JPH04210469A - Ion plating device - Google Patents

Ion plating device

Info

Publication number
JPH04210469A
JPH04210469A JP41017790A JP41017790A JPH04210469A JP H04210469 A JPH04210469 A JP H04210469A JP 41017790 A JP41017790 A JP 41017790A JP 41017790 A JP41017790 A JP 41017790A JP H04210469 A JPH04210469 A JP H04210469A
Authority
JP
Japan
Prior art keywords
electron beam
substrate
crucible
electron
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP41017790A
Other languages
Japanese (ja)
Inventor
Tadayoshi Otani
男谷 忠義
Kazutoshi Kusakabe
日下部 和利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP41017790A priority Critical patent/JPH04210469A/en
Publication of JPH04210469A publication Critical patent/JPH04210469A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To control a change in the probability of collision of an electron beam with the vaporized particles, etc., due to the pressure change in a vessel and to uniformize the quality of a film by providing a means for changing the injection angle of the electron beam and changing the traveling distance of the electron beam. CONSTITUTION:A vaporization material 4 in a crucible 3 is irradiated with an electron beam E1 and vaporized. A magnetic field B is generated between the crucible 3 and a substrate 7, and an electron beam E2 is spirally emitted from an electron gun 9 toward an electrode 14. In this process, a gaseous reactant collides with the vaporized particles and is ionized to produce plasma P, and a positive ion collides with the substrate 7 to form a compd. thin film on the surface. The pressure in the vessel 1 is detected by a vacuum gage 19, the injection angle of the beam E2 is changed in accordance with the pressure, and the traveling distance of the electron is changed. The change in the probability of collison of the electron with vaporized particles, etc., due to the pressure change in the vessel 1 is kept constant.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野] 本発明は、蒸発物質をイオン化
し、基板上に衝突させて成膜を行うイオンプレーティン
グ装置に関する。 [0002] 【従来の技術】 かかるイオンプレーティング装置にお
いて、膜質の向上や反応ガスのイオン化促進を図るため
に、蒸発物質を蒸発するための第1のホローカソードガ
ンの他に第2のホローカソードガンを組み込み、第2の
ホローカソードガンからの電子ビームにて反応ガスや蒸
発粒子をイオン化してプラズマ化すると共に、蒸発粒子
をもイオン化するようにしたイオンプレーティング装置
が提案されている。 [0003]Lかし、かかる装置では、ホローカソード
ガンに対向して電極を設け、ホローカソードガンからの
電子ビームを蒸発粒子の進行方向と直交する方向に直進
させるようになしであるため、反応ガス等のプラズマ化
を効率良く行うことができない。 [0004]そこで、近時、反応ガス等のプラズマ化を
効率良く行うために、容器内に磁場を形成することによ
り電子ビームを基板に向けて螺旋状に進行させ、電子ビ
ームと反応ガスとの衝突回数をできるだけ多くするよう
にした装置が提案されている。 [0005]
[Field of Industrial Application] The present invention relates to an ion plating apparatus that ionizes an evaporated substance and causes it to collide with a substrate to form a film. [0002] [0002] In such an ion plating apparatus, in order to improve film quality and promote ionization of reaction gas, a second hollow cathode gun is provided in addition to a first hollow cathode gun for evaporating evaporated substances. An ion plating apparatus has been proposed that incorporates a gun and uses an electron beam from a second hollow cathode gun to ionize reaction gas and evaporated particles into plasma, and also ionizes evaporated particles. [0003] However, in such a device, an electrode is provided opposite to the hollow cathode gun, and the electron beam from the hollow cathode gun is made to travel straight in a direction perpendicular to the traveling direction of the evaporated particles, so there is no reaction. It is not possible to convert gas, etc. into plasma efficiently. [0004] Recently, in order to efficiently convert reactive gases, etc. into plasma, a magnetic field is formed in the container to cause the electron beam to travel spirally toward the substrate, thereby increasing the interaction between the electron beam and the reactive gas. A device has been proposed that increases the number of collisions as much as possible. [0005]

【発明が解決しようとする課題】 このように電子ビー
ムを螺旋状に進行させれば、プラズマが効率良く発生し
て成膜の高速化が可能となるが、その反面、容器内の圧
力の影響を受は易くて膜質が低下する。つまり、容器内
の圧力が高い場合と低い場合とで電子ビームと蒸発粒子
や反応ガスとの衝突回数(衝突確立)が大きく異なって
くるため、プラズマの発生率が変化して膜質を一定に保
つことができなくなると共に、再現性が低下する。 [0006]そこで、本発明はかかる点に鑑み、圧力変
化に伴う膜質の変化を抑えることができると共に、再現
性の良い薄膜を形成することのできるイオンプレーティ
ング装置を提供することを目的とするものである。 [0007]
[Problems to be Solved by the Invention] If the electron beam is made to travel in a spiral pattern in this way, plasma can be generated efficiently and film formation can be accelerated, but on the other hand, it is affected by the pressure inside the container. It is easy to absorb and the film quality deteriorates. In other words, the number of collisions (probability of collision) between the electron beam and the evaporated particles or reaction gas varies greatly depending on whether the pressure inside the container is high or low, so the plasma generation rate changes and the film quality remains constant. It becomes impossible to do so, and reproducibility decreases. [0006] Therefore, in view of this point, an object of the present invention is to provide an ion plating apparatus that can suppress changes in film quality due to pressure changes and can form a thin film with good reproducibility. It is something. [0007]

【課題を解決するための手段】 上記目的を達成するた
め、本発明のイオンプレーティング装置は、るつぼ内に
収容された蒸発物質を加熱蒸発するための手段と、前記
るつぼと対向するように置かれ且つホルダに保持された
基板と、該基板と前記るつぼとの間の空間に向けて電子
ビームを射出するための電子ビーム発生手段と、該電子
ビーム発生手段からの電子ビームを前記基板に向けて螺
旋軌道を描きつつ進行させるための磁場発生手段とを備
え、前記電子ビーム発生手段からるつぼと基板間に射出
される電子ビームの射出角度を変化させる手段を設けた
ことを特徴とするものである。 [00081以下、本発明の実施例を図面に基づいて詳
説する。 [0009]
[Means for Solving the Problems] In order to achieve the above object, the ion plating apparatus of the present invention includes means for heating and evaporating an evaporation substance contained in a crucible, and a means disposed opposite to the crucible. a substrate held by the holder; an electron beam generating means for emitting an electron beam toward a space between the substrate and the crucible; and directing the electron beam from the electron beam generating means toward the substrate. a magnetic field generating means for causing the electron beam to advance while drawing a spiral trajectory, and a means for changing the emission angle of the electron beam emitted from the electron beam generating means between the crucible and the substrate. be. [00081 Hereinafter, embodiments of the present invention will be explained in detail based on the drawings. [0009]

【実施例】 図1は本発明に係るイオンプレーティング
装置の一例を示す構成概略図の断面図、図2は図1のA
A断面図である。 [00101同図において、1は容器で、内部は排気口
2を介して図示外の真空ポンプに接続され真空に保たれ
る。3は蒸発物質4を収容したるつぼ、5は蒸発物質4
を加熱蒸発するためのホローカソードガン、6は前記る
つぼ3に対向して置かれた基板7を保持するホルダで、
図示外の電気絶縁物質を介して前記容器1内に支持され
ており、また、このホルダにはバイアス電源8より負の
バイアス電圧が印加されている。 [001119は電子ビームを発生するための電子銃で
、この電子銃は前記るつぼ3と基板7との間に位置する
ように容器1外壁に固定されている。10はこの電子銃
からの電子ビームを上下方向や左右方向(水平方向)に
偏向するための静電偏向系で、互い直交するように配置
された一対のX及びY方向偏向板11.12で構成され
ている。13はこのX及びY方向偏向板に夫々静電電圧
を印加するための偏向電源、14は前記ホルダ6の外周
付近に配置された梁状のアノード電極で、電源15によ
り正の電圧に保たれている。 [0012] 16,17は前記容器1内のるつぼ1と
基板7との空間に垂直な磁場を形成するための電磁コイ
ルで、前記容器1外壁に固定されている。 [0013118は前記容器1内に反応ガスを導入する
ための導入パイプ、19は前記容器1内の圧力を測定す
るための真空計、20は前記静電偏向系10の外周を囲
繞するように配置されたシールド筒である。 [0014]かかる構成において、先ず、容器1内を排
気口2を介して任意の圧力(例えば10−5〜1O−7
Torr程度)に排気した後、導入パイプ18から酸素
や窒素等の反応ガスを導入する。そして、電磁コイル1
6.17に夫々同一の電流を流すことにより容器1内に
垂直な磁場Bを形成すると共に、ホローカソードガン5
から電子ビームE1をるつぼ3内の蒸発物質4に照射し
、矢印Cで示すように物質4を加熱して蒸発させる。 この状態で、電子銃9からの電子ビームE2を前記容器
■内に射出させると共に、偏向@源13により一対のX
方向偏向板11に電圧を印加することにより電子ビーム
が容器1内壁に沿うように偏向すれば、電子ビームは垂
直な磁場Bで偏向され図2に示すようにるつぼ3の上方
で回転する。これと同時に、他方の一対のY方向偏向板
12に電圧を印加して電子ビームE2を若干上向きに射
出するように偏向すれば、電子ビームは図1中実線で示
すように螺旋を描きながら電極14に向かう。この電子
ビームが螺旋を描きながら上昇する過程で、るつぼ3か
らの蒸発粒子や反応ガスと衝突を繰返してこれらを解離
、励起あるいは電離(イオン化)して高密度プラズマP
を発生させる。このとき、ホルダ6には負のバイアス電
圧が印加されているため、発生したプラズマ中の正イオ
ンが基板7に加速されて衝突するため、基板表面には化
学反応によってできた化合物薄膜が形成される。ここで
、本実施例で示すようにアノード電極14に正の電圧を
印加すれば、蒸発粒子や反応ガスとの衝突によりエネル
ギーが減衰した電子ビームE2をこのアノード電極に引
き付けることができる。つまり電子ビームを基板7近傍
までもってくることができるので、プラズマPの生成を
るつぼ3と基板1との中間付近は勿論のこと基板の近傍
部分でも生成させることが可能となるため、効率の良い
成膜を行うことができる。 [0015]ところで、導入パイプ18から導入する反
応ガスの導入量や壁からのガス放出量等の変化により容
器1内の圧力に変化が生じると、電子ビームE2と蒸発
粒子や反応ガスとの衝突確率が変化して膜質を一定に保
つことができなくなると共に、再現性の低下を招く。そ
こで、圧力計19にて容器1内の圧力が上昇したのが確
認されると、偏向電源13を操作してY方向偏向板12
による電子ビームE2の上向きの偏向量を大きく、つま
り容器1内に射出する電子ビームの偏向角を図1中実線
よりも基板7側に大きくし電子ビームの螺旋軌道による
距離を短くする。また、逆に、容器内の圧力が低くなっ
たことが確認されると、電子ビームの偏向角を図1中実
線よりもるつぼ3側に小さくして電子ビームの螺旋軌道
の距離を長くする。 [00163このように、容器1内の圧力変化に伴って
電子ビームの基板方向に向けての偏向角を変化させれば
、電子ビームの螺旋状の進行距離を変化させることがで
きるため、電子ビームと蒸発粒子や反応ガスとの衝突確
率は一定に保たれ圧力変化に伴う膜質の変化を防止でき
ると共に、再現性の良い薄膜を形成することができる。 [00171尚、前述の説明は本発明の一例であり、実
施にあたっては幾多の変形が考えられる。例えば上記実
施例では、容器1内の圧力を真空計にて確認して電子ビ
ームE2の上向きの偏向角を制御するように述べたが、
これに限定されることなく、容器1内の圧力を常に検出
して偏向電源13を自動的に制御するように構成しても
良い。即ち図3に示すように真空計19からの出力信号
が導入される制御回路21を設けると共に、この制御回
路に予め実験等によって求められた容器内の各圧力に対
する適正な偏向角度を記憶させておけば、容器内の圧力
変化に伴って電子ビームの偏向角が自動的に設定され、
常に一定の割合で電子ビームと蒸発粒子や反応ガスとの
衝突を行わせることができる。 [0018]また、上述の説明では、lビームE2を螺
旋状に偏向させるために電子ビームを上方(基板7側)
に向けて偏向させたが、下方(るつぼ3側)に向けて偏
向させても良い。 [0019]また、上記実施例では、容器内に垂直な磁
場Bを形成するために偏向コイル16.17に夫々同一
の電流を供給した場合について述べたが、各コイルに流
す電流量を変化させることによりプラズマPの形状を変
化させることができる。例えば、下方の偏向コイルに流
す電流を上方の偏向コイルよりも大きくした場合、基板
側の磁場が弱くなり、それによって磁力線が基板部分で
容器外に向かって拡がった状態となる。その結果、プラ
ズマPが下方の磁場によって上方に押し上げられプラズ
マは基板付近で拡がった状態で分布するため、大きな基
板を使用しても基板全面にわたってプラズマを分布させ
ることができるので、効率良く薄膜を形成することが可
能となる。つまり基板の大小に応じて各偏向コイルに流
す電流を調整すれば良いわけである。従って、上方の偏
向コイルは使用しない場合もある。 [00201さらに、上記実施例では、アノード電極1
4に正の電圧を印加したが、アース電位にしても良い。 この場合には、このアノード電極を使用しないで容器自
体をアノード電極とし使用しても良い。 [0021]さらに、上記実施例では、電子ビームE2
の偏向手段として静電偏向系を使用したが、電磁偏向系
を使用しても良い。 [0022]さらに、上記実施例では偏向手段を用いて
電子ビームE2の水平方向及びるつぼと基板方向におけ
ると偏向角を調整するようにしたが、電子銃を容器側壁
に対して真空を維持した状態で上下、左右に回動可能に
取り付け、この電子銃自体を手動あるいは電気的手段等
にて自動的に動かして電子ビームの導入方向を調整する
ようにしても良い。 [0023]さらに、上記実施例では、ホローカソード
ガンにて蒸発材料を加熱、蒸発させたが、電子ビーム等
の他の既知の加熱手段を使用しても良い。 [0024]
[Example] FIG. 1 is a sectional view of a schematic configuration diagram showing an example of an ion plating apparatus according to the present invention, and FIG.
It is an A sectional view. [00101 In the figure, 1 is a container, and the inside thereof is connected to a vacuum pump (not shown) through an exhaust port 2 to maintain a vacuum. 3 is a crucible containing evaporated substance 4, 5 is evaporated substance 4
a hollow cathode gun for heating and evaporating the crucible; 6 is a holder for holding the substrate 7 placed opposite the crucible 3;
The holder is supported within the container 1 via an electrically insulating material (not shown), and a negative bias voltage is applied to this holder from a bias power supply 8. [001119 is an electron gun for generating an electron beam, and this electron gun is fixed to the outer wall of the container 1 so as to be located between the crucible 3 and the substrate 7. Reference numeral 10 denotes an electrostatic deflection system for deflecting the electron beam from the electron gun in the vertical and horizontal directions (horizontal direction), which includes a pair of X and Y direction deflection plates 11 and 12 arranged orthogonally to each other. It is configured. Reference numeral 13 denotes a deflection power supply for applying electrostatic voltages to the X and Y direction deflection plates, and 14 indicates a beam-shaped anode electrode arranged near the outer periphery of the holder 6, which is maintained at a positive voltage by a power supply 15. ing. [0012] Numerals 16 and 17 are electromagnetic coils for forming a magnetic field perpendicular to the space between the crucible 1 and the substrate 7 in the container 1, and are fixed to the outer wall of the container 1. [0013118 is an introduction pipe for introducing a reaction gas into the container 1, 19 is a vacuum gauge for measuring the pressure inside the container 1, and 20 is arranged to surround the outer periphery of the electrostatic deflection system 10. It is a shield tube made of aluminum. [0014] In this configuration, first, the inside of the container 1 is heated to an arbitrary pressure (for example, 10-5 to 1O-7
After exhausting the gas to a pressure of about 10.5 Torr (approx. Torr), a reactive gas such as oxygen or nitrogen is introduced from the introduction pipe 18. And electromagnetic coil 1
A vertical magnetic field B is formed in the container 1 by applying the same current to each of the hollow cathode guns 5 and 6.17.
The electron beam E1 is irradiated onto the evaporated substance 4 in the crucible 3, and the substance 4 is heated and evaporated as shown by arrow C. In this state, the electron beam E2 from the electron gun 9 is emitted into the container (2), and a pair of X
When the electron beam is deflected along the inner wall of the container 1 by applying a voltage to the direction deflection plate 11, the electron beam is deflected by the perpendicular magnetic field B and rotates above the crucible 3 as shown in FIG. At the same time, if a voltage is applied to the other pair of Y-direction deflection plates 12 to deflect the electron beam E2 so as to emit it slightly upward, the electron beam will spiral as shown by the solid line in FIG. Head to 14th. As this electron beam ascends in a spiral, it repeatedly collides with evaporated particles and reaction gases from the crucible 3, dissociating, exciting, or ionizing them, resulting in a high-density plasma
to occur. At this time, since a negative bias voltage is applied to the holder 6, positive ions in the generated plasma are accelerated and collide with the substrate 7, so that a thin compound film formed by a chemical reaction is formed on the substrate surface. Ru. Here, if a positive voltage is applied to the anode electrode 14 as shown in this embodiment, the electron beam E2 whose energy has been attenuated by collision with evaporated particles and reaction gas can be attracted to this anode electrode. In other words, since the electron beam can be brought close to the substrate 7, it is possible to generate plasma P not only in the intermediate area between the crucible 3 and the substrate 1, but also in the vicinity of the substrate, which is highly efficient. Film formation can be performed. [0015] By the way, if the pressure inside the container 1 changes due to changes in the amount of reaction gas introduced from the introduction pipe 18 or the amount of gas released from the wall, collisions between the electron beam E2 and the evaporated particles and the reaction gas occur. The probability changes, making it impossible to keep the film quality constant and causing a decrease in reproducibility. Therefore, when it is confirmed by the pressure gauge 19 that the pressure inside the container 1 has increased, the deflection power source 13 is operated to cause the Y-direction deflection plate 12 to
The amount of upward deflection of the electron beam E2 is increased, that is, the deflection angle of the electron beam emitted into the container 1 is increased toward the substrate 7 side from the solid line in FIG. 1, and the distance along the spiral trajectory of the electron beam is shortened. Conversely, when it is confirmed that the pressure inside the container has decreased, the deflection angle of the electron beam is made smaller toward the crucible 3 side than the solid line in FIG. 1, and the distance of the helical trajectory of the electron beam is increased. [00163 In this way, by changing the deflection angle of the electron beam toward the substrate as the pressure inside the container 1 changes, the spiral traveling distance of the electron beam can be changed. The probability of collision between the evaporated particles and the reactant gas is kept constant, and changes in film quality due to pressure changes can be prevented, and thin films with good reproducibility can be formed. [00171 The above description is an example of the present invention, and many modifications can be made in implementing the present invention. For example, in the above embodiment, it was described that the upward deflection angle of the electron beam E2 was controlled by checking the pressure inside the container 1 with a vacuum gauge.
The present invention is not limited to this, and the configuration may be such that the pressure inside the container 1 is constantly detected and the deflection power source 13 is automatically controlled. That is, as shown in FIG. 3, a control circuit 21 is provided to which the output signal from the vacuum gauge 19 is introduced, and this control circuit is stored with appropriate deflection angles for each pressure inside the container, which have been determined in advance through experiments or the like. The deflection angle of the electron beam will be automatically set according to the pressure change inside the container.
Collision between the electron beam and the evaporated particles or reactant gas can always occur at a constant rate. [0018] Furthermore, in the above description, the electron beam is directed upward (on the substrate 7 side) in order to spirally deflect the l beam E2.
Although it was deflected toward the above, it may also be deflected downward (toward the crucible 3 side). [0019]Also, in the above embodiment, the case was described in which the same current was supplied to each of the deflection coils 16 and 17 in order to form a vertical magnetic field B in the container, but it is possible to change the amount of current flowing through each coil. This allows the shape of the plasma P to be changed. For example, if the current flowing in the lower deflection coil is made larger than that in the upper deflection coil, the magnetic field on the substrate side becomes weaker, and as a result, the lines of magnetic force spread toward the outside of the container at the substrate portion. As a result, the plasma P is pushed upward by the magnetic field below, and the plasma is distributed in a spread state near the substrate. Even if a large substrate is used, the plasma can be distributed over the entire surface of the substrate, making it possible to efficiently form thin films. It becomes possible to form. In other words, the current flowing through each deflection coil can be adjusted depending on the size of the substrate. Therefore, the upper deflection coil may not be used. [00201 Furthermore, in the above embodiment, the anode electrode 1
Although a positive voltage was applied to 4, it may be set to ground potential. In this case, the container itself may be used as an anode electrode without using this anode electrode. [0021] Furthermore, in the above embodiment, the electron beam E2
Although an electrostatic deflection system is used as the deflection means, an electromagnetic deflection system may also be used. [0022]Furthermore, in the above embodiment, the deflection angle of the electron beam E2 in the horizontal direction and in the direction of the crucible and the substrate was adjusted using the deflection means, but the electron gun was kept in vacuum with respect to the side wall of the container. The electron gun may be mounted so as to be rotatable up and down and left and right, and the direction of introduction of the electron beam may be adjusted by moving the electron gun itself manually or automatically by electrical means. [0023] Further, in the above embodiment, the evaporation material was heated and evaporated using a hollow cathode gun, but other known heating means such as an electron beam may be used. [0024]

【発明の効果】 以上詳述した本発明によれば、電子ビ
ームを螺旋状に進行させながら蒸発粒子や反応ガスをイ
オン化するに際に、るつぼと基板間に出射される電子ビ
ームの射出角度を任意に変えて電子ビームの進行距離を
変化させることができるため、容器内の圧力変化に伴う
電子ビームと蒸発粒子や反応ガスとの衝突確率の変化を
常に一定に保つことができる。その結果、圧力変化に関
係なく一定の膜質の薄膜を形成することができると共に
、再現性の良いイオンプレーティング装置を提供するこ
とができる。
Effects of the Invention According to the present invention described in detail above, when ionizing evaporated particles and reaction gas while making the electron beam travel in a spiral pattern, the emission angle of the electron beam emitted between the crucible and the substrate can be adjusted. Since the traveling distance of the electron beam can be changed arbitrarily, the change in the probability of collision between the electron beam and the evaporated particles or the reactant gas due to changes in the pressure inside the container can be kept constant. As a result, it is possible to form a thin film with constant film quality regardless of pressure changes, and it is also possible to provide an ion plating apparatus with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】 本発明に係るイオンプレーティング装置の一
例を示す構成略図の断面図である。
FIG. 1 is a cross-sectional view of a schematic configuration diagram showing an example of an ion plating apparatus according to the present invention.

【図2】 図1のAA断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 1.

【図3】 本発明に係るイオンフルーティング装置の他
の例を示す構成概略図の断面図である。
FIG. 3 is a cross-sectional view of a schematic configuration diagram showing another example of the ion fluting device according to the present invention.

【符号の説明】[Explanation of symbols]

1:容器 2:排気口 3:る°つぼ 4:蒸発物質 5:ホローカソードガシ 6:ホルダ 7二基板 8:バイアス電源 9;電子銃 10:静電偏向系 11.12:X、Y方向偏向板 13:偏向電源 13ニアノード電極 15:バイアス電源 16.17:偏向コイル 18:導入パイプ 19:真空計 20:シールド筒 21:制御回路 1: Container 2: Exhaust port 3: Ru°tsubo 4: Evaporated substance 5: Hollow cathode gasi 6: Holder 72 board 8: Bias power supply 9; Electron gun 10: Electrostatic deflection system 11.12: X, Y direction deflection plate 13: Deflection power supply 13 Near Node Electrode 15: Bias power supply 16.17: Deflection coil 18:Introduction pipe 19: Vacuum gauge 20: Shield tube 21: Control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 るつぼ内に収容された蒸発物質を加熱蒸
発するための手段と、前記るつぼと対向するように置か
れ且つホルダに保持された基板と、該基板と前記るつぼ
との間の空間に向けて電子ビームを射出するための電子
ビーム発生手段と、該電子ビーム発生手段からの電子ビ
ームを前記基板に向けて螺旋軌道を描きつつ進行させる
ための磁場発生手段とを備え、前記電子ビーム発生手段
からるつぼと基板間に射出される電子ビームの射出角度
を変化させる手段を設けたことを特徴とするイオンプレ
ーティング装置。
1. A means for heating and evaporating an evaporative substance contained in a crucible, a substrate placed to face the crucible and held in a holder, and a space between the substrate and the crucible. an electron beam generating means for emitting an electron beam toward the substrate, and a magnetic field generating means for causing the electron beam from the electron beam generating means to travel toward the substrate while drawing a spiral trajectory, An ion plating apparatus characterized by comprising means for changing the emission angle of an electron beam emitted from a generation means between a crucible and a substrate.
JP41017790A 1990-12-12 1990-12-12 Ion plating device Withdrawn JPH04210469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41017790A JPH04210469A (en) 1990-12-12 1990-12-12 Ion plating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41017790A JPH04210469A (en) 1990-12-12 1990-12-12 Ion plating device

Publications (1)

Publication Number Publication Date
JPH04210469A true JPH04210469A (en) 1992-07-31

Family

ID=18519375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41017790A Withdrawn JPH04210469A (en) 1990-12-12 1990-12-12 Ion plating device

Country Status (1)

Country Link
JP (1) JPH04210469A (en)

Similar Documents

Publication Publication Date Title
US4885070A (en) Method and apparatus for the application of materials
EP1867221B1 (en) Apparatus and process for generating, accelerating and propagating beams of electrons and plasma
JPH0543787B2 (en)
JP3386175B2 (en) Method of forming compound thin film with gas cluster ion assist
US5099791A (en) Cluster beam thin film deposition apparatus with thermionic electron control
JP3401365B2 (en) Plasma generator and ion plating device
JPH04210469A (en) Ion plating device
JPH08102278A (en) Device and method for generating ion beam
JP3186777B2 (en) Plasma source
JP3406769B2 (en) Ion plating equipment
JP3079802B2 (en) Plasma gun
JP3079789B2 (en) Plasma gun and plasma generator
JP2001143894A (en) Plasma generator and apparatus for producing thin film
JPS6199670A (en) Ion plating device
JP2620474B2 (en) Ion plating equipment
JP2005036252A (en) Ion plating system
JPH062120A (en) Lance for blowing oxygen into vacuum degassing vessel
JP4767613B2 (en) Deposition equipment
JPH0617240A (en) Thin film forming device
JPS6254076A (en) Ion plating device
JPH0617241A (en) Ion plating device
JPH05217691A (en) Plasma generating device
JPS5871548A (en) Ion source
JPS6411116B2 (en)
JPH04221065A (en) Thin film forming device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312