JPH04208805A - Optical surface roughness measuring apparatus - Google Patents

Optical surface roughness measuring apparatus

Info

Publication number
JPH04208805A
JPH04208805A JP2400372A JP40037290A JPH04208805A JP H04208805 A JPH04208805 A JP H04208805A JP 2400372 A JP2400372 A JP 2400372A JP 40037290 A JP40037290 A JP 40037290A JP H04208805 A JPH04208805 A JP H04208805A
Authority
JP
Japan
Prior art keywords
light
polarized light
measured
optical system
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2400372A
Other languages
Japanese (ja)
Other versions
JP2949847B2 (en
Inventor
Yoshinori Bessho
別所 芳則
Motohito Hino
元人 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2400372A priority Critical patent/JP2949847B2/en
Publication of JPH04208805A publication Critical patent/JPH04208805A/en
Application granted granted Critical
Publication of JP2949847B2 publication Critical patent/JP2949847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance measuring accuracy by eliminating the effect due to the fluctuation of a light source by arranging a reference mirror so as to equalize the respective optical lengths from the surface of an object to be measured and the reference mirror to a detection part. CONSTITUTION:The change-over of a highly accurate optical system and a simple optical system is made possible and, in the simple optical system, the length of the light path from the surface 18 on an object to be measured to an optical sensor 62 and that of the light path from a reference mirror 42 to the optical sensor 62 both of which are the lengths of the light paths of measuring beam Lp and reference beam Ls obtained by splitting baser beam L by a polarizing beam splitter 40 are made equal. By this constitution, since the optical lengths of the beams Lp, Ls simultaneously emitted from a light source coincide each other, the fluctuation of frequency due to the disturbance of a light source 30 is cancelled when laser beams allowed to interfere each other in a light detection part and an error can be reduced without receiving the effect of disturbance to enhance measuring accuracy.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は、表面粗さ測定装置に係
り、詳しくは、光の干渉を利用して表面粗さを測定する
光学式表面粗さ測定装置に関するものである。 [0002] 【従来の技術】従来、この種の光学式表面粗さ測定装置
は、本出願人が実願平2−16935号の願書に添付さ
れた明細書及び図面にて提案している。以下、この装置
を図3.4を参照して説明する。 [00031図3と図4は、上記の光学式表面粗さ測定
装置の一例を説明する構成図である。レーザ光源装置3
0には、偏波面が互いに直交しかつ周波数が僅かに異な
る2種類の直線偏光、例えばP偏光LPとS偏光LSと
を含むレーザ光りを出力するゼーマンレーザが用いられ
る。このレーザ光源30と無偏光ビームスプリッタ32
と検光子33と基準用光センサ34とはX軸に平行な直
線上に配置され、前記レーザ光源装置30から出力され
たレーザ光りは、無偏光ビームスプリッタ32により2
本に分割され、そのうちの無偏光ビームスプリッタ32
を透過したレーザ光は基準用光センサ34により検出さ
れ、基準ビート信号FBが出力される。上記P偏光LP
、 S偏光LSの周波数をそれぞれfP、fSとすると
、基準ビート信号FBの周波数fBは1fP−fSとな
る。 [0004]一方、無偏光ビームスプリッタ32によっ
て、y軸のマイナス方向に反射されたレーザ光りは、光
軸上に配置されたビームエキスパンダ74によりビーム
径が拡大された後、ミラー75によって反射され、ミラ
ー75の下方に配置されたレボルバ80に入射する。レ
ボルバ80には、二重焦点レンズ76と対物レンズ44
とからなる高精度光学系と、偏光ビームスプリッタ82
、ミラー84と対物レンズ45とからなる簡易光学系と
が取り付けられている。このレボルバ80を手動で回転
させることにより前記高精度光学系と簡易光学系とを切
り換え配置することができる。このレボルバ80の下方
には、駆動装置58により上記対物レンズ44の光軸に
直角なx−y平面内において二次元方向へ移動させられ
る移動テーブル60が配置されている。この移動テーブ
ル60上に被測定物12が載置されている。 [0005]また、検光子61.計測用光センサ62が
前記無偏光ビームスプリッタ32のy軸プラス方向であ
って、前記ビームエキスパンダ74の光軸と同一の直線
上に配置されている。 [00061以上のように構成された光学式表面粗さ測
定装置において、図3に示すように高精度光学系を切り
換え配置した場合、ミラー75からのレーザ光りは二重
焦点レンズ76に入射する。高精度光学系における二重
焦点レンズ76は、光学ガラスと複屈折性材料とから構
成されており、入射する光線の偏波面の方向によって屈
折率が異なるという性質を持っている。そのため、二重
焦点レンズ76に入射したレーザ光りのうちP偏光LP
は平行光、S偏光LSは収束光となって対物レンズ44
に入射する。対物レンズ44はその前焦点が二重焦点レ
ンズ76の後焦点に位置するように構成されているため
、平行光として入射したP偏光LPは収束光として被測
定物12の表面18の一点に集光される一方、収束光と
して入射したS偏光LSは平行光とされて被測定物12
の表面18の比較的広い範囲に照射される。 [0007]被測定物12は、前記移動テーブル60上
に搭載されており、その表面18の一点に集光されるP
偏光LPは、被測定物12が移動テーブル60により移
動させられるのに伴って表面18の微小凹凸に対応して
生じるドツプラーシフトΔfsと、移動テーブル60の
移動の際の振動その他の外乱によるドツプラーシフトΔ
fdとを受け、その反射光の周波数はfP+Δfd+Δ
fsとなる。これに対し、円形平行ビームの状態で表面
18の比較的広い範囲に照射されるS偏光LSは、表面
18の微小凹凸による影響が平均化されて全体として相
殺されるため、外乱によるドツプラーシフトΔfdの影
響を受けるだけで、その反射光の周波数はfS+Δfd
となる。上記P偏光LPは計測光であり、S偏光LSは
参照光である。 [00081表面18で反射されたP偏光LPおよびS
偏光LSは、それぞれ入射経路と逆の光路を辿って無偏
光ビームスプリッタ32に入射させられ、これを透過し
計測用光センサ62に受けられ、計測ビート信号FDが
出力される。この計測ビート信号FDはP偏光LPとS
偏光LSとの干渉によるうなりに対応するもので、その
**周波数fDは、 fD=l  (fP+Δfd+Δfs)−(fS+Δf
d)1=lfP−fS+Δfsl であり、前記外乱によるドツプラーシフトΔfdは相殺
される。 [0009]上記計測ビ一ト信号FDおよび前記基準ビ
ート信号FBは測定回路64に供給され、計測ビート信
号FDの周波数fD (=l fP−fs+Δfsl)
から基準ビート信号FBの周波数fB (=l fP−
fS l)を減算することにより、表面18の凹凸によ
るドツプラーシフトΔfsのみが取り出され、このドツ
プラーシフトΔfsを表わす信号が制御回路66へ供給
される。制※※御回路66は、例えばマイクロコンピュ
ータにて構成され、前記駆動装置58により移動テーブ
ル60をx−y方向へ順次移動させつつ、測定回路64
より供給される信号(Δfs)から下記の数1に基づい
て各位置の変位Zsを算出し、被測定物12の表面18
全体の表面粗さを表示器68に三次元表示させる。 [00101
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface roughness measuring device, and more particularly to an optical surface roughness measuring device that measures surface roughness using light interference. [0002] Conventionally, this type of optical surface roughness measuring device has been proposed by the present applicant in the specification and drawings attached to the application No. 2-16935. This device will be explained below with reference to FIG. 3.4. [00031 FIGS. 3 and 4 are configuration diagrams illustrating an example of the above optical surface roughness measuring device. Laser light source device 3
0, a Zeeman laser is used that outputs laser light containing two types of linearly polarized light whose polarization planes are orthogonal to each other and whose frequencies are slightly different, for example, P-polarized light LP and S-polarized light LS. This laser light source 30 and non-polarizing beam splitter 32
The analyzer 33 and reference optical sensor 34 are arranged on a straight line parallel to the X-axis, and the laser light output from the laser light source device 30 is divided into two
It is divided into two parts, of which the non-polarizing beam splitter 32
The laser beam that has passed through is detected by the reference optical sensor 34, and a reference beat signal FB is output. The above P-polarized LP
, If the frequencies of the S-polarized light LS are fP and fS, respectively, the frequency fB of the reference beat signal FB is 1fP-fS. [0004] On the other hand, the laser beam reflected by the non-polarizing beam splitter 32 in the negative direction of the y-axis is expanded in beam diameter by a beam expander 74 arranged on the optical axis, and then reflected by a mirror 75. , enters the revolver 80 arranged below the mirror 75. The revolver 80 includes a bifocal lens 76 and an objective lens 44.
and a polarizing beam splitter 82.
, a simple optical system consisting of a mirror 84 and an objective lens 45 is attached. By manually rotating the revolver 80, it is possible to switch between the high-precision optical system and the simple optical system. A moving table 60 is disposed below the revolver 80 and is moved by a drive device 58 in two-dimensional directions within an xy plane perpendicular to the optical axis of the objective lens 44 . The object to be measured 12 is placed on this moving table 60 . [0005] Also, analyzer 61. A measurement optical sensor 62 is arranged in the positive y-axis direction of the non-polarizing beam splitter 32 and on the same straight line as the optical axis of the beam expander 74. [00061] In the optical surface roughness measuring apparatus configured as above, when the high-precision optical system is switched and arranged as shown in FIG. 3, the laser light from the mirror 75 enters the bifocal lens 76. The bifocal lens 76 in the high-precision optical system is made of optical glass and a birefringent material, and has a property that its refractive index differs depending on the direction of the polarization plane of the incident light beam. Therefore, among the laser light incident on the bifocal lens 76, the P-polarized light LP
is parallel light, and the S-polarized light LS is convergent light and passes through the objective lens 44.
incident on . Since the objective lens 44 is configured such that its front focal point is located at the rear focal point of the bifocal lens 76, the P-polarized light LP incident as parallel light is focused at one point on the surface 18 of the object to be measured 12 as convergent light. On the other hand, the S-polarized light LS, which has entered as convergent light, is converted into parallel light and sent to the object to be measured 12.
A relatively wide range of the surface 18 is irradiated. [0007] The object to be measured 12 is mounted on the moving table 60, and the light P focused on one point on the surface 18 of the object 12 is mounted on the moving table 60.
The polarized light LP is caused by a Doppler shift Δfs that occurs in response to minute irregularities on the surface 18 as the object 12 is moved by the moving table 60, and a doppler shift Δfs caused by vibrations and other disturbances during the movement of the moving table 60. Puller shift Δ
fd, and the frequency of the reflected light is fP+Δfd+Δ
fs. On the other hand, when the S-polarized light LS is irradiated onto a relatively wide range of the surface 18 in the form of a circular parallel beam, the influence of minute irregularities on the surface 18 is averaged out and canceled out as a whole, resulting in Doppler shift due to disturbance. It is only affected by Δfd, and the frequency of the reflected light is fS + Δfd
becomes. The P-polarized light LP is a measurement light, and the S-polarized light LS is a reference light. [00081 P-polarized light LP and S reflected at surface 18
Each of the polarized lights LS follows an optical path opposite to the incident path and is made incident on the non-polarizing beam splitter 32, passes through this and is received by the measurement optical sensor 62, and a measurement beat signal FD is output. This measurement beat signal FD is composed of P polarized light LP and S
This corresponds to the beat due to interference with the polarized light LS, and its frequency fD is fD=l (fP+Δfd+Δfs)−(fS+Δf
d) 1=lfP-fS+Δfsl, and the Doppler shift Δfd due to the disturbance is canceled out. [0009] The measurement bit signal FD and the reference beat signal FB are supplied to the measurement circuit 64, and the frequency fD (=l fP−fs+Δfsl) of the measurement beat signal FD is
from the frequency fB of the reference beat signal FB (=l fP-
By subtracting fS l), only the Doppler shift Δfs due to the irregularities of the surface 18 is extracted, and a signal representing this Doppler shift Δfs is supplied to the control circuit 66. The control circuit 66 is composed of, for example, a microcomputer, and while the driving device 58 sequentially moves the moving table 60 in the x-y directions, the control circuit 66 controls the measuring circuit 64.
The displacement Zs at each position is calculated based on the following equation 1 from the signal (Δfs) supplied by
The overall surface roughness is displayed three-dimensionally on the display 68. [00101

【数1] is −(2)’)ds cit      (χ:レ
ーザつシ皮表)[00111一方、レボルバ80によっ
て図4に示す簡易光学系に切替えた場合は、ミラー75
からの反射レーザ光りは偏光ビームスプリッタ82によ
ってS偏光LSとP偏光LPとに分割される。S偏光L
Sは反射されてミラー84に照射され、P偏光LPは偏
光ビームスプリッタ82を通過して対物レンズ45に入
射する。対物レンズ45に入射されたP偏光LPは収束
光として被測定物12の表面18の一点に集光される。 [0012]表面18からの反射光は被測定物12が移
動テーブル60により移動させられるのにともなって表
面18の微小凹凸に対応して生じるドツプラーシフトΔ
fsと、移動テーブル60の移動の際の振動その他の外
乱によるドツプラーシフトΔfdとを受け、その反射光
の周波数はfP+Δfd+Δfsとなる。また、参照ミ
ラー42からの反射光は参照ミラー42が固定であるた
めその周波数は変化せずfSのままである。上記P偏光
LPは計測光であり、S偏光LSは参照光である。 [0013]P偏光LPおよびS偏光LSの反射光は偏
光ビームスプリッタ82で合成されて計測用光センサ6
2に受けられ、計測ビート信号FDが出力される。この
計測ビート信号FDはP偏光LPとS偏光LSとの干渉
によるうなりに対応するもので、その周波数fDは、l
★嚢fP−fS+Δfd+Δfslであり外乱によるド
ツプラーシフトΔfdの影響を受けているが、簡易光学
系では比較的表面粗さの大きな被測定物を低倍率の対物
レンズ45によって測定しているので表面の粗さに比較
して相対的に外乱の影響は小さい。計測用光センサ62
で受光された計測ビート信号FDから前記高精度光学系
と同様にして被測定物12の表面18の表面粗さが計算
され、表示器68で表示される。 [0014] 【発明が解決しようとする課題】しかしながら、上記の
方法では簡易光学系に切替えた場合、計測光Lpと参照
光Lsとでは計測用光センサ62までの光学長さが必ず
しも等しくない。このため、計測用光センサ62で受光
される計測光Lp、参照光Lsは同時刻にレーザ光源装
置30から照射されたものではない。従ってレーザ光源
装置30が熱等の影響を受けて出力周波数が時間的に変
動すると、計測用光センサ62で同時刻に受光される計
測光Lp、参照光Lsにはそれぞれ異なった周波数変動
分子tl、ft2を受けている。従って、計測用光セン
サ62で受光される計測ビート信号FDの周波数fDは
、 fD=l  (fP+ftl+Δfd+Δfs)−(f
S+ft2)l=lfP−fS+Δfd+Δf s+f
 t 1−f t2 lとなり、測定時の外乱Δfdに
加えて周波数変動分(ftl−ft2)が誤差となって
おり、このため正確な測定を妨げていた。 [0015]本発明は、上述した問題点を解決するため
になされたものであり、その目的とするところは、簡易
光学系に切替えた場合に計測光と参照光の光学長さが等
しくなるように簡易光学系に参照光を反射する参照ミラ
ーを配置し、レーザ光源装置の周波数変動の影響を受け
ない表面粗さ測定ができる光学式表面粗さ測定装置を提
供することにある。                
 ☆☆[0016]
[Equation 1] is − (2)′) ds cit (χ: laser beam surface) [00111 On the other hand, when switching to the simple optical system shown in FIG.
The reflected laser light is split by a polarizing beam splitter 82 into S-polarized light LS and P-polarized light LP. S polarized light L
The S light is reflected and irradiated onto the mirror 84, and the P-polarized light LP passes through the polarization beam splitter 82 and enters the objective lens 45. The P-polarized light LP incident on the objective lens 45 is condensed onto one point on the surface 18 of the object to be measured 12 as convergent light. [0012] The reflected light from the surface 18 is caused by a Doppler shift Δ that occurs in response to minute irregularities on the surface 18 as the object to be measured 12 is moved by the moving table 60.
fs and Doppler shift Δfd due to vibrations and other disturbances during movement of the moving table 60, the frequency of the reflected light becomes fP+Δfd+Δfs. Further, since the reference mirror 42 is fixed, the frequency of the reflected light from the reference mirror 42 does not change and remains at fS. The P-polarized light LP is a measurement light, and the S-polarized light LS is a reference light. [0013] The reflected lights of the P-polarized light LP and the S-polarized light LS are combined by the polarization beam splitter 82 and sent to the measurement optical sensor 6.
2, and a measurement beat signal FD is output. This measurement beat signal FD corresponds to the beat caused by interference between the P polarized light LP and the S polarized light LS, and its frequency fD is l
★The capsule fP - fS + Δfd + Δfsl, which is affected by the Doppler shift Δfd due to disturbance, but with the simple optical system, the object to be measured with relatively large surface roughness is measured by the objective lens 45 with low magnification, so the surface The influence of disturbance is relatively small compared to roughness. Measurement optical sensor 62
The surface roughness of the surface 18 of the object to be measured 12 is calculated from the measurement beat signal FD received by the measuring device 68 in the same manner as in the high-precision optical system, and is displayed on the display 68. [0014] However, in the above method, when switching to a simple optical system, the optical lengths of the measurement light Lp and the reference light Ls to the measurement optical sensor 62 are not necessarily equal. Therefore, the measurement light Lp and the reference light Ls received by the measurement optical sensor 62 are not irradiated from the laser light source device 30 at the same time. Therefore, when the output frequency of the laser light source device 30 fluctuates over time due to the influence of heat, etc., the measurement light Lp and the reference light Ls received at the same time by the measurement optical sensor 62 each have different frequency fluctuation molecules tl. , ft2. Therefore, the frequency fD of the measurement beat signal FD received by the measurement optical sensor 62 is fD=l (fP+ftl+Δfd+Δfs)−(f
S+ft2)l=lfP-fS+Δfd+Δf s+f
t1-ft2l, and in addition to the disturbance Δfd during measurement, the frequency fluctuation (ftl-ft2) is an error, which prevents accurate measurement. [0015] The present invention has been made to solve the above-mentioned problems, and its purpose is to make the optical lengths of the measurement light and reference light equal when switching to a simple optical system. Another object of the present invention is to provide an optical surface roughness measuring device that can measure surface roughness without being affected by frequency fluctuations of a laser light source device by arranging a reference mirror that reflects a reference light in a simple optical system.
☆☆[0016]

【課題を解決するための手段】この目的を達成するため
に本発明の光学式表面粗さ測定装置は、2種類の直線偏
光を含むレーザ光を出力するレーザ光源装置と、そのレ
ーザ光源装置のレーザ光に含まれる2種類の直線偏光の
うちの一方を平行光、他方を収束光とする二重焦点レン
ズを含み、一方の直線偏光を計測光として前記被測定物
の表面上に集光させると共に、他方の直線偏光を参照光
として平行光で、且つ該被測定物の表面上において該一
方の直線偏光の照射径よりも充分大きい照射径にて照射
する高精度光学系と、レーザ光に含まれる2種類の直線
偏光のうち一方のみを計測光として該被測定物の表面上
に集光させ、他方を参照光として参照ミラーに照射する
と共に、前記計測光の被測定物表面から前記検出部まで
の光学長さと前記参照光の前記参照ミラーから前記検出
部までの光学長さが等しくなる位置に前記参照ミラーを
配置して構成される簡易光学系と、レーザ光源装置と被
測定物との間に前記2種類の光学系のどちらか一方のみ
を切り換え配置する光学系切り換え手段とを備えている
。 [0017]
[Means for Solving the Problems] In order to achieve this object, the optical surface roughness measuring device of the present invention includes a laser light source device that outputs laser light containing two types of linearly polarized light, and a laser light source device that outputs laser light containing two types of linearly polarized light. Includes a bifocal lens that converts one of the two types of linearly polarized light contained in the laser beam into parallel light and the other into convergent light, and focuses one linearly polarized light onto the surface of the object to be measured as measurement light. and a high-precision optical system that uses the other linearly polarized light as a reference light and irradiates the surface of the object with a sufficiently larger irradiation diameter than the irradiation diameter of the one linearly polarized light, and a laser beam. Only one of the two types of linearly polarized light included is focused on the surface of the object to be measured as measurement light, and the other is irradiated to a reference mirror as reference light, and the detection is performed from the surface of the object to be measured by the measurement light. A simple optical system configured by arranging the reference mirror at a position where the optical length from the reference mirror to the detection section and the optical length of the reference light from the reference mirror to the detection section are equal, and a laser light source device and an object to be measured. and an optical system switching means for switching and arranging only one of the two types of optical systems. [0017]

【作用】上記の構成を有する本発明の光学式表面粗さ測
定装置は、レーザ光源装置から互いに偏波面が直交し、
かつ周波数が異なる2種類の直線偏光を含むレーザ光が
出力されると共に、被測定物の表面粗さが小さいときは
光学系切替え手段によって二重焦点レンズを含む高精度
光学系に切り換え、比較的大きいときは二重焦点レンズ
を含まない簡易光学系に切り換えて表面粗さ測定を行な
う。 [0018]二重焦点レンズを含む高精度光学系に切り
換えた場合は、二重焦点レンズにより前記レーザ光源装
置からのレーザ光に含まれる2種類の直線偏光が共通の
光学軸上において平行光及び集束光とされると共に、そ
れら2種類の直線偏光のうちの一方の直線偏光は計測光
として被測定物の表面に集光され、他方の直線偏光は平
行光の状態で、被測定物の表面であって一方の直線偏光
の集光点に、その一方の直線偏光の照射径よりも充分に
大きい照射径にて照射される。上記一方および他方の直
線偏光の被測定物からの反射光の計測ビート信号には、
それら一方および他方の直線偏光の集光点および照射面
間の相対的な高さ位置の変化に対応した位相シフトが発
生する。このため、上記計測ビート信号における周波数
シフトあるいは位相変化を検出することにより、被測定
物の表面粗さが測定され得るのである。 [0019]一方、二重焦点レンズを含まない簡易光学
系に切替えた場合は上記レーザ光に含まれる2種類の直
線偏光のうち一方の直線偏光成分のみが被測定物の表面
に集光される。上記被測定物からの反射光には、集光点
における相対的な高さ位置の変化に対応した位相シフト
が発生し、被測定物の表面粗さが測定され得るのである
。またこの時、被測定物の表面に集光される計測光と参
照ミラーに照射される参照光との光学長さが一致してい
るため、レーザ光源装置の周波数に変動が生じても受光
部でそれぞれのレーザ光を干渉させたときにキャンセル
され、測定には影響を受けない。 [00201
[Operation] The optical surface roughness measuring device of the present invention having the above configuration has polarization planes that are orthogonal to each other from the laser light source device.
A laser beam containing two types of linearly polarized light with different frequencies is output, and when the surface roughness of the object to be measured is small, the optical system switching means switches to a high-precision optical system including a bifocal lens. If the surface roughness is large, the surface roughness is measured by switching to a simple optical system that does not include a bifocal lens. [0018] When switching to a high-precision optical system including a bifocal lens, the bifocal lens converts two types of linearly polarized light contained in the laser light from the laser light source device into parallel light and parallel light on a common optical axis. One of the two types of linearly polarized light is focused on the surface of the object to be measured as measurement light, and the other linearly polarized light is parallel light and is focused on the surface of the object to be measured. The condensing point of one linearly polarized light is irradiated with an irradiation diameter that is sufficiently larger than the irradiation diameter of the other linearly polarized light. The measurement beat signals of the reflected light from the measured object of one and the other linearly polarized light are as follows:
A phase shift occurs that corresponds to a change in the relative height position between the focal point of one and the other linearly polarized light and the irradiation surface. Therefore, by detecting the frequency shift or phase change in the measurement beat signal, the surface roughness of the object to be measured can be measured. [0019] On the other hand, when switching to a simple optical system that does not include a bifocal lens, only one linearly polarized component of the two types of linearly polarized light contained in the laser beam is focused on the surface of the object to be measured. . A phase shift occurs in the reflected light from the object to be measured, which corresponds to a change in relative height at the focal point, and the surface roughness of the object to be measured can be measured. In addition, at this time, since the optical lengths of the measurement light focused on the surface of the object to be measured and the reference light irradiated to the reference mirror are the same, even if the frequency of the laser light source device fluctuates, the light receiving section When the respective laser beams are interfered with each other, they are canceled and the measurement is not affected. [00201

【実施例]以下、本発明を具体化した一実施例を図面を
参照して説明する。尚、本実施例において、図3に示す
従来装置と同一の部材は同一の符号を付し、詳細な説明
は省略する。 [0021]図1、図2は本発明の一実施例を説明する
構成図である。 [00221本実施例と従来装置との違いは、従来装置
では簡易光学系内に配設されていた偏光ビームスプリン
タ40が、本実施例ではX方向に移動可能なスライダ5
0上に搭載されており、無偏光ビームスプリッタ32と
ビームエキスパンダ74との間の光軸中に挿入、排除す
ることができる点と、偏光ビームスプリッタ40のX軸
マイナス方向に参照ミラー42を配置した点である。 [0023]スライダ50は例えば−軸のクロスローラ
テーブルからなり、手動で動かすことができる。 [00241図1に示すように、スライダ50をX軸の
マイナス方向に動かして偏光ビームスプリッタ82を光
路中より排除し、且つ、レボルバ80を回転させて二重
焦点レンズ76と対物レンズ44をセットした状態が高
精度光学系である。また図2に示すように、スライダ5
0をX軸のプラス方向に動かして偏光ビームスプリッタ
82を光路中に挿入し、且つ、レボルバ80を回転させ
て対物レンズ45のみを被測定物12と対応する位置に
セットした状態が簡易光学系である。ここでスライダ5
0とレボルバ80が光学系切替え手段として作用してい
る。高精度光学系の対物レンズ44には比較的高倍率な
ものを用い、簡易光学系にはそれよりも低倍率の対物レ
ンズ45を取り付ける。 [0025]図1に示す高精度光学系に切替えた場合の
粗さ測定の原理は従来装置と全く同じであるのでその説
明は省略する。 [00261図2に示す簡易光学系に切替えた場合は無
偏光ビームスプリッタ32からのレーザ光りは偏光ビー
ムスプリッタ40によってP偏光LPとS偏光LSとに
分割される。P偏光LPは偏光ビームスプリッタ40を
透過して対物レンズ45に入射し、S偏光LSは偏光ビ
ームスプリッタ40で反射されて参照ミラー42に照射
される。P偏光LPは計測光、S偏光LSは参照光であ
る。ここで、偏光ビームスプリッタ40から参照ミラー
42までの光学長さと偏光ビームスプリッタ40からビ
ームエキスパンダ74、ミラー75、レボルバ80、対
物レンズ45を経由して被測定物12の表面18までの
光学長さとが等しくなるように簡易光学系が構成されて
いる。粗さ測定の原理は従来装置とまったく同じである
のでその説明は省略する。 [0027]計測光Lpと参照光Lsとは計測用光セン
サ62までの光学長さが等しいため、計測用光センサ6
2で受光される計測光Lp、参照光Lsは同時刻にレー
ザ光源装置30から照射されたものである。従ってレー
ザ光源装置30が熱等の影響を受けて出力周波数が時間
的に変動しているとき、計測用光センサ62で同時刻に
受光される計測光Lp、参照光Lsは等しい周波数変動
ft3を受けている。従って、計測用光センサ62で受
光される計測ビート信号FDの周波数fDは、I  (
fP+ft3+Δfd+Δfs)−(fS+ft3)l
=fP−fS+Δfd+Δfslとなり、周波数変動分
子t3は相殺されているので周波数変動の影響は受けな
い。 [00281以上、本発明の実施例を図面に基づいて詳
細に説明したが、本発明は他の態様で実施することもで
きる。 [0029]例えば、図3、図4であげた従来装置にお
いて偏光ビームスプリッタ82とミラー84との間の距
離を偏光ビームスプリッタ82から被測定物表面18ま
での距離と等しくとって、参照光と計測光の光路差をな
くしてもよい。要は簡易光学系に切替えたときに参照光
と計測光の光学長さが等しくなるように光学系を構成す
ればよいのである。 [00301また、前記実施例では光学系切替え手段で
あるスライダ50とレボルバ80を手動で動かして光学
系を切替えていたが、これらを自動的に連動するように
制御回路66から制御するようにしてもよい。 [00311また、前記実施例では、レーザ光源装置3
0として直交2周波のゼーマンレーザが用いられていた
が、音響光学変調素子などを備えた周波数シフタを用い
て2つの直線偏光間に所望の周波数差を形成する形式の
レーザ光源装置が用いられてもよいのである。この場合
には、上記音響光学変調素子の駆動周波数信号から基準
ビート信号FBを検出することもできる。 [0032]また、前記実施例では、X方向およびy方
向へ駆動される移動テーブル60によって被測定物12
が2方向へ移動させられるように構成されていたが、上
記X方向およびy方向のうちの一方の方向だけ移動させ
られて表面粗さが測定されてもよい。 [0033]また、例えばミラー75を半透鏡に置き替
えその上部に顕微鏡鏡筒を設けて測定状態をモニタでき
るようにしたり、レーザ光源装置30と無偏光ビームス
プリッタ32の間に光アイソレータを入れたりするなど
、本発明は当業者の知識に基づいて種々の変更、改良を
加えた態様で実施することができる。 [0034] 【発明の効果】以上詳述したことから明らかなように、
本発明によれば、二重焦点レンズを用いた高精度光学系
と、二重焦点レンズを用いない簡易光学系を切替えるこ
とができ、かつ、簡易光学系に切替えた場合計測光と参
照光の光学長さが等しいためレーザ光源装置に周波数変
動が生じても受光部でキャンセルすることができ誤差が
生じない。
[Embodiment] An embodiment embodying the present invention will be described below with reference to the drawings. In this embodiment, the same members as those in the conventional device shown in FIG. 3 are given the same reference numerals, and detailed explanations will be omitted. [0021] FIGS. 1 and 2 are configuration diagrams illustrating an embodiment of the present invention. [00221] The difference between this embodiment and the conventional device is that in the conventional device, the polarizing beam splinter 40 is disposed in a simple optical system, but in this embodiment, the slider 5 is movable in the X direction.
0, and can be inserted and removed in the optical axis between the non-polarizing beam splitter 32 and the beam expander 74, and the reference mirror 42 is placed in the negative direction of the X-axis of the polarizing beam splitter 40. This is the point that was placed. [0023] The slider 50 comprises, for example, a -axis cross roller table and can be moved manually. [00241 As shown in FIG. 1, move the slider 50 in the negative direction of the X axis to remove the polarizing beam splitter 82 from the optical path, and rotate the revolver 80 to set the bifocal lens 76 and objective lens 44. This state is a high-precision optical system. In addition, as shown in FIG. 2, the slider 5
0 in the positive direction of the X-axis, the polarizing beam splitter 82 is inserted into the optical path, and the revolver 80 is rotated to set only the objective lens 45 at a position corresponding to the object to be measured 12. This is a simple optical system. It is. Here slider 5
0 and revolver 80 act as optical system switching means. The objective lens 44 of the high-precision optical system has a relatively high magnification, and the simple optical system has an objective lens 45 with a lower magnification. [0025] The principle of roughness measurement when switching to the high-precision optical system shown in FIG. 1 is exactly the same as that of the conventional device, so its explanation will be omitted. [00261 When switching to the simple optical system shown in FIG. 2, the laser light from the non-polarizing beam splitter 32 is split by the polarizing beam splitter 40 into P-polarized light LP and S-polarized light LS. The P-polarized light LP passes through the polarizing beam splitter 40 and enters the objective lens 45, and the S-polarized light LS is reflected by the polarizing beam splitter 40 and is irradiated onto the reference mirror 42. P-polarized light LP is measurement light, and S-polarized light LS is reference light. Here, the optical length from the polarizing beam splitter 40 to the reference mirror 42 and the optical length from the polarizing beam splitter 40 to the surface 18 of the object to be measured 12 via the beam expander 74, mirror 75, revolver 80, and objective lens 45. A simple optical system is constructed so that the values are equal. The principle of roughness measurement is exactly the same as that of the conventional device, so its explanation will be omitted. [0027] Since the measurement light Lp and the reference light Ls have the same optical length up to the measurement optical sensor 62, the measurement optical sensor 6
The measurement light Lp and the reference light Ls received at 2 are irradiated from the laser light source device 30 at the same time. Therefore, when the output frequency of the laser light source device 30 fluctuates over time due to the influence of heat etc., the measurement light Lp and the reference light Ls received at the same time by the measurement optical sensor 62 have the same frequency fluctuation ft3. is recieving. Therefore, the frequency fD of the measurement beat signal FD received by the measurement optical sensor 62 is I (
fP+ft3+Δfd+Δfs)−(fS+ft3)l
=fP-fS+Δfd+Δfsl, and since the frequency fluctuation numerator t3 is canceled out, it is not affected by the frequency fluctuation. [00281 Although the embodiments of the present invention have been described above in detail based on the drawings, the present invention can also be implemented in other embodiments. [0029] For example, in the conventional apparatus shown in FIGS. 3 and 4, the distance between the polarizing beam splitter 82 and the mirror 84 is set equal to the distance from the polarizing beam splitter 82 to the surface 18 of the object to be measured, and the reference beam and The optical path difference of the measurement light may be eliminated. The point is that the optical system should be configured so that the optical lengths of the reference light and measurement light are equal when switched to the simple optical system. [00301 Furthermore, in the above embodiment, the optical system was switched by manually moving the slider 50 and revolver 80, which are optical system switching means, but the control circuit 66 controls these so that they are automatically linked. Good too. [00311 In addition, in the above embodiment, the laser light source device 3
A Zeeman laser with two orthogonal frequencies was used as the 0, but a laser light source device that uses a frequency shifter equipped with an acousto-optic modulator to create a desired frequency difference between two linearly polarized lights has been used. It is also good. In this case, the reference beat signal FB can also be detected from the drive frequency signal of the acousto-optic modulation element. [0032] Further, in the embodiment, the object to be measured 12 is moved by the moving table 60 driven in the X direction and the y direction.
was configured to be moved in two directions, but the surface roughness may be measured by moving only in one of the X direction and the y direction. [0033] Also, for example, the mirror 75 may be replaced with a semi-transparent mirror and a microscope barrel may be provided above it to monitor the measurement state, or an optical isolator may be inserted between the laser light source device 30 and the non-polarizing beam splitter 32. The present invention can be implemented with various modifications and improvements based on the knowledge of those skilled in the art. [0034] [Effect of the invention] As is clear from the detailed description above,
According to the present invention, it is possible to switch between a high-precision optical system using a bifocal lens and a simple optical system that does not use a bifocal lens, and when switching to the simple optical system, measurement light and reference light can be switched. Since the optical lengths are the same, even if frequency fluctuation occurs in the laser light source device, it can be canceled in the light receiving section and no error occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明を具体化した一実施例の構成を説
明する図であり、高精度光学系により被測定物の表面粗
さを測定する場合を示す斜視図である。
FIG. 1 is a diagram illustrating the configuration of an embodiment embodying the present invention, and is a perspective view showing a case where the surface roughness of a workpiece is measured using a high-precision optical system.

【図2】図2は本発明を具体化した一実施例の構成を説
明する図であり、簡易光学系により被測定物の表面粗さ
を測定する場合を示す斜視図である。
FIG. 2 is a diagram illustrating the configuration of an embodiment embodying the present invention, and is a perspective view showing a case where the surface roughness of an object to be measured is measured using a simple optical system.

【図3】図3は従来の光学式表面粗さ測定装置の構成を
説明する図であり、高精度光学系により被測定物の表面
粗さを測定する場合を示す斜視図である。
FIG. 3 is a diagram illustrating the configuration of a conventional optical surface roughness measuring device, and is a perspective view showing a case where the surface roughness of an object to be measured is measured using a high-precision optical system.

【図4】図4は従来の光学式表面粗さ測定装置の構成を
説明する図あり、で簡易光学系により被測定物の表面粗
さを測定する場合を示す斜視図である。
FIG. 4 is a diagram illustrating the configuration of a conventional optical surface roughness measuring device, and is a perspective view showing a case where the surface roughness of an object to be measured is measured using a simple optical system.

【符号の説明】[Explanation of symbols]

30 レーザ光源装置 50 スライダ 40 偏光ビームスプリッタ 42 参照ミラー 80 レボルバ 76 二重焦点レンズ 12 被測定物 18 表面 62 測定用光センサ LP  P偏光(直線偏光) LS  S偏光(直線偏光) 30 Laser light source device 50 Slider 40 Polarizing beam splitter 42 Reference mirror 80 revolver 76 Bifocal lens 12 Object to be measured 18 Surface 62 Measurement optical sensor LP P polarized light (linear polarized light) LS S polarized light (linear polarized light)

【図1】 【図3[Figure 1] [Figure 3

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】互いに偏波面が直交し、且つ、周波数が異
なる2種類の直線偏光を被測定物の表面に照射してその
反射光を検出する検出部を備え、前記反射光のビート周
波数の変化に基づいて該被測定物の表面粗さを測定する
光学式表面粗さ測定装置において、前記2種類の直線偏
光を含むレーザ光を出力するレーザ光源装置と、そのレ
ーザ光源装置のレーザ光に含まれる2種類の直線偏光の
うちの一方を平行光、他方を収束光とする二重焦点レン
ズを含み、一方の直線偏光を計測光として前記被測定物
の表面上に集光させると共に、他方の直線偏光を参照光
として平行光で、且つ該被測定物の表面上において該一
方の直線偏光の照射径よりも充分大きい照射径にて照射
する高精度光学系と、前記レーザ光に含まれる2種類の
直線偏光のうち一方のみを計測光として該被測定物の表
面上に集光させ、他方を参照光として参照ミラーに照射
すると共に、前記計測光の被測定物表面から前記検出部
までの光学長さと前記参照光の前記参照ミラーから前記
検出部までの光学長さが等しくなる位置に前記参照ミラ
ーを配置して構成される簡易光学系と、前記レーザ光源
装置と被測定物との間に前記2種類の光学系のどちらか
一方のみを切り換え配置する光学系切り換え手段とを備
えることを特徴とする光学式表面粗さ測定装置。
1. A detecting unit for irradiating two types of linearly polarized light whose polarization planes are perpendicular to each other and having different frequencies and detecting the reflected light; An optical surface roughness measuring device that measures the surface roughness of the object to be measured based on the change in the surface roughness includes a laser light source device that outputs a laser beam containing the two types of linearly polarized light, and a laser beam of the laser light source device. It includes a bifocal lens that converts one of the two types of linearly polarized light into parallel light and the other into convergent light, and focuses one linearly polarized light onto the surface of the object to be measured as measurement light, and the other. a high-precision optical system that irradiates the surface of the object to be measured with linearly polarized light as a reference light in parallel light and with an irradiation diameter that is sufficiently larger than the irradiation diameter of the one linearly polarized light; Only one of the two types of linearly polarized light is focused on the surface of the object to be measured as a measurement light, and the other is irradiated to a reference mirror as a reference beam, and the measurement light is transmitted from the surface of the object to the detection section. a simple optical system configured by arranging the reference mirror at a position where the optical length of the reference light and the optical length of the reference light from the reference mirror to the detection section are equal; An optical surface roughness measuring device comprising an optical system switching means for switching and arranging only one of the two types of optical systems in between.
JP2400372A 1990-12-04 1990-12-04 Optical surface roughness measuring device Expired - Fee Related JP2949847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2400372A JP2949847B2 (en) 1990-12-04 1990-12-04 Optical surface roughness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2400372A JP2949847B2 (en) 1990-12-04 1990-12-04 Optical surface roughness measuring device

Publications (2)

Publication Number Publication Date
JPH04208805A true JPH04208805A (en) 1992-07-30
JP2949847B2 JP2949847B2 (en) 1999-09-20

Family

ID=18510288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2400372A Expired - Fee Related JP2949847B2 (en) 1990-12-04 1990-12-04 Optical surface roughness measuring device

Country Status (1)

Country Link
JP (1) JP2949847B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697476A (en) * 2015-03-19 2015-06-10 北京时代之峰科技有限公司 Automatic detection method and device for roughness light-incision profile curve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104697476A (en) * 2015-03-19 2015-06-10 北京时代之峰科技有限公司 Automatic detection method and device for roughness light-incision profile curve

Also Published As

Publication number Publication date
JP2949847B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
US4576479A (en) Apparatus and method for investigation of a surface
EP2163906B1 (en) Method of detecting a movement of a measuring probe and measuring instrument
JPH10185529A (en) Interferometer and shape measuring instrument
JPS60256079A (en) Minute displacement measuring apparatus using semiconductor laser
JPH0718963Y2 (en) Optical surface roughness measuring device
JPH04208805A (en) Optical surface roughness measuring apparatus
JP2998333B2 (en) Atomic force microscope
JP2501738Y2 (en) Optical surface roughness measuring device
JP4536873B2 (en) Three-dimensional shape measuring method and apparatus
JP3293666B2 (en) Non-contact optical type distance measuring device between two surfaces
JP2002054987A (en) Three-dimensional laser doppler vibrograph
JP3421309B2 (en) Surface shape measuring method and surface shape measuring instrument
JP2514577Y2 (en) Optical surface roughness measuring device
JP3184914B2 (en) Surface shape measuring method and surface shape measuring instrument
JPH0742087Y2 (en) Optical surface roughness measuring device
JP2592254B2 (en) Measuring device for displacement and displacement speed
JPH0465612A (en) Optical method and instrument for measuring surface roughness
JPH0465601A (en) Optical heterodyne interference measuring instrument
JPH0387608A (en) Optical device corresponding to inclined surface
SU794368A1 (en) Apparatus for monitoring object geometrical characteristics
JPH03125909A (en) Optical apparatus for measurement
JPH10274513A (en) Surface configuration measuring method and surface configuration measuring apparatus
JPH08278114A (en) Surface contour measuring method and surface contour measuring instrument
JP2004093452A (en) Three-dimensional shape measuring device and method
JPH04319609A (en) Optical path switching and light wave interference type apparatus for measuring minute structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees