燥−焼付
工程を8回繰り返して金属換算でIcm2当り0.6m
gの酸化パラジウムと0.03mgの酸化ロジウムを含
有する酸化物被覆層を形成した。かくして実施例電極−
1を作製した。比較のため、上記実施例−1と同様の方
法でチタン基体上に白金を被覆して比較例電極−1を作
製した。 [00491このようにして得られた電極を次の条件下
で電解した時の有効塩素濃度と塩素発生効率の関係を図
1に示す。 [00501 電解液:3%NaC1 電流密度: t 5A/dm2 対極:Ti 図1より、実施例電極−1は有効塩素高濃度下でも塩素
発生効率が高い電極であることがわかる。 [005L]実施例2 前記実施例1に記載したと同様の方法でチタン板の前処
理を行なった。 [00521次いで、P t (NH3)2 (NO2
)2をPt換算で10g/l含むpH≠9のアンモニア
水溶液に、亜硝酸すトリウム及び硝酸アンモニウムをそ
れぞれ5g/l及び20g/lの濃度で添加したPtめ
っき浴中で、90℃、15mA/cm2で約14分間P
tめっきを行なった後、塩酸と硝酸の混合水溶液で処理
を行ない、該チタン板上に見掛密度が14g/cm3で
電蓄量が2.3mg/C1112の多孔性の白金被覆層
を形成した。 [00531次いで、ロジウム濃度50g/l  (金
属換算)及び硝酸濃度95g/lに調整された硝酸ロジ
ウム水溶液とエタノールを混合し、ロジウム濃度25g
/l(金属換算)を含有する塗布液を調製した。この塗
布液をマイクロピペットで1cm2当り2.71zl秤
量し、それを該基体に塗布し、該多孔性白金被覆層に浸
透させた後、室温で30分間減圧乾燥し、更に600℃
の大気中で10分間焼成した。この塗布−乾燥−焼成工
程を5回繰返すことにより、多孔性白金被覆層表面にロ
ジウム換算で1cm”当り0.4mgの酸化ロジウム被
覆層を形成した。 (00541次いで、酸化ロジウム被覆層を設けた多孔
性白金被覆層上に酸化パラジウムを担持させるため、パ
ラジウム濃度100g/l(金属換算)及び硝酸濃度・
145g/lに調整された硝酸パラジウム水溶液とエタ
ノールを混合し、パラジウム濃度25g/l  (金属
換算)を含有する塗布液を調製した後、この塗布液を用
いて前記と同様の塗布−乾燥−焼成工程を8回繰返して
パラジウム換算でIcm2当り0.6mgの酸化物被覆
層を形成せしめた。かくして実施例電極−2を作成した
。 (Pd金属換算で1cm2当り0.6mmg担持)
比較のため、中間の酸化ロジウム層を省略する以外は上
記実施例電極−2と同様にして比較例電極−2を作製し
た。 【0055】このようにし−C得られた′@極を次の条
件下で電解した時の酸化パラジウムの消耗率を図2に示
す。 [0056] 電解液:6%NaC1 電流密度ニア5A/dm’ 対極:1゛i [0057]
[Example] Example I J Titanium plate material equivalent to type 32 (to5xwlOX
1+omIn) was degreased and washed with trichlorethylene, then treated with an 8 wt% aqueous HF solution at 20°C for 2 minutes, and then treated with a 60 wt% H2SO4 solution at 120°C for 3 minutes. The titanium substrate was then removed from the sulfuric acid solution and quenched by spraying with cold water in a nitrogen atmosphere. Furthermore, 0.3 at 20℃
%wt% HF aqueous solution for 2 minutes and then washed with water. (OO45) After washing with water P t (NH3h (NO2)2
was dissolved in a sulfuric acid solution with a PT content of 5 g/l and a pH of 2.
30mA/c in a Pt plating bath adjusted to 50℃
After plating for about 6 minutes at m2, the apparent density was 16g/
A porous platinum coating layer with an electrodeposition amount of 1-7 mg/cm2 was formed on a titanium substrate. [0046] The titanium substrate provided with the porous platinum coating layer in this manner was heat treated in the atmosphere at 400° C. for 1 hour. [0047] Next, a rhodium nitrate aqueous solution adjusted to a rhodium concentration of 50 g/l (metal equivalent) and a nitric acid concentration of 95 g/l was mixed with ethanol, and a rhodium concentration of 25 g was obtained.
A coating solution containing /l (metal equivalent) was prepared. This coating solution was weighed at 2.7 μl per 1 cm2 onto Myflopivera 1, applied to the substrate and permeated into the porous platinum coating layer, dried under reduced pressure at room temperature for 30 minutes, and further in the air at 600°C. It was baked for 10 minutes. This coating-drying-firing process was repeated five times to form a rhodium oxide layer of 0.4 mg/cm 2 in terms of rhodium on the surface of the porous platinum coating layer. [00481 Next, a palladium nitrate aqueous solution adjusted to a palladium concentration of 100 g/l (metal equivalent) and a nitric acid concentration of 445 g/l was mixed with ethanol to give a palladium concentration of 2.
A solution containing 5 g/l (metal equivalent) was prepared, and a rhodium concentration of 50 g/l (metal equivalent) and a nitric acid concentration of 95
g/l of an aqueous rhodium nitrate solution is added and mixed to prepare a coating solution containing palladium nitrate and rhodium nitrate with a molar ratio of palladium to rhodium (metal equivalent) of 20:1. Using this coating solution, the same coating-drying-baking process as described above was repeated 8 times to obtain a coating of 0.6 m/Icm2 in terms of metal.
An oxide coating layer containing g of palladium oxide and 0.03 mg of rhodium oxide was formed. Thus, the example electrode-
1 was produced. For comparison, Comparative Example Electrode-1 was prepared by coating platinum on a titanium substrate in the same manner as in Example-1 above. [00491 FIG. 1 shows the relationship between the effective chlorine concentration and the chlorine generation efficiency when the electrode thus obtained was electrolyzed under the following conditions. [00501 Electrolyte: 3% NaCl Current density: t 5 A/dm2 Counter electrode: Ti From FIG. 1, it can be seen that Example Electrode-1 is an electrode with high chlorine generation efficiency even under a high concentration of available chlorine. [005L] Example 2 A titanium plate was pretreated in the same manner as described in Example 1 above. [00521 Then P t (NH3)2 (NO2
)2 in an ammonia aqueous solution with a pH≠9 containing 10 g/l in terms of Pt, in a Pt plating bath in which thorium nitrite and ammonium nitrate were added at concentrations of 5 g/l and 20 g/l, respectively, at 90°C and 15 mA/cm2. for about 14 minutes
After T-plating, a porous platinum coating layer with an apparent density of 14 g/cm3 and a charge capacity of 2.3 mg/C1112 was formed on the titanium plate by treatment with a mixed aqueous solution of hydrochloric acid and nitric acid. . [00531 Next, a rhodium nitrate aqueous solution adjusted to a rhodium concentration of 50 g/l (metal equivalent) and a nitric acid concentration of 95 g/l was mixed with ethanol, and a rhodium concentration of 25 g/l was mixed.
A coating solution containing /l (metal equivalent) was prepared. This coating solution was weighed at 2.71 zl per 1 cm2 with a micropipette, applied to the substrate, and allowed to penetrate into the porous platinum coating layer, then dried under reduced pressure at room temperature for 30 minutes, and further heated at 600°C.
It was fired for 10 minutes in an atmosphere of By repeating this coating-drying-firing process five times, a rhodium oxide coating layer of 0.4 mg per 1 cm (rhodium equivalent) was formed on the surface of the porous platinum coating layer. In order to support palladium oxide on the porous platinum coating layer, the palladium concentration was 100 g/l (metal equivalent) and the nitric acid concentration was
A palladium nitrate aqueous solution adjusted to 145 g/l and ethanol were mixed to prepare a coating liquid containing a palladium concentration of 25 g/l (metal equivalent), and then this coating liquid was used for coating, drying, and baking in the same manner as above. The process was repeated eight times to form an oxide coating layer of 0.6 mg per Icm2 in terms of palladium. In this way, Example electrode-2 was created. (0.6 mmg supported per 1 cm2 in terms of Pd metal)
For comparison, Comparative Example Electrode-2 was produced in the same manner as Example Electrode-2 except that the intermediate rhodium oxide layer was omitted. FIG. 2 shows the consumption rate of palladium oxide when the '@ electrode thus obtained was electrolyzed under the following conditions. [0056] Electrolyte: 6% NaC1 Current density near 5A/dm' Counter electrode: 1゛i [0057]

【数1】 [0058]図2により、実施例電極−2は比較例電極
2に比べて酸化パラジウムの消耗が少なく耐久性に優れ
ていることがわかる。
[0058] From FIG. 2, it can be seen that Example Electrode-2 has less palladium oxide consumption and is superior in durability than Comparative Example Electrode 2.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1において作製した実施例電極−1,と
比較例電極−1の電解時の有効塩素濃度と塩素発生効率
との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between effective chlorine concentration and chlorine generation efficiency during electrolysis of Example Electrode-1 and Comparative Example Electrode-1 produced in Example 1.

【図2】実施例2において作成した実施例@極−2と比
較例電極−2の電解時の酸化パラジウムの消耗率を示す
グラフである。
FIG. 2 is a graph showing the consumption rate of palladium oxide during electrolysis of Example @ Electrode-2 prepared in Example 2 and Comparative Example Electrode-2.

【図2】[Figure 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(a)チタン又はチタン基合金よりなる電
極基体と、 (b)酸化チタン層を介して該電極基体表面に設けられ
た見掛密度が8〜19g/cm^3の範囲内にある多孔
性白金被覆層と、 (c)該多孔性白金被覆層の表面を被覆する酸化ロジウ
ム層と、 (d)酸化パラジウム80〜100モル%及び酸化ロジ
ウム0〜20モル%を含有する酸化物被覆層とからなる
ことを特徴とする電解用電極。
Claim 1: (a) an electrode base made of titanium or a titanium-based alloy; (b) provided on the surface of the electrode base via a titanium oxide layer with an apparent density within the range of 8 to 19 g/cm^3; (c) a rhodium oxide layer covering the surface of the porous platinum coating layer; and (d) an oxide containing 80 to 100 mol% of palladium oxide and 0 to 20 mol% of rhodium oxide. An electrode for electrolysis characterized by comprising a material coating layer.
【請求項2】(i)表面に薄い水素化チタン層を形成せ
しめたチタン又はチタン基合金よりなる電極基体上に見
掛密度が8〜19g/cm^2の範囲内にある多孔性白
金被覆層を設け、必要により酸素含有雰囲気中で焼成し
た後、 (ii)該多孔性白金被覆層表面に、酸素含有雰囲気中
で熱分解して酸化ロジウムを生成しうるロジウム化合物
の溶液を塗布した後、酸素含有雰囲気中で熱処理して、
該白金被覆層上に酸化ロジウム層を形成し、 (iii)さらに、酸素含有雰囲気中で熱分解して酸化
パラジウムを生成しうるパラジウム化合物及び場合によ
り酸素含有雰囲気中で熱分解して酸化ロジウムを生成し
うるロジウム化合物を含有する溶液を塗布した後、酸素
含有雰囲気中で熱処理して、該酸化ロジウム層上に酸化
パラジウム及び場合により酸化ロジウムを含有する酸化
物層を形成することを特徴とする請求項1記載の電解用
電極の製造法。
(i) A porous platinum coating having an apparent density within the range of 8 to 19 g/cm^2 on an electrode base made of titanium or titanium-based alloy with a thin titanium hydride layer formed on the surface. (ii) after coating the surface of the porous platinum coating layer with a solution of a rhodium compound that can be thermally decomposed to produce rhodium oxide in an oxygen-containing atmosphere; , heat treated in an oxygen-containing atmosphere,
forming a rhodium oxide layer on the platinum coating layer; (iii) further comprising a palladium compound that can be thermally decomposed in an oxygen-containing atmosphere to produce palladium oxide; After applying a solution containing a rhodium compound that can be generated, heat treatment is performed in an oxygen-containing atmosphere to form an oxide layer containing palladium oxide and optionally rhodium oxide on the rhodium oxide layer. A method for manufacturing an electrode for electrolysis according to claim 1.
JP2410066A 1990-12-13 1990-12-13 Electrode for electrolysis Expired - Fee Related JP3048647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410066A JP3048647B2 (en) 1990-12-13 1990-12-13 Electrode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2410066A JP3048647B2 (en) 1990-12-13 1990-12-13 Electrode for electrolysis

Publications (2)

Publication Number Publication Date
JPH04210488A true JPH04210488A (en) 1992-07-31
JP3048647B2 JP3048647B2 (en) 2000-06-05

Family

ID=18519296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410066A Expired - Fee Related JP3048647B2 (en) 1990-12-13 1990-12-13 Electrode for electrolysis

Country Status (1)

Country Link
JP (1) JP3048647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052130B1 (en) * 2021-08-17 2022-04-11 田中貴金属工業株式会社 Electrode for chlorine generation and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052130B1 (en) * 2021-08-17 2022-04-11 田中貴金属工業株式会社 Electrode for chlorine generation and its manufacturing method

Also Published As

Publication number Publication date
JP3048647B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
JP4554542B2 (en) Electrode for electrolysis
JP4884333B2 (en) Electrode for electrolysis
JP4346070B2 (en) Electrode for hydrogen generation
JPH036232B2 (en)
JP2008050675A (en) Electrode for electrolysis
JP7097042B2 (en) Electrode for chlorine generation
JP2505563B2 (en) Electrode for electrolysis
US4310391A (en) Electrolytic gold plating
JP6588816B2 (en) Chlorine generating electrode
JPH02190491A (en) Electrolytic electrode
JP2023095833A (en) Electrode for chlorine generation
US5665218A (en) Method of producing an oxygen generating electrode
JP3621148B2 (en) Electrode for electrolysis and method for producing the same
JPH04210488A (en) Electrolytic electrode
JP3868513B2 (en) Electrode for seawater electrolysis and method for producing the same
JP2024010642A (en) Electrode for generating chlorine
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
JPH0340112B2 (en)
JP2024089822A (en) Chlorine Evolution Electrode
CN118241251A (en) Electrode for generating chlorine
JP2001262388A (en) Electrode for electrolysis
JP3048648B2 (en) Electrode for electrolysis
JP6200882B2 (en) Electrode for producing hydrogen water and production method
JPH025832B2 (en)
WO2024004776A1 (en) Electrode for ozone generation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees