JPH04210367A - Magnetic tool for magnetic polishing device - Google Patents

Magnetic tool for magnetic polishing device

Info

Publication number
JPH04210367A
JPH04210367A JP2414150A JP41415090A JPH04210367A JP H04210367 A JPH04210367 A JP H04210367A JP 2414150 A JP2414150 A JP 2414150A JP 41415090 A JP41415090 A JP 41415090A JP H04210367 A JPH04210367 A JP H04210367A
Authority
JP
Japan
Prior art keywords
tool
workpiece
magnetic
polishing
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2414150A
Other languages
Japanese (ja)
Other versions
JPH07115295B2 (en
Inventor
Toshiki Iizuka
飯塚 敏志己
Yoshinori Shinpo
新保 義憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOEI DENKO KK
Original Assignee
KYOEI DENKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOEI DENKO KK filed Critical KYOEI DENKO KK
Priority to JP41415090A priority Critical patent/JPH07115295B2/en
Publication of JPH04210367A publication Critical patent/JPH04210367A/en
Publication of JPH07115295B2 publication Critical patent/JPH07115295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To make polishing chip, worn abrasive grain, etc., not interrupt polishing by forming at least one groove at the contact part of a tool main body. CONSTITUTION:A tool main body 72 having a contact part 74 abutted directly or indirectly on the internal face of the body to be worked, and having magnetism is arranged. This tool main body 72 has at least one groove 78 at the contact part 74. Therefore, at the rotation time of a tool 70, this groove 78 acts as an escape way for polishing chips, worn abrasive grains, etc., so the polishing chips, worn abrasive grains, etc., do not become obstacle to polishing. Also, this groove 78 acts to feed to the contact part 74 of the tool the work liquid including new abrasive grains. Moreover, the bearing between the tool 70 and the face to be polished is large, because of the area abutting on the face to be polished directly or indirectly becoming less by the part of the groove 78.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001] [0001]

【産業上の利用分野】本発明は、パイプのような被加工
物に対しその軸線の周りに相対的に移動する磁界を利用
して被加工物の円形の内面を研磨する磁気研磨装置用の
磁性工具に関する。 [0002]
[Industrial Application Field] The present invention relates to a magnetic polishing device for polishing the circular inner surface of a workpiece, such as a pipe, using a magnetic field that moves relative to the axis of the workpiece. Regarding magnetic tools. [0002]

【従来の技術】円形の内面すなわち被研磨面を有する非
磁性の被加工物内に研磨のための磁性工具を配置し、こ
の工具を被加工物の軸線の周りを回転する磁界により被
加工物内で回転させ、それにより被研磨面を研磨する磁
気研磨装置は、精密工学会誌第55巻第10号148〜
153頁および特開昭62−102969号公報に記載
されている。 [0003]この種の磁気研磨装置において、工具を回
転させる磁界を発生する手段は、鉄心にコイルを巻き付
けた複数の電磁石を備える。電磁石は、その鉄心が被加
工物の軸線に関して放射状に伸びかつ鉄心の端面すなわ
ち磁極面が被加工物の軸線の側となるように、被加工物
の軸線の周りに等角度間隔に配置されている。 [0004]三相交流のような交流が電磁石のコイルに
供給されると、磁界発生手段により発生される磁界は、
被加工物の周りに回転される。磁界の回転により、工具
は、被研磨面に接触した状態で、被加工物の軸線の周り
に回転され、その結果被研磨面は研磨される。 [0005]Lかし、従来の磁性工具では、被研磨面に
当接される接触部が平滑な面であるから、研磨屑、摩耗
砥粒等が工具の接触部と被研磨面との間に入り込み、研
磨を妨げる。また、被研磨面に接触する総面積が広く、
砥粒が接触面全体にわたって一様に供給、分散さねない
。また、接触部と被研磨面との総接触面積が広いと、被
研磨面への工具の押圧力すなわち工具と被研磨面との開
の面圧が小さくなり、その結果研磨効率が低い。 [0006]
[Prior Art] A magnetic tool for polishing is placed inside a non-magnetic workpiece having a circular inner surface, that is, a surface to be polished, and this tool is applied to the workpiece by a magnetic field rotating around the axis of the workpiece. A magnetic polishing device that polishes the surface to be polished by rotating the polishing device is described in the Journal of the Japan Society for Precision Engineering, Vol. 55, No. 10, 148-
It is described on page 153 and in JP-A-62-102969. [0003] In this type of magnetic polishing apparatus, means for generating a magnetic field for rotating the tool includes a plurality of electromagnets each having a coil wound around an iron core. The electromagnets are arranged at equal angular intervals around the axis of the workpiece so that the iron core extends radially with respect to the axis of the workpiece, and the end face of the iron core, that is, the magnetic pole face, is on the side of the axis of the workpiece. There is. [0004] When an alternating current, such as a three-phase alternating current, is supplied to the coil of an electromagnet, the magnetic field generated by the magnetic field generating means is
Rotated around the workpiece. The rotation of the magnetic field causes the tool to rotate about the axis of the workpiece while in contact with the surface to be polished, so that the surface to be polished is polished. [0005] In conventional magnetic tools, the contact part that comes into contact with the surface to be polished is a smooth surface, so polishing debris, abrasive grains, etc. are generated between the contact part of the tool and the surface to be polished. get inside and interfere with polishing. In addition, the total area in contact with the surface to be polished is large,
Abrasive grains may be uniformly supplied and distributed over the entire contact surface. Furthermore, when the total contact area between the contact portion and the surface to be polished is large, the pressing force of the tool on the surface to be polished, that is, the contact pressure between the tool and the surface to be polished becomes small, and as a result, the polishing efficiency is low. [0006]

【解決しようとする課題】本発明は、研磨屑、摩耗砥粒
等が研磨の妨げになることを防止し、また新しい砥粒を
含む加工液が工具の接触部に供給されるようにし、さら
に工具と被研磨面との間の面圧を大きくし、もって研磨
効率を高めた、磁気研磨装置用磁性工具を提供すること
を目的とする。 [0007]
[Problems to be Solved] The present invention prevents polishing debris, abrasive grains, etc. from interfering with polishing, and also allows machining fluid containing new abrasive grains to be supplied to the contact portion of a tool. An object of the present invention is to provide a magnetic tool for a magnetic polishing device, which increases the surface pressure between the tool and the surface to be polished, thereby increasing the polishing efficiency. [0007]

【解決手段、作用および効果】本発明の磁気研磨装置用
磁性工具は、被加工物の円形の被研磨面に直接的または
間接的に当接される接触部を有する、磁性を有する工具
主体を含む。工具主体は、少なくとも1つの溝を前記接
触部に有する。 [0008]研磨時、工具は、磁界発生手段から発生さ
れる回転磁界により、接触部が直接的または間接的に被
研磨面に接触された状態で、被加工物の軸線の周りに回
転される。 [0009]工具の回転時、溝は、研磨屑、摩耗砥粒等
に逃道として作用するから、研磨屑、摩耗砥粒等が研磨
の妨げにならない。また、溝は、新しい砥粒を含む加工
液を工具の接触部に供給する作用をする。さらに、工具
本体の接触部のうち、被研磨面に直接的または間接的に
当接する面積が溝の分だけ少なくなるから、工具と被研
磨面との間の面圧が大きい。 [00101上記のように、本発明によれば、研磨屑、
摩耗砥粒等が研磨を妨げず、新しい砥粒を含む加工液が
工具の接触部に常に供給され、しかも、工具と被研磨面
との間の面圧が大きくなるから、研磨効率が著しく向上
する。 [00111複数の第1の溝と、該第1の溝の間にあっ
て該第1の溝の幅および深さより小さい複数の第2の溝
とを前記接触部に形成することができる。 [0012]さらに、少なくとも前記接触部を覆うよう
に前記工具本体に配置されたカバー部材を含むことがで
きる。この場合、前記溝に対応された切欠部をカバー部
材に形成することが好ましい。 [0013]接触部の表面と前記溝とにより規定される
複数の角部を前記接触部に形成すれば、工具に回転力を
与える磁束が各角部に分散されるから、工具と被加工物
との面圧が高くなる。 [0014]
[Solution, operation, and effect] The magnetic tool for a magnetic polishing apparatus of the present invention has a magnetic tool main body that has a contact portion that comes into direct or indirect contact with the circular polishing surface of the workpiece. include. The tool body has at least one groove in the contact portion. [0008] During polishing, the tool is rotated around the axis of the workpiece by a rotating magnetic field generated by the magnetic field generating means, with the contact portion being in direct or indirect contact with the surface to be polished. . [0009] When the tool rotates, the groove acts as an escape route for polishing debris, abrasive grains, etc., so that the polishing debris, abrasive grains, etc. do not interfere with polishing. The grooves also serve to supply machining fluid containing fresh abrasive grains to the contact portion of the tool. Furthermore, since the area of the contact portion of the tool body that directly or indirectly contacts the surface to be polished is reduced by the groove, the contact pressure between the tool and the surface to be polished is large. [00101 As described above, according to the present invention, polishing waste,
Polishing efficiency is significantly improved because abrasive grains do not interfere with polishing, machining fluid containing new abrasive grains is constantly supplied to the contact area of the tool, and the contact pressure between the tool and the surface to be polished increases. do. [00111 A plurality of first grooves and a plurality of second grooves located between the first grooves and having a width and a depth smaller than the first grooves may be formed in the contact portion. [0012] The tool may further include a cover member disposed on the tool body so as to cover at least the contact portion. In this case, it is preferable that a notch corresponding to the groove is formed in the cover member. [0013] If a plurality of corner portions defined by the surface of the contact portion and the groove are formed in the contact portion, the magnetic flux that provides rotational force to the tool is dispersed to each corner portion, so that the tool and the workpiece are The contact pressure with the [0014]

【実施例】図1および図2を参照するに、後に符号70
を付して詳細に説明する磁性工具を用いる磁気研磨装置
10は、該磁気研磨装置のための電源装置を収容してい
るボックス状のフレーム12を含む。フレーム12は、
その下面に取り付けられた複数のキャスタ14を利用し
て、床上を任意な位置へ移動させ、その位置に解除可能
に据え付けることができる。 [0015]フレーム12の上には、回転磁界を発生す
る磁界発生器16が取り付けられている。磁界発生器1
6は、磁性体からなる環状のヨーク18と、ヨーク18
に等角度間隔に配置された複数(図示の例では6つ)の
電磁石20とにより構成されており、また、ヨーク18
の軸線がほぼ水平に伸びるように複数のブラケット22
によりフレーム12に取り付けられている。 [0016]図3〜図7に示すように、各電磁石20は
、鉄心24と、該鉄心がその長手方向へ移動不能に貫通
する電気的絶縁材料製のボビン26と、四角錐台形とな
るようにボビン26に巻き付けられたコイル28とを備
える。 [0017]各鉄心24は、ヨーク18の半径方向へ伸
びるように、コネクタ30によりヨーク18に取り付け
られているとともに、ヨーク18に磁気的に接続されて
いる。 [0018]図示の例では、各鉄心24は、帯状の複数
の磁性板を互いに電気的に絶縁して積層したものである
が、丸柱状または角柱状のものであってもよい。各鉄心
24の先端は、四角形の磁極面として作用する。 [0019]磁極面は、その内側に被加工物32を受は
入れる空間を互いに共同して規定する。被加工物32は
、パイプのように円形の内面すなわち研磨面を有してお
り、また、ステンレスのような非磁性材料からなる。 [00201図示の例では、1つの磁界発生器16を用
いているが、複数の磁界発生器16を被加工物32の軸
線方向へ順次配置してもよい。 [0021]フレーム12の上には、また、被加工物3
2を把持し、被加工物をその軸線方向へ移動させ、さら
に被加工物32をその軸線の周りに回転させる駆動機構
34が配置されている。 [00221図3に示すように、駆動機構34は、ヨー
ク18の中心軸線と平行な方向へ移動可能のスライダ3
6を備える。スライダ36は、フレーム12に固定され
たレール組立体38に支承されている。 [0023]レ一ル組立体38は、図示の例では、互い
におよびヨーク18の中心軸線と平行に伸びる一対のレ
ール40をフレーム12に固定された一対のブラケット
42に支持させており、また、スライダ36をレール4
0に支持している。 [0024]被加工物32を把持するチャック44は、
スライダ36から互いに平行に上方へ伸びる一対の支持
部材46に配置されており、また、支持部材46に取り
付けられた図示しないベアリングにより、被加工物32
の軸線の周りに回転可能に支持されている。 [00251図3に示すように、被加工物32をその軸
線方向へ移動させる移動機構50は、電動機および減速
機を備える回転源52と、その回転軸に取り付けられた
カム円板54と、カム円板54の回転運動を被加工物の
軸線方向への往復運動に変換するクランクシャフト56
とを備える。 [0026]クランクシヤフト56の一端部はカム円板
54の外周縁部に連結されており、他端部はブラケット
58を介してスライダ36に連結されている。このため
、スライダ36は、回転源52の回転により被加工物3
2の軸線方向へ往復移動され、それによりチャック44
も同方向へ往復移動される。 [00271図3に示すように、被加工物32をその軸
線の周りに回転させる回転機構60は、電動機および減
速機を備える回転源62と、その回転軸に取り付けられ
たプーリ64と、チャック44の外周面に取り付けられ
たプーリ66と、両プーリ64,66に巻き掛けられた
無端ベルト68とを備えており、回転源62の回転によ
りチャック44を被加工物32の軸線の周りに回転させ
る。 [00281図4に示すように、磁性工具70は、磁性
材料または永久磁石材料を含む直方体状の工具主体72
を含む。工具主体72は、弧面とされた4つの部位74
.74,76.76を有しており、部位74.74また
は76.76が被研磨面に当接するように被加工物32
内に配置される。 [0029]部位74.74,76.76のそれぞれに
は、複数の溝78が形成されている。図示の例では、溝
78は、図5の(A)に示すように対応する部位の弧面
の周方向へ伸びかつ互いに平行な溝である。 [0030]Lかし、溝は任意な形状とすることができ
る。また、工具主体の外表面全体に溝を形成してもよい
。 [00311図5の(B)に示す溝80は、対応する部
位の弧面の周方向と直角の方向へ伸びるとともに互いに
平行である。また、図5の(C)に示す溝82は、対応
する部位の弧面の周方向に対して交差する方向へ伸びる
とともに互いに交差する。さらに、図5の(E)および
(B)に示す溝84および86は、それぞれ、互いに共
同して特殊なパターンを形成する。 [0032]工工具体72は、それ自体を磁性材料また
は永久磁石材料とすることにより形成することができる
し、粒状の磁性材料または永久磁石材料を合成樹脂材料
とともに成形することにより形成することができる。工
具主体72が永久磁石材料を含む場合、その永久磁石材
料を磁化させ、工具主体72を永久磁石として作用させ
る。 [00331図1に示すように、研磨に先立って、被加
工物32は、チャック44と、鉄心24の磁極面により
規定される空間とを貫通して伸びるとともに水平に対し
わずかに傾斜するように、チャック44に把持される。 [00341次いで、工具70が被加工物32内に配置
されるとともに、砥粒を含む液体すなわち加工液が注入
器88により被加工物32内にその長手方向の一端から
所定量供給される。 [0035]注入器88は、加工液の供給量を調節する
バルブ等の調節具を備えることが好ましい。加工液とし
て、砥粒を含むスラリーを用いることができる。 [00361被加工物32は、注入器88が配置されて
いる側の部位の高さ位置がその反対の側の部位の高さ位
置よりわずかに上方となるように支持されている。この
ため、加工液は、時間の経過とともに被加工物32内を
移動する。 [0037]研磨時、電磁石20の各コイル28に、鉄
心24の磁極面から回転磁界を発生させるべく三相交流
が供給される。コイル28と三相交流電源との接続法は
、たとえば、特開昭62−102969号公報に記載さ
れている。 [0038]これにより、電磁石20の極性が変化する
ことにより回転磁界が発生され、被加工物32内に配置
された工具70は回転磁界の移動にともなって、被加工
物32の内面に接触した状態で内面に沿って周方向に回
転される。工具70の回転速度は、電磁石に供給する交
流の周波数を変えることにより変更することができる。 [0039]研磨の間、スライダ36が移動機構50に
より工具70の回転周波数より低い周波数で往復移動さ
れる。これにより、被加工物32はその軸線方向へ往復
移動される。 [0040]Lかし、被加工物32内に配置された工具
70は、磁界発生器16により発生される磁束に拘束さ
れて磁界発生器16に対し被加工物32の軸線方向へ変
位されない。このため、被加工物32と工具70との間
に被加工物32の軸線方向への相対的な移動が生じる。 [00411研磨の間、また、チャック44が回転機構
60により工具70の回転周波数より低い周波数で被加
工物32の軸線の周りに回転される。これにより、被加
工物32はその軸線の周りに回転される。 [0042]工具70の回転周波数、被加工物32の往
復運動周波数および被加工物32の回転数は、たとえば
、それぞれ、30〜50H2,1〜2H2および0゜1
〜IHzとすることができる。 [00431被加工物32の回転方向は、工具70の回
転方向と同じであってもよいし、逆であってもよい。ま
た、被加工物32の回転および往復運動は、連続的であ
ってもよいし、間欠的であってもよい。 [0044]被加工物32内の加工液は、被加工物32
が回転されても、自重により被研磨面の底部に集まるか
ら、被加工物32の回転にともなって、被研磨面の周方
向全体に付着する。また、被加工物32内の加工液は、
被加工物32と工具70との相対的な往復運動によりお
よび被加工物32が水平線に対しわずかに傾斜されてい
ることにより、被加工物32の長手方向へ移動される。 これらの結果、被加工物32内の加工液は、被研磨面全
体にわたって均一に付着する。 [00451工具70の回転と、被加工物32の往復運
動とにより、被加工物32と工具70との間には、工具
70が被研磨面上に螺旋状の軌跡を描くような、相対的
な移動が生じる。被加工物がその軸線方向における一方
へ移動されるときの工具の軌跡と他方へ移動されるとき
の工具の軌跡とは、互いに交差する。 [0046]移動機構50による被加工物32のストロ
ークの範囲内の研磨が終了すると、チャック44への被
加工物32の把持位置が変更されて、次の範囲内の研磨
が行われる。 [00471被加工物32の往復移動の範囲は、たとえ
ば、カム円板54へのクランクシャフト56の取付は位
置を変更可能とすることにより、調節することができる
。 [00481研磨の間、加工液を連続的または間欠的に
被加工物32内に供給することが好ましい。また、被加
工物32から流出する加工液を受けるシュートおよび容
器を注入器88と反対の側に配置することが好ましい。 [00491工具70によれば、工具70の回転時、被
加工物32内の研磨屑、摩耗砥粒は、溝78を通り、研
磨の妨げにならない。また、工具本体の接触部のうち、
被研磨面に直接的または間接的に当接する面積が溝の分
だけ少なくなるから、工具と被研磨面との間の面圧が大
きい。さらに、新しい砥粒を含む加工液が工具の接触部
に供給される。 [00501工具の接触部および溝は、複数の角部が接
触部の表面と溝とにより接触部に形成される形状である
と、工具に回転力を与える磁束が各角部に分散されるか
ら、工具と被加工物との面圧が高くなる。 [00511工具主体は、直方体以外の他の任意な形状
としてもよい。 [00521図6に示す工具主体90は、二等辺三角形
の断面形状を有する。工具主体90は、二等辺三角形の
底辺の両端に対応する角部分に弧面92を有しており、
また、両弧面92が被研磨面に当接するように被加工物
内に配置される。したがって、工具主体90も、両弧面
すなわち両液触部92に溝94を有する。 [0053]工工具体に形成する溝の形状および大きさ
は任意である。たとえば、溝が四角形または三角形の断
面形状を有する場合、溝の幅および深さは、1〜3mm
程度とすることができる。 [00541図7に示す工具主体96は、四角形の断面
形状を有する複数の第1の溝98と、該第1の溝の間に
形成されかつ三角形の断面形状を有する複数の第2の溝
100とを有する。第2の溝100は、第1の溝98の
幅および深さより小さい。このため、第1の溝98が研
磨屑および摩耗砥粒の逃道として作用し、第2の溝10
0が砥粒の貯留部として作用する。 [0055]たとえば、第1の溝98の幅および深さは
1〜3mm程度とすることができ、第2の溝100の幅
および深さは0.01〜0.2mm程度とすることがで
きる。 [0056]図8に示す磁性工具102は、さらに、工
具主体104の周りに配置されたカバー部材106を有
する。カバー部材106は、フェルト、布、皮等、加工
液を貯留する機能を有する材料からなり、また、工具主
体104に形成された溝108に対応する切欠部110
を有する。 [00571力バ一部材106は、錫、銅等、砥粒に近
い硬度を有する金属材料であってもよい。また、カバー
部材106は、少なくとも工具主体の接触部を覆うよう
に配置すればよい。
[Example] Referring to FIGS. 1 and 2, reference numeral 70 will be described later.
A magnetic polishing apparatus 10 using a magnetic tool, which will be described in detail with reference to FIG. 1, includes a box-shaped frame 12 housing a power supply for the magnetic polishing apparatus. The frame 12 is
Using a plurality of casters 14 attached to the lower surface, it can be moved to any desired position on the floor and releasably installed at that position. [0015] A magnetic field generator 16 that generates a rotating magnetic field is mounted on the frame 12. Magnetic field generator 1
6 is an annular yoke 18 made of a magnetic material;
It is composed of a plurality of (six in the illustrated example) electromagnets 20 arranged at equal angular intervals, and a yoke 18.
A plurality of brackets 22 are arranged so that the axis of the brackets 22 extends almost horizontally.
It is attached to the frame 12 by. [0016] As shown in FIGS. 3 to 7, each electromagnet 20 has an iron core 24, a bobbin 26 made of an electrically insulating material through which the iron core is immovably penetrated in the longitudinal direction, and has a truncated quadrangular pyramid shape. and a coil 28 wound around a bobbin 26. [0017] Each iron core 24 is attached to the yoke 18 by a connector 30 so as to extend in the radial direction of the yoke 18, and is also magnetically connected to the yoke 18. [0018] In the illustrated example, each core 24 is formed by stacking a plurality of band-shaped magnetic plates electrically insulated from each other, but it may also be round or prismatic. The tip of each core 24 acts as a square magnetic pole surface. [0019] The pole faces jointly define a space within which the workpiece 32 is received. The workpiece 32 has a circular inner surface, that is, a polished surface, like a pipe, and is made of a non-magnetic material such as stainless steel. [00201 In the illustrated example, one magnetic field generator 16 is used, but a plurality of magnetic field generators 16 may be sequentially arranged in the axial direction of the workpiece 32. [0021] On the frame 12, there is also a workpiece 3
A drive mechanism 34 is disposed for gripping the workpiece 2, moving the workpiece in its axial direction, and rotating the workpiece 32 about its axis. [00221 As shown in FIG. 3, the drive mechanism 34 includes a slider 3 movable in a direction parallel to the central axis of the yoke 18.
6. Slider 36 is supported on a rail assembly 38 secured to frame 12. [0023] In the illustrated example, the rail assembly 38 includes a pair of rails 40 extending parallel to each other and parallel to the central axis of the yoke 18, supported by a pair of brackets 42 fixed to the frame 12; slider 36 to rail 4
Supports 0. [0024] The chuck 44 that grips the workpiece 32 is
It is arranged on a pair of support members 46 extending upward from the slider 36 in parallel with each other, and the workpiece 32 is supported by bearings (not shown) attached to the support members 46.
is rotatably supported around the axis of. [00251 As shown in FIG. 3, the moving mechanism 50 for moving the workpiece 32 in its axial direction includes a rotation source 52 including an electric motor and a speed reducer, a cam disc 54 attached to its rotating shaft, and a cam. A crankshaft 56 that converts the rotational motion of the disk 54 into reciprocating motion in the axial direction of the workpiece.
Equipped with. [0026] One end of the crankshaft 56 is connected to the outer peripheral edge of the cam disk 54, and the other end is connected to the slider 36 via a bracket 58. Therefore, the slider 36 rotates the workpiece 3 due to the rotation of the rotation source 52.
The chuck 44 is reciprocated in the axial direction of the chuck 44.
are also moved back and forth in the same direction. [00271 As shown in FIG. 3, the rotation mechanism 60 that rotates the workpiece 32 around its axis includes a rotation source 62 including an electric motor and a reduction gear, a pulley 64 attached to the rotation shaft, and a chuck 44. The chuck 44 is equipped with a pulley 66 attached to the outer peripheral surface of the workpiece 32 and an endless belt 68 wound around both the pulleys 64 and 66, and the chuck 44 is rotated around the axis of the workpiece 32 by rotation of the rotation source 62. . [00281 As shown in FIG. 4, the magnetic tool 70 has a rectangular parallelepiped tool main body 72 containing a magnetic material or a permanent magnet material.
including. The tool main body 72 has four arcuate parts 74
.. 74, 76.76, and the workpiece 32 is placed so that the portion 74.74 or 76.76 comes into contact with the surface to be polished.
placed within. [0029] A plurality of grooves 78 are formed in each of the portions 74.74 and 76.76. In the illustrated example, the grooves 78 are grooves that extend in the circumferential direction of the arc surface of the corresponding portion and are parallel to each other, as shown in FIG. 5A. [0030] The L ribs and grooves can have any shape. Alternatively, grooves may be formed on the entire outer surface of the main body of the tool. [00311 The grooves 80 shown in FIG. 5B extend in a direction perpendicular to the circumferential direction of the arc surface of the corresponding portion and are parallel to each other. Further, the grooves 82 shown in FIG. 5C extend in a direction intersecting the circumferential direction of the arc surface of the corresponding portion and intersect with each other. Furthermore, the grooves 84 and 86 shown in FIGS. 5E and 5B, respectively, cooperate with each other to form a special pattern. [0032] The tool body 72 can be formed by making itself a magnetic material or a permanent magnet material, or can be formed by molding a granular magnetic material or a permanent magnet material together with a synthetic resin material. can. When the tool body 72 includes a permanent magnet material, the permanent magnet material is magnetized to cause the tool body 72 to act as a permanent magnet. [00331 As shown in FIG. 1, prior to polishing, the workpiece 32 extends through the chuck 44 and the space defined by the magnetic pole face of the iron core 24, and is slightly inclined with respect to the horizontal. , is gripped by the chuck 44. [00341] Next, the tool 70 is placed inside the workpiece 32, and a predetermined amount of liquid containing abrasive grains, ie, machining fluid, is supplied into the workpiece 32 from one end in the longitudinal direction by the syringe 88. [0035] The injector 88 preferably includes a regulator such as a valve that regulates the amount of processing fluid supplied. A slurry containing abrasive grains can be used as the processing liquid. [00361 The workpiece 32 is supported such that the height of the part on the side where the syringe 88 is placed is slightly higher than the height of the part on the opposite side. Therefore, the machining fluid moves within the workpiece 32 over time. [0037] During polishing, three-phase alternating current is supplied to each coil 28 of the electromagnet 20 to generate a rotating magnetic field from the magnetic pole surface of the iron core 24. A method of connecting the coil 28 and a three-phase AC power source is described in, for example, Japanese Patent Laid-Open No. 102969/1983. [0038] As a result, a rotating magnetic field is generated by changing the polarity of the electromagnet 20, and the tool 70 placed within the workpiece 32 comes into contact with the inner surface of the workpiece 32 as the rotating magnetic field moves. rotated circumferentially along the inner surface. The rotational speed of tool 70 can be changed by changing the frequency of the alternating current supplied to the electromagnet. [0039] During polishing, slider 36 is reciprocated by movement mechanism 50 at a frequency lower than the rotational frequency of tool 70. As a result, the workpiece 32 is reciprocated in its axial direction. [0040] In L, the tool 70 disposed within the workpiece 32 is restrained by the magnetic flux generated by the magnetic field generator 16 and is not displaced in the axial direction of the workpiece 32 with respect to the magnetic field generator 16. Therefore, relative movement occurs between the workpiece 32 and the tool 70 in the axial direction of the workpiece 32. [00411 During polishing, the chuck 44 is also rotated about the axis of the workpiece 32 by the rotation mechanism 60 at a frequency lower than the rotation frequency of the tool 70. This causes the workpiece 32 to rotate around its axis. [0042] The rotational frequency of the tool 70, the reciprocating frequency of the workpiece 32, and the rotational speed of the workpiece 32 are, for example, 30 to 50H2, 1 to 2H2, and 0°1, respectively.
~IHz. [00431 The rotation direction of the workpiece 32 may be the same as the rotation direction of the tool 70, or may be opposite. Further, the rotation and reciprocating motion of the workpiece 32 may be continuous or intermittent. [0044] The machining fluid in the workpiece 32 is
Even when the particles are rotated, they gather at the bottom of the surface to be polished due to their own weight, and as the workpiece 32 rotates, they adhere to the entire circumferential direction of the surface to be polished. Moreover, the machining fluid in the workpiece 32 is
The relative reciprocating motion of the workpiece 32 and the tool 70 and the slight inclination of the workpiece 32 relative to the horizontal cause the workpiece 32 to be moved in the longitudinal direction. As a result, the machining fluid in the workpiece 32 adheres uniformly over the entire surface to be polished. [00451 Due to the rotation of the tool 70 and the reciprocating motion of the workpiece 32, there is a relative relationship between the workpiece 32 and the tool 70 such that the tool 70 draws a spiral trajectory on the surface to be polished. movement occurs. The trajectory of the tool when the workpiece is moved in one direction in its axial direction and the trajectory of the tool when it is moved in the other direction intersect with each other. [0046] When polishing within the stroke range of the workpiece 32 by the moving mechanism 50 is completed, the gripping position of the workpiece 32 on the chuck 44 is changed, and polishing within the next range is performed. [00471 The range of reciprocating movement of the workpiece 32 can be adjusted by, for example, making the attachment of the crankshaft 56 to the cam disk 54 changeable. [00481 During polishing, it is preferable to supply the machining liquid into the workpiece 32 continuously or intermittently. It is also preferred that a chute and a container for receiving the machining fluid flowing out from the workpiece 32 be located on the side opposite to the syringe 88. [00491 According to the tool 70, when the tool 70 rotates, polishing debris and abrasive grains in the workpiece 32 pass through the grooves 78 and do not interfere with polishing. In addition, among the contact parts of the tool body,
Since the area in direct or indirect contact with the surface to be polished is reduced by the groove, the contact pressure between the tool and the surface to be polished is large. Additionally, machining fluid containing fresh abrasive grains is supplied to the contact portion of the tool. [00501 If the contact portion and groove of the tool have a shape in which a plurality of corners are formed in the contact portion by the surface of the contact portion and the groove, the magnetic flux that provides rotational force to the tool will be dispersed to each corner. , the surface pressure between the tool and the workpiece increases. [00511 The main body of the tool may have any shape other than a rectangular parallelepiped. [00521 The tool main body 90 shown in FIG. 6 has an isosceles triangular cross-sectional shape. The tool main body 90 has arcuate surfaces 92 at corner portions corresponding to both ends of the base of an isosceles triangle,
Further, it is arranged within the workpiece so that both arcuate surfaces 92 come into contact with the surface to be polished. Therefore, the tool main body 90 also has grooves 94 on both arcuate surfaces, that is, on both liquid contact portions 92. [0053] The shape and size of the groove formed in the tool body are arbitrary. For example, if the groove has a square or triangular cross-sectional shape, the width and depth of the groove should be 1 to 3 mm.
It can be done to a certain extent. [00541 The tool main body 96 shown in FIG. 7 includes a plurality of first grooves 98 having a quadrangular cross-sectional shape and a plurality of second grooves 100 formed between the first grooves and having a triangular cross-sectional shape. and has. The second groove 100 is smaller in width and depth than the first groove 98. Therefore, the first groove 98 acts as an escape route for polishing debris and abrasive grains, and the second groove 10
0 acts as a storage part for abrasive grains. [0055] For example, the width and depth of the first groove 98 can be about 1 to 3 mm, and the width and depth of the second groove 100 can be about 0.01 to 0.2 mm. . [0056] The magnetic tool 102 shown in FIG. 8 further includes a cover member 106 disposed around the tool main body 104. The cover member 106 is made of a material having a function of storing machining fluid, such as felt, cloth, or leather, and also has a notch 110 corresponding to the groove 108 formed in the tool main body 104.
has. [00571 The force bar member 106 may be made of a metal material having a hardness close to that of abrasive grains, such as tin or copper. Further, the cover member 106 may be arranged so as to cover at least the contact portion of the main tool.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の磁性工具を用いる磁気研磨装置の一実
施例を示す正面図である。
FIG. 1 is a front view showing an embodiment of a magnetic polishing apparatus using a magnetic tool of the present invention.

【図2】磁界発生器の一実施例を示す拡大図である。FIG. 2 is an enlarged view showing one embodiment of a magnetic field generator.

【図3】駆動機構の一実施例を示す斜視図である。FIG. 3 is a perspective view showing one embodiment of a drive mechanism.

【図4】本発明の磁性工具の一実施例を示す斜視図であ
る。
FIG. 4 is a perspective view showing an embodiment of the magnetic tool of the present invention.

【図5】溝の各種の形状を示す拡大図である。FIG. 5 is an enlarged view showing various shapes of grooves.

【図6】磁性工具の他の実施例を示す斜視図である。FIG. 6 is a perspective view showing another embodiment of the magnetic tool.

【図7】溝の他の実施例の一部を拡大して示す断面図で
ある。
FIG. 7 is an enlarged cross-sectional view of a part of another embodiment of the groove.

【図8】磁性工具のさらに他の実施例の一部を拡大して
示す断面図である。
FIG. 8 is an enlarged cross-sectional view of a part of still another embodiment of the magnetic tool.

【符号の説明】[Explanation of symbols]

10 磁気研磨装置 16 磁界発生器 20 電磁石 32 被加工物 70.102  磁性工具 72.90,96,104  工具主体74、 76、
 92  接触部 78.80,82,84,86,94,98,100゜
108溝 106 カバー部材 110 切欠部
10 Magnetic polishing device 16 Magnetic field generator 20 Electromagnet 32 Workpiece 70.102 Magnetic tool 72.90, 96, 104 Tool main body 74, 76,
92 Contact portion 78, 80, 82, 84, 86, 94, 98, 100° 108 groove 106 Cover member 110 Notch

【図3】[Figure 3]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】被加工物の円形の内面を研磨する磁気研磨
装置用の磁性工具において、前記被加工物の内面に直接
的または間接的に当接される接触部を有する、磁性を有
する工具主体を含み、該工具主体は少なくとも1つの溝
を前記接触部に有する、磁気研磨装置用磁性工具。
1. A magnetic tool for use in a magnetic polishing device for polishing a circular inner surface of a workpiece, the tool having magnetism and having a contact portion that comes into direct or indirect contact with the inner surface of the workpiece. A magnetic tool for a magnetic polishing device, comprising a main body, the tool main body having at least one groove in the contact portion.
【請求項2】前記工具主体は、前記接触部に形成された
複数の第1の溝と、該第1の溝の間に形成されかつ該第
1の溝の幅および深さより小さい複数の第2の溝とを有
する、請求項1に記載の磁性工具。
2. The tool main body includes a plurality of first grooves formed in the contact portion and a plurality of first grooves formed between the first grooves and having a width and a depth smaller than the first grooves. The magnetic tool according to claim 1, having two grooves.
【請求項3】さらに、少なくとも前記接触部を覆うよう
に前記工具本体に配置されたカバー部材を含み、該カバ
ー部材は前記溝に対応して形成された切欠部を有する、
請求項1または2に記載の磁性工具。
3. The tool further includes a cover member disposed on the tool body so as to cover at least the contact portion, the cover member having a notch portion formed to correspond to the groove.
The magnetic tool according to claim 1 or 2.
【請求項4】前記接触部は、その表面と前記溝とにより
形成される複数の角部を有する、請求項1、2または3
に記載の磁性工具。
4. The contact portion has a plurality of corners formed by the surface thereof and the groove.
Magnetic tools described in .
JP41415090A 1990-12-08 1990-12-08 Magnetic tools for magnetic polishing equipment Expired - Fee Related JPH07115295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41415090A JPH07115295B2 (en) 1990-12-08 1990-12-08 Magnetic tools for magnetic polishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41415090A JPH07115295B2 (en) 1990-12-08 1990-12-08 Magnetic tools for magnetic polishing equipment

Publications (2)

Publication Number Publication Date
JPH04210367A true JPH04210367A (en) 1992-07-31
JPH07115295B2 JPH07115295B2 (en) 1995-12-13

Family

ID=18522667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41415090A Expired - Fee Related JPH07115295B2 (en) 1990-12-08 1990-12-08 Magnetic tools for magnetic polishing equipment

Country Status (1)

Country Link
JP (1) JPH07115295B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180079124A (en) * 2016-12-31 2018-07-10 전북대학교산학협력단 Magnetic abrasive micro finishing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102969A (en) * 1985-10-30 1987-05-13 Toyo Kenmazai Kogyo Kk Magnetic polishing method
JPS62188668A (en) * 1986-02-14 1987-08-18 Fuji Electric Co Ltd Electromagnetic type surface treating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102969A (en) * 1985-10-30 1987-05-13 Toyo Kenmazai Kogyo Kk Magnetic polishing method
JPS62188668A (en) * 1986-02-14 1987-08-18 Fuji Electric Co Ltd Electromagnetic type surface treating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180079124A (en) * 2016-12-31 2018-07-10 전북대학교산학협력단 Magnetic abrasive micro finishing apparatus

Also Published As

Publication number Publication date
JPH07115295B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
JPH10180611A (en) Magnetic grinding method and device based on generation of plurality of alternating fields
GB1456441A (en) Apparatus for and method of treating the surfaces of objects with particles moved by magnetic force
US4211041A (en) Rotor-type machine for abrasive machining of parts with ferromagnetic abrasive powders in magnetic field
JPS59161262A (en) Magnetic attraction type method for abrasion
JPS6034264A (en) Magnetic finishing method and device thereof
US5813901A (en) Method and device for magnetic-abrasive machining of parts
JP2619740B2 (en) Magnetic polishing equipment
JPH04210367A (en) Magnetic tool for magnetic polishing device
US4170849A (en) Rotary machine for three-dimensional polishing of workpieces shaped as solids of revolution in a magnetic field using ferromagnetic abrasive powders
JP2609182B2 (en) Magnetic polishing equipment
CN210550117U (en) Aspheric surface optical element polishing device
JP2515177B2 (en) Magnetic polishing machine
JPH04210368A (en) Magnetic polishing device
JPS63221965A (en) Method and device for polishing pipe material
JP2512364B2 (en) Method and apparatus for polishing inner surface of cylindrical work piece
JPH0248391B2 (en)
JPH0249868B2 (en)
GB1370356A (en) Machine tool and a method for abrading a workpiece
KR0159741B1 (en) Magnetic grinding apparatus and method
JPH03202270A (en) Magnetic lapping machine
RU2632732C1 (en) Device for magnetic abrasive treatment of product
JPH11254291A (en) Magnetic polishing device
JPH04343657A (en) Surface polishing mehtod by magnetism and surface polishing device
SU1349955A1 (en) Arrangement for cleaning electric magnetic round table
Roben Magnetabrasive finishing: a method for the machining of complicated shaped workpieces

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees