JPH04207197A - Production of optically active cyanohydrin and optically active lactone - Google Patents

Production of optically active cyanohydrin and optically active lactone

Info

Publication number
JPH04207197A
JPH04207197A JP33645190A JP33645190A JPH04207197A JP H04207197 A JPH04207197 A JP H04207197A JP 33645190 A JP33645190 A JP 33645190A JP 33645190 A JP33645190 A JP 33645190A JP H04207197 A JPH04207197 A JP H04207197A
Authority
JP
Japan
Prior art keywords
optically active
lipase
general formula
cyanohydrin
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33645190A
Other languages
Japanese (ja)
Inventor
Shinji Kamata
鎌田 真司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP33645190A priority Critical patent/JPH04207197A/en
Publication of JPH04207197A publication Critical patent/JPH04207197A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject cyanohydrin useful for medical drugs, reagents of clinical analysis, etc., with industrial advantage by reacting an aldehyde with hydrocyanic acid in the presence of a lipase. CONSTITUTION:An aldehyde of formula I [R is (substituted)alkyl, (substituted) aryl, etc.] is reacted with hydrocyanic acid in a reaction solvent such as water or an acetate buffer in the presence of a microorganism-derived lipase (e.g. lipase derived from Achromobacter genus or Aspergillus genus), thus giving the objective cyanohydrin of formula II.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はシアンヒドリンの製造方法およびラクトンの製
造方法に係り、特に、生化学的な手法に基づく光学活性
なシアンヒドリンの製造方法および光学活性なラクトン
の製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing cyanohydrin and a method for producing lactone, and in particular, a method for producing optically active cyanohydrin and an optically active lactone based on biochemical techniques. Relating to a manufacturing method.

[従来の技術] ラクトン、α−オキシ酸、不飽和カルボン酸等を合成す
る際の原料として広く利用されているシアンヒドリンは
、従来より、アルデヒドまたはケトンに青酸(シアン化
水素)を作用させる方法や、アルデヒドまたはケトンと
亜硫酸水素ナトリウムとの付加物にシアン化アルカリを
作用させる方法等の化学的手法により合成されてきた。
[Prior Art] Cyanohydrin, which is widely used as a raw material for synthesizing lactones, α-oxyacids, unsaturated carboxylic acids, etc., has conventionally been produced by a method in which hydrocyanic acid (hydrogen cyanide) is applied to an aldehyde or ketone, or by a method in which aldehyde Alternatively, it has been synthesized by chemical methods such as a method in which an alkali cyanide is applied to an adduct of a ketone and sodium hydrogen sulfite.

このような化学的手法により合成されたシアンヒドリン
は一般にラセミ体であり、ラセミ体のシアンヒドリンを
原料として化学的手法により合成された目的物質もまた
ラセミ体となる。このため、化学的手法により合成され
たシアンヒドリンを原料として使用して、一方の光学対
掌体を使用することが望まれる医薬品、検査薬、食品添
加物、動物薬、飼料添加物等を得るにあたっては、ラセ
ミ体のシアンヒドリンを光学分割して一方の光学対掌体
を得た後に目的物質を化学的に合成するか、目的化合物
をラセミ体として得た後にこのラセミ体を光学分割する
必要があった。
Cyanohydrin synthesized by such chemical methods is generally racemic, and the target substance synthesized by chemical methods using racemic cyanohydrin as a raw material is also racemic. For this reason, when using cyanohydrin synthesized by chemical methods as a raw material to obtain pharmaceuticals, test drugs, food additives, veterinary drugs, feed additives, etc. that require the use of one optical enantiomer. It is necessary to optically resolve racemic cyanohydrin to obtain one optical antipode and then chemically synthesize the target compound, or to obtain the target compound as a racemate and then optically resolve this racemate. Ta.

ところで、近年、微生物や酵素を利用して、光学活性な
有機物質(一方の光学対掌体に富んだ有機物質または一
方の光学対掌体)を生化学的に合成する手法が開発され
、種々の有機合成への適用が試みられている。
By the way, in recent years, methods have been developed to biochemically synthesize optically active organic substances (organic substances rich in one optical enantiomer or one optical enantiomer) using microorganisms and enzymes, and various methods have been developed. Attempts are being made to apply this to organic synthesis.

例えば、光学活性なシアンヒドリンを合成するものとし
ては、アルデヒドと青酸とをオキシニトリラーゼ(E、
  C,4,1,2,10)の存在下で反応させる方法
が、特開昭63−219388号公報に開示されている
For example, to synthesize optically active cyanohydrin, aldehyde and hydrocyanic acid are synthesized using oxynitrilase (E,
A method of reacting in the presence of C, 4, 1, 2, 10) is disclosed in JP-A-63-219388.

[発明が解決しようとする課題] しかしながらオキシニトリラーゼは、反応速度の増大や
反応生成物の回収等の点で反応溶媒として好適である有
機溶媒を用いると失活しやすく、反応系の選択が極めて
限定されるという難点がある。また、このオキシニトリ
ラーゼは植物から抽出、精製されたものであるため、工
業的に利用するには酵素の調製、分離源(植物、種子)
の人手等の点に不安があり、さらに、高価であるという
難点もある。
[Problem to be solved by the invention] However, oxynitrilase is easily deactivated when using an organic solvent that is suitable as a reaction solvent in terms of increasing the reaction rate and recovering reaction products, and the selection of the reaction system is extremely difficult. The problem is that it is limited. In addition, since this oxynitrilase is extracted and purified from plants, it must be prepared and isolated from sources (plants, seeds) before it can be used industrially.
There are concerns about the amount of manpower involved, and there is also the drawback that it is expensive.

したがって本発明の目的は、工業的により安定して実施
することが可能な、光学活性なシアンヒントリンの製造
方法および光学活性なラクトンの製造方法を提供するこ
とにある。
Therefore, an object of the present invention is to provide a method for producing optically active cyanophintrines and a method for producing optically active lactone, which can be carried out industrially more stably.

[課題を解決するための手段] 本発明者は、上記目的を達成すべく鋭意研究した結果、
リパーゼが上記難点および不安を解決し、好適に光学活
性なシアンヒントリンおよび光学活性なラクトンの製造
に適用し得ることを見出だして、本発明に到達した。
[Means for Solving the Problem] As a result of intensive research to achieve the above object, the present inventor has found that
The present invention has been achieved by discovering that lipase solves the above-mentioned difficulties and concerns and can be suitably applied to the production of optically active cyanophintrines and optically active lactones.

すなわち本発明の光学活性なシアンヒドリンの製造方法
は、下記一般式(I) R−CHO・・・(I) (式中、Rはアルキル基、置換アルキル基、アリールア
ルキル基、置換アリールアルキル基、アリール基および
置換アリール基からなる群より選択される置換基である
。) で表されるアルデヒドと青酸とをリパーゼの存在下で反
応させることを特徴とする。得られる光学活性なシアン
ヒドリンは、下記一般式(II)R−C−CN    
    ・・・(n)■ H (式中、Rは前記一般式(I)に同じ。)で表される。
That is, the method for producing an optically active cyanohydrin of the present invention is based on the following general formula (I) R-CHO...(I) (wherein R is an alkyl group, a substituted alkyl group, an arylalkyl group, a substituted arylalkyl group, A substituent selected from the group consisting of an aryl group and a substituted aryl group.) is characterized by reacting an aldehyde represented by the following with hydrocyanic acid in the presence of lipase. The optically active cyanohydrin obtained has the following general formula (II) R-C-CN
...(n)■H (In the formula, R is the same as in the above general formula (I).).

また本発明の光学活性なラクトンの製造方法は、下記一
般式(i) R+ R3 HO−C−C−CHO・・・(i) 2 R4 (式中、R+ 、R2、R3およびR4はそれぞれ水素
原子または炭素数1〜4のアルキル基を示し、R+ 、
R1、R3およびR4はそれぞれ同一であっても異なっ
ていてもよい。)で表されるアルデヒドと青酸とをリパ
ーゼの存在下で反応させて、下記一般式(it) R’ R3H R2R40H (式中、R1、R2、R3およびR4は前記一般式(i
)に同じ。) で表される光学活性なシアンヒドリンを得た後、このシ
アンヒドリンに酸加水分解処理を施すことを特徴とする
。得られる光学活性なラクトンは、一般式(iii) (式中、R1、R2、R3およびR4は前記一般式(i
)に同じ。) で表される。
Further, the method for producing an optically active lactone of the present invention can be carried out using the following general formula (i) R+ R3 HO-C-C-CHO... (i) 2 R4 (wherein, R+, R2, R3 and R4 are each hydrogen represents an atom or an alkyl group having 1 to 4 carbon atoms, R+,
R1, R3 and R4 may be the same or different. ) and hydrocyanic acid are reacted in the presence of lipase to form the following general formula (it) R' R3H R2R40H (wherein, R1, R2, R3 and R4 are represented by the general formula (i
). ) After obtaining optically active cyanohydrin, the method is characterized in that this cyanohydrin is subjected to acid hydrolysis treatment. The obtained optically active lactone has the general formula (iii) (wherein R1, R2, R3 and R4 are represented by the general formula (i)
). ).

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

まず本発明の光学活性なシアンヒドリンの製造方法につ
いて説明すると、この方法においては前述したように下
記一般式(I) R−CHO・・・(I) (式中、Rはアルキル基、置換アルキル基、アリールア
ルキル基、置換アリールアルキル基、アリール基および
置換アリール基からなる群より選択される置換基である
。) で表されるアルデヒドを原料として使用する。
First, the method for producing optically active cyanohydrin of the present invention will be explained. In this method, as described above, the following general formula (I) R-CHO...(I) (wherein R is an alkyl group or a substituted alkyl group) , an arylalkyl group, a substituted arylalkyl group, an aryl group, and a substituted aryl group.) An aldehyde represented by the following is used as a raw material.

ここにアルキル基としては、炭素数1〜5のアルキル基
が好ましく、このようなアルキル基としては、例えばメ
チル基、エチル基、プロピル基、イソプロピル基、ブチ
ル基、t−ブチル基、ペンチル基が挙げられる。
The alkyl group here is preferably an alkyl group having 1 to 5 carbon atoms, and examples of such alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, and pentyl group. Can be mentioned.

置換アルキル基としては、水酸基やハロゲン原子等によ
り置換された炭素数1〜5のアルキル基が好ましく、こ
のような置換アルキル基としては、例えばヒドロキシメ
チル基、オキシラニル基、クロルメチル基、ジクロロメ
チル基、下記式で表される置換基が挙げられる。
The substituted alkyl group is preferably an alkyl group having 1 to 5 carbon atoms substituted with a hydroxyl group or a halogen atom, and examples of such substituted alkyl groups include hydroxymethyl group, oxiranyl group, chloromethyl group, dichloromethyl group, Examples include substituents represented by the following formulas.

I  R3 HO−C−C− ]   I R1!  R4 (式中、R+ 、R1SR3およびR4はそれぞれ水素
原子または炭素数1〜4のアルキル基を示シ、R1、R
e5R3およびR4はそれぞれ同一であっても異なって
いてもよい。)アリールアルキル基としては、炭素数7
〜10のアリールアルキル基が好ましく、このようなア
リールアルキル基としては、例えばベンジル基、フェニ
ルエチル基、フェニルプロピル基、フェニルブチル基が
挙げられる。
I R3 HO-C-C- ] I R1! R4 (wherein R+, R1SR3 and R4 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R1, R
e5R3 and R4 may be the same or different. ) The arylalkyl group has 7 carbon atoms.
-10 arylalkyl groups are preferred, and examples of such arylalkyl groups include benzyl, phenylethyl, phenylpropyl, and phenylbutyl groups.

置換アリールアルキル基としては、水酸基、ニトロ基、
メトキシ基、ハロゲン原子等により置換された炭素数7
〜11のアリールアルキル基が好ましく、このような置
換アリールアルキル基としては、例えばp−ヒドロキシ
フェニルエチル基、0−ニトロフェニルプロピル基、0
−クロロベンジル基、m−メトキシフェニルブチル基が
挙げられる。
Substituted arylalkyl groups include hydroxyl group, nitro group,
7 carbon atoms substituted with methoxy group, halogen atom, etc.
-11 arylalkyl groups are preferable, and examples of such substituted arylalkyl groups include p-hydroxyphenylethyl group, 0-nitrophenylpropyl group, 0-nitrophenylpropyl group,
-chlorobenzyl group and m-methoxyphenylbutyl group.

アリール基としては、フェニル基が好ましい。As the aryl group, a phenyl group is preferred.

置換アリール基としては、水酸基、ニトロ基、メトキシ
基、イソプロピル基、ハロゲン原子等により置換された
炭素数6〜9のアリール基が好ましく、このような置換
アリール基としては、例えばp−ヒドロキシフェニル基
、0−ニトロフェニル基、0−クロルフェニル基、m−
メトキシフェニル基、p−イソプロピルフェニル基が挙
げられる。
The substituted aryl group is preferably an aryl group having 6 to 9 carbon atoms substituted with a hydroxyl group, a nitro group, a methoxy group, an isopropyl group, a halogen atom, etc. Such a substituted aryl group includes, for example, a p-hydroxyphenyl group. , 0-nitrophenyl group, 0-chlorophenyl group, m-
Examples include methoxyphenyl group and p-isopropylphenyl group.

原料として使用するアルデヒドは、公知のアルデヒド合
成法により得られた反応液より分離、精製したものでも
よいし、分離、精製前のアルデヒド含有反応液でもよい
。さらには、反応液から有機溶媒でアルデヒドを抽出後
、溶媒を留去させたものや、市販のアルデヒドを水に一
旦、温時溶解後、冷却したもの等を使用してもよい。
The aldehyde used as a raw material may be one separated and purified from a reaction solution obtained by a known aldehyde synthesis method, or an aldehyde-containing reaction solution before separation and purification. Furthermore, the aldehyde may be extracted from the reaction solution with an organic solvent and then the solvent is distilled off, or a commercially available aldehyde may be dissolved in water at a temperature and then cooled.

例えば、アルデヒドとしてヒドロキシピバルアルデヒド
[前記一般式(i)において、R1およびR2が水素原
子で、R3およびR4がメチル基であるアルデヒドコを
使用する場合には、イソブチルアルデヒドとホルムアル
デヒドとのアルドール縮合反応液より分離、精製したヒ
ドロキシピバルアルデヒドの他に、前記アルドール縮合
反応液や、このアルドール縮合反応液から有機溶媒でヒ
ドロキシピバルアルデヒドを抽出後、溶媒を留去させた
もの、あるいは市販のヒドロキシピバルアルデヒドを一
旦、水に温時溶解させた後、所定の温度に冷却したもの
等を使用することができる。
For example, when using hydroxypivalaldehyde as the aldehyde [in the above general formula (i), R1 and R2 are hydrogen atoms and R3 and R4 are methyl groups, aldol condensation of isobutyraldehyde and formaldehyde is used. In addition to hydroxypivalaldehyde separated and purified from the reaction solution, the aldol condensation reaction solution, hydroxypivalaldehyde extracted from this aldol condensation reaction solution with an organic solvent and distilled off the solvent, or commercially available Hydroxypivalaldehyde may be dissolved in water at a warm temperature and then cooled to a predetermined temperature.

本発明の光学活性なシアンヒドリンの製造方法において
は、上述したアルデヒドと青酸とをリパーゼの存在下で
反応させる。
In the method for producing optically active cyanohydrin of the present invention, the above-mentioned aldehyde and hydrocyanic acid are reacted in the presence of lipase.

このときの反応溶媒としては、水や、酢酸バッファー、
クエン酸バッファー、リン酸バッファー等の緩衝液ある
いはアルコール含有緩衝液等を用いることが好ましい。
The reaction solvent at this time is water, acetate buffer,
It is preferable to use a buffer such as a citrate buffer or a phosphate buffer, or an alcohol-containing buffer.

また青酸(HCN)は、そのまま溶媒中に溶解させても
よいが、安全性の上から、NaCN、KCN等の青酸塩
と、HCj2、Ht SOa等の酸とを溶媒に溶解させ
、溶媒中で青酸を生成させて使用することが好ましい。
Hydrocyanic acid (HCN) may be dissolved as it is in a solvent, but for safety reasons, cyanide salts such as NaCN and KCN and acids such as HCj2 and Ht SOa are dissolved in a solvent. It is preferable to generate and use hydrocyanic acid.

このときの青酸の量は、原料として使用するアルデヒド
と当量以上とすることが好ましい。
The amount of hydrocyanic acid at this time is preferably equal to or more than the aldehyde used as a raw material.

リパーゼとしては高等動物由来、植物由来、微生物由来
等、種々のものが知られているが、本発明においては工
業的に大量生産の技術が確立されている微生物由来のリ
パーゼ、例えばアクロモバクタ−(Achromoba
cter)属やシュードモナス(Pseudomona
s)属の細菌、フィコマイセス(Phycomyces
)属やリゾプス(Rhizopus)属やムコール(M
ucor)属やアスペルギルス(Aspergi I 
Ius)属の糸状菌、カンディダ(Candida)属
の酵母等に由来するリパーゼを使用することが特に好ま
しい。
A variety of lipases are known, including those derived from higher animals, plants, and microorganisms. In the present invention, lipases derived from microorganisms for which industrial mass production technology has been established, such as Achromobacter
cter) genus and Pseudomonas (Pseudomonas)
Phycomyces, a bacterium of the genus Phycomyces
), Rhizopus and Mucor (M
ucor) genus and Aspergillus (Aspergi I
It is particularly preferred to use lipases derived from filamentous fungi of the genus Ius, yeasts of the genus Candida, and the like.

またリパーゼとしては、精製したリパーゼの他に、リパ
ーゼを産生ずる菌体あるいは細胞、リパーゼを含む菌体
抽出物あるいは細胞抽出物、リパーゼを産生ずる菌体あ
るいは細胞の培養上澄物等や、これらを適当な坦体に固
定化したもの等を用いてもよ(、本発明におけるリパー
ゼとは、これらを総称するものとする。
In addition to purified lipase, lipases include bacterial cells or cells that produce lipase, bacterial cell extracts or cell extracts containing lipase, culture supernatants of bacterial cells or cells that produce lipase, etc. A lipase immobilized on a suitable carrier may also be used (the lipase in the present invention is a general term for these).

なお固定化に用いる坦体は、ガラス、多孔質ガラス、シ
リカゲル、アルミナ等の無機坦体、セルロース、デキス
トラン、アガロース、デンプン等の天然高分子やその誘
導体、ポリアクリルアミド、ポリヒドロキシアクリルメ
タクリレート、ポリスチレン、ナイロン、各種イオン交
換樹脂等の合成高分子やこれらにアミノ基、カルボキシ
ル基、水酸基、フェノール基等の官能基を導入したもの
、寒天、アルギン酸、に−カラギーナン、セルロース誘
導体等の多糖類、およびゼラチン、アルブミン、コラー
ゲン等のタンパク質等の中から適宜選択される。
The carriers used for immobilization include inorganic carriers such as glass, porous glass, silica gel, and alumina, natural polymers and their derivatives such as cellulose, dextran, agarose, and starch, polyacrylamide, polyhydroxyacryl methacrylate, polystyrene, Synthetic polymers such as nylon and various ion exchange resins, and polymers into which functional groups such as amino groups, carboxyl groups, hydroxyl groups, and phenol groups have been introduced, polysaccharides such as agar, alginic acid, carrageenan, and cellulose derivatives, and gelatin. , albumin, collagen, and other proteins.

反応は、例えば、溶媒に青酸または青酸塩を所定量添加
し、必要に応じて青酸を生成させるための酸を所定量添
加した後、溶媒のpHを3.0〜7.0好ましくは3.
6〜6.0に調節してリパーゼを添加し、さらに原料ア
ルデヒドを所定量添加して、反応温度を4〜60℃好ま
しくは15〜40℃として行う。反応形式は連続式、反
連続式、回分式のいずれの形式であってもよく、反応時
間は概ね0,5〜2時間である。
The reaction is carried out, for example, by adding a predetermined amount of hydrocyanic acid or a cyanide salt to a solvent, and optionally adding a predetermined amount of acid for producing hydrocyanic acid, and then adjusting the pH of the solvent to 3.0 to 7.0, preferably 3.0 to 7.0.
6 to 6.0, add lipase, further add a predetermined amount of raw material aldehyde, and conduct the reaction at a temperature of 4 to 60°C, preferably 15 to 40°C. The reaction format may be a continuous type, a counter-continuous type, or a batch type, and the reaction time is approximately 0.5 to 2 hours.

このようにしてアルデヒドと青酸とをリパーゼの存在下
で反応させることにより、下記一般式%式%([) (式中、Rは前記一般式(I)に同じ。)で表される光
学活性なシアンヒドリンを製造することができる。
By reacting aldehyde and hydrocyanic acid in the presence of lipase in this way, the optical activity expressed by the following general formula % formula % ([) (wherein R is the same as the above general formula (I)) cyanohydrin can be produced.

反応終了後、必要に応じて生成したシアンヒドリンを分
離、精製してもよい。シアンヒドリンの分離、精製方法
は特に限定されるものではなく、例えば、反応液中に残
存する未反応の青酸を減圧法、N2気流の吹き込み等に
より除去した後、反応液中のシアンヒドリンをエーテル
やジクロロメタン等の有機溶媒により抽出し、抽出層を
無水硫酸ナトリウム等で脱水した後、濃縮乾固すること
により行うことができる。
After the reaction is completed, the produced cyanohydrin may be separated and purified if necessary. The method for separating and purifying cyanohydrin is not particularly limited. For example, unreacted hydrocyanic acid remaining in the reaction solution is removed by a vacuum method, blowing in a N2 gas stream, etc., and then the cyanohydrin in the reaction solution is purified by ether or dichloromethane. This can be carried out by extracting with an organic solvent such as, dehydrating the extracted layer with anhydrous sodium sulfate, etc., and then concentrating to dryness.

次に本発明の光学活性なラクトンの製造方法について説
明すると、この方法においては前記一般式(I)のアル
デヒド(R−CHO)の−態様である下記一般式(i)
、 Rj R3 HO−C−C−CHO・・・(i) R1! R4 (式中、Rj 、RE 、R3およびR4はそれぞれ水
素原子または炭素数1〜4のアルキル基を示し、Rj 
、RE 、R3およびR4はそれぞれ同一であっても異
なっていてもよい。)で表されるアルデヒドを原料とし
て使用し、このアルデヒドと青酸とをリパーゼの存在下
に反応させて、まず、下記一般式(11) %式% (式中、Rj 、R1! 、R3およびR4は前記一般
式(i)に同じ。) で表される光学活性なシアンヒドリンを得る。
Next, to explain the method for producing an optically active lactone of the present invention, in this method, the following general formula (i), which is an embodiment of the aldehyde (R-CHO) of the general formula (I), is used.
, Rj R3 HO-C-C-CHO...(i) R1! R4 (wherein Rj, RE, R3 and R4 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and Rj
, RE, R3 and R4 may be the same or different. ) is used as a raw material, and this aldehyde and hydrocyanic acid are reacted in the presence of lipase. is the same as the general formula (i) above.) An optically active cyanohydrin represented by the following is obtained.

原料として使用するアルデヒドの具体例としては、ヒド
ロキシピバルアルデヒド、3−ヒドロキシプロピオンア
ルデヒド、2.2−ジエチル−3−ヒドロキシプロピオ
ンアルデヒド、2,2−ジプロピル−3−ヒドロキシプ
ロピオンアルデヒド等が挙げられる。
Specific examples of aldehydes used as raw materials include hydroxypivalaldehyde, 3-hydroxypropionaldehyde, 2,2-diethyl-3-hydroxypropionaldehyde, 2,2-dipropyl-3-hydroxypropionaldehyde, and the like.

本発明の光学活性なラクトンの製造方法においては、こ
のようにして得られた一般式(11)の光学活性なシア
ンヒドリンに酸加水分解処理を施して、下記一般式(i
il) (式中、H+ 、Rj 、R3およびR4は前記一般式
(i)に同じ。) で表される光学活性なラクトンを得る。
In the method for producing an optically active lactone of the present invention, the optically active cyanohydrin of the general formula (11) thus obtained is subjected to acid hydrolysis treatment, and the following general formula (i
il) (In the formula, H+, Rj, R3 and R4 are the same as in the general formula (i) above.) An optically active lactone is obtained.

このときの酸加水分解は、塩酸、硫酸等の酸を用イテ、
一般式(if)の光学活性なシアンヒドリンを含む反応
液について行ってもよいし、反応液から分離、精製した
光学活性なシアンヒドリンについて行ってもよい。さら
に、リパーゼとして精製したリパーゼ以外のリパーゼを
使用した場合および固定化したリパーゼを使用した場合
には、反応液を遠心分離して、リパーゼを産生ずる菌体
あるいは細胞、リパーゼを含む菌体抽出物あるいは細胞
抽出物、リパーゼを産生ずる菌体あるいは細胞の培養上
澄物、またはこれらが固定化された坦体等を除いた画分
について行ってもよい。この酸加水分解は、60〜10
0’Cで1〜3時間行うことが好ましい。
At this time, acid hydrolysis uses acids such as hydrochloric acid and sulfuric acid.
The reaction may be carried out using a reaction solution containing the optically active cyanohydrin of the general formula (if), or may be carried out using an optically active cyanohydrin separated and purified from the reaction solution. Furthermore, when using a lipase other than purified lipase or when using immobilized lipase, the reaction solution is centrifuged to extract the bacterial cells or cells that produce the lipase and the bacterial cell extract containing the lipase. Alternatively, the assay may be carried out using cell extracts, culture supernatants of microbial cells or cells that produce lipase, or fractions obtained by removing carriers on which these are immobilized. This acid hydrolysis is 60 to 10
It is preferable to carry out the reaction at 0'C for 1 to 3 hours.

このように、前記一般式(i)で表されるアルデヒドと
青酸とをリパーゼの存在下に反応させて前記一般式(1
1)で表される光学活性なシアンヒドリンを得た後に酸
加水分解を行うことにより、光学活性な5員環状ラクト
ン、例えばパントラクトン(アルデヒドとしてヒドロキ
シビバルアルデヒドを用いた場合)を製造することがで
きる。
In this way, the aldehyde represented by the general formula (i) and hydrocyanic acid are reacted in the presence of lipase, and the aldehyde represented by the general formula (1) is reacted with cyanide in the presence of lipase.
By performing acid hydrolysis after obtaining the optically active cyanohydrin represented by 1), it is possible to produce an optically active 5-membered cyclic lactone, such as pantolactone (when hydroxybivalaldehyde is used as the aldehyde). can.

酸加水分解後、必要に応じて生成したラクトンを分離、
精製してもよい。ラクトンの分離、精製方法は特に限定
されるものではなく、例えば、酸加水分解液中のラクト
ンをエーテルやジクロロメタン等の有機溶媒により抽出
した後、濃縮乾固することにより行うことができる。ま
た、酸加水分解液に硫酸アンモニウムや芒硝等を添加し
て、油層として得ることもできる。
After acid hydrolysis, the generated lactone is separated as necessary.
May be purified. The method for separating and purifying lactones is not particularly limited, and can be carried out, for example, by extracting the lactones in the acid hydrolysis solution with an organic solvent such as ether or dichloromethane, and then concentrating to dryness. Alternatively, an oil layer can be obtained by adding ammonium sulfate, Glauber's salt, etc. to the acid hydrolysis solution.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

実施例1(光学活性なシアンヒドリンの製造)原料アル
デヒドとしてベンズアルデヒドを用い、以下の要領で光
学活性なマンデルニトリル(ベンズアルデヒドシアンヒ
ドリン)を製造した。
Example 1 (Production of optically active cyanohydrin) Using benzaldehyde as a raw material aldehyde, optically active mandelnitrile (benzaldehyde cyanohydrin) was produced in the following manner.

まず、反応溶媒として100mM酢酸バッファ(p H
5,6)を用い、この酢酸バッファ3威を5威反応容器
に入れた後、NaCNの10M水溶液を100mM濃度
となるように上記反応容器に添加し、さらに当量のHC
l2を添加した。
First, 100mM acetate buffer (pH
5, 6), and after putting this acetic acid buffer 3 parts into a 5 parts reaction container, a 10M aqueous solution of NaCN was added to the reaction container to have a concentration of 100 mM, and an equivalent amount of HC was added to the reaction container.
12 was added.

次いで、大野製薬■製のリパーゼ(商品名・Lipas
eP 「アマノ」)を50mg添加し、液のpHを5.
6に調節した後にベンズアルデヒドの99%溶液を10
0mM濃度となるように添加して、反応液を調製した。
Next, lipase (product name: Lipas) manufactured by Ohno Pharmaceutical ■
Add 50mg of eP "Amano") and adjust the pH of the solution to 5.
A 99% solution of benzaldehyde was adjusted to 10
A reaction solution was prepared by adding it to a concentration of 0 mM.

この後、反応液を撹拌しながら、反応温度25℃で反応
時間30分として反応を実施した。
Thereafter, the reaction was carried out at a reaction temperature of 25° C. for a reaction time of 30 minutes while stirring the reaction solution.

反応終了後の反応液にN2気流を吹き込むことにより未
反応のHCNを除去した後、エーテルにより反応生成物
を抽出し、エーテル抽出層を無水硫酸ナトリウムにより
脱水した後に濃縮乾固して濃縮乾固物を得た。マンゾロ
ニトリルの生成は、薄層クロマトグラフィーにより確認
した。すなわち、濃縮乾固物をメルク社製プレート(商
品名:RP−18)にスポット後、展開液(メタノール
と水の1:1混液)にて展開し、風乾後、波長254n
mの紫外線ランプ下でRf値を求め、同様にして求めた
市販のマンゾロニトリルのRf値と比較した。
After the reaction is completed, unreacted HCN is removed by blowing a stream of N into the reaction solution, and then the reaction product is extracted with ether, and the ether extracted layer is dehydrated with anhydrous sodium sulfate, and then concentrated to dryness. I got something. Production of manzolonitrile was confirmed by thin layer chromatography. That is, after spotting the concentrated dry product on a Merck plate (product name: RP-18), it was developed with a developing solution (a 1:1 mixture of methanol and water), and after air drying, a wavelength of 254 nm was applied.
The Rf value was determined under an ultraviolet lamp of m and was compared with the Rf value of commercially available manzolonitrile determined in the same manner.

この結果、本実施例1で得られた反応生成物のRf値は
0.34〜0.36であり、市販のマンゾロニトリルの
Rf値と同様の値であった。
As a result, the Rf value of the reaction product obtained in Example 1 was 0.34 to 0.36, which was similar to the Rf value of commercially available manzolonitrile.

また、生成したマンゾロニトリルの光学純度を以下の要
領で求めた。
Furthermore, the optical purity of the produced manzolonitrile was determined in the following manner.

まず、上述の濃縮乾固物を6NのHCIに溶解させ、6
0℃、3時間の条件で酸加水分解してマンデル酸を生成
させ、加水分解液中のマンデル酸をエーテルにより抽出
した後、エーテル抽出層を無水硫酸ナトリウムにより脱
水し、さらに濃縮乾固して濃縮乾固物を得た。
First, the above-mentioned concentrated and dried product was dissolved in 6N HCl,
Acid hydrolysis was performed at 0°C for 3 hours to produce mandelic acid, and the mandelic acid in the hydrolysis solution was extracted with ether. The ether extracted layer was dehydrated with anhydrous sodium sulfate, and further concentrated to dryness. A concentrated dry product was obtained.

次いで、得られた濃縮乾固物を、光学異性体分離カラム
を用いた高速液体クロマトグラフィー(ウォーターズ社
製)により以下の条件で分析した。
Next, the obtained concentrated dry product was analyzed by high performance liquid chromatography (manufactured by Waters) using an optical isomer separation column under the following conditions.

カラム:キラルバックWH(商品名、ダイセル化学■製
、φ4.6X250mm) 流速:1.Om/分 流出液:0.25mM硫酸銅水溶液 検 8:紫外線検出器(波長254nm)この後、得ら
れた分析結果を同一条件で分析した標品の分析結果と比
較し、下式 により、本実施例1で生成したマンゾロニトリルの光学
純度を求めた。この結果を表−1に示す。
Column: Chiralback WH (trade name, manufactured by Daicel Chemical ■, φ4.6 x 250 mm) Flow rate: 1. Om/minute effluent: 0.25mM copper sulfate aqueous solution test 8: Ultraviolet detector (wavelength 254nm) After this, the obtained analysis results are compared with the analysis results of the standard sample analyzed under the same conditions, and the main The optical purity of the manzolonitrile produced in Example 1 was determined. The results are shown in Table-1.

なお、標品としては市販の(D)−(−)−マンデル酸
および(L)−(+)−マンデル酸を用いた。また各標
品のリテンションタイムは、以下の通りであった。
In addition, commercially available (D)-(-)-mandelic acid and (L)-(+)-mandelic acid were used as standards. In addition, the retention times of each sample were as follows.

(D)−(−)−マンデル酸 35.3分(L)−(+
)−マンデル酸 27.9分実施例2〜4(光学活性な
シアンヒドリンの製造)リパーゼとしてそれぞれ表−1
に示すリパーゼを10〜100mg用いた以外は実施例
1と同様にして反応液を調製し、反応温度20〜30℃
、反応時間30〜60分として反応を実施した。
(D)-(-)-mandelic acid 35.3 minutes (L)-(+
)-mandelic acid 27.9 minutes Examples 2 to 4 (Production of optically active cyanohydrin) Table 1 as lipase
A reaction solution was prepared in the same manner as in Example 1 except that 10 to 100 mg of the lipase shown in was used, and the reaction temperature was 20 to 30°C.
, reaction time was 30 to 60 minutes.

反応終了後、実施例1と同様にしてそれぞれ反応生成物
の濃縮乾固物を得、これらの濃縮乾固物のRf値をそれ
ぞれ実施例1と同様にして求めたところ、いずれの実施
例でもマンゾロニトリルが生成したことが確認された。
After the reaction was completed, concentrated dry products of the reaction products were obtained in the same manner as in Example 1, and the Rf values of these concentrated and dried products were determined in the same manner as in Example 1. It was confirmed that manzolonitrile was produced.

また、各実施例で生成したマンゾロニトリルの光学純度
を実施例1と同様にしてそれぞれ求めた。
Furthermore, the optical purity of the manzolonitrile produced in each example was determined in the same manner as in Example 1.

これらの結果も表−1に示す。These results are also shown in Table-1.

実施例5(光学活性なシアンヒドリンの製造)原料アル
デヒドとして3−フェニルプロピオンアルデヒドの98
%溶液を用い、リパーゼとして天野製薬株製のリパーゼ
(商品名:ニューラーゼF)を50Il1g用いた以外
は実施例1と同様にして反応液の調製および反応を実施
した。
Example 5 (Production of optically active cyanohydrin) 3-phenylpropionaldehyde 98 as raw material aldehyde
A reaction solution was prepared and the reaction was carried out in the same manner as in Example 1, except that 50 Il 1 g of Amano Pharmaceutical Co., Ltd. lipase (trade name: Neurase F) was used as the lipase.

反応終了後、実施例1と同様にして反応生成物の濃縮乾
固物を得、この濃縮乾固物を’H−NMR(CDCβ3
)により分析したところ、下記の結果が得られた。
After the reaction was completed, the reaction product was concentrated to dryness in the same manner as in Example 1, and this concentrated and dried product was subjected to 'H-NMR (CDCβ3
), the following results were obtained.

’H−NMR(CDCj23)分析結果2.06 ((
1,CH2,2H) 、2.75 (t、CH2,2H
)、3.26 (s、OH,LH) 、4.29 (t
、cH,LH)、7.15 (s、arom、H,5H
)この結果より、反応生成物は2−ヒドロキシ−4−フ
ェニルブチロニトリルであることが確認された。
'H-NMR (CDCj23) analysis result 2.06 ((
1, CH2,2H), 2.75 (t, CH2,2H
), 3.26 (s, OH, LH), 4.29 (t
, cH, LH), 7.15 (s, aroma, H, 5H
) From this result, it was confirmed that the reaction product was 2-hydroxy-4-phenylbutyronitrile.

また、生成した2−ヒドロキシ−4−フェニルブチロニ
トリルを実施例1と同様にして酸加水分解して2−ヒド
ロキシ−4−フェニル酪酸を生成させ、実施例1と同様
にして濃縮乾固物を得た後、この濃縮乾固物を実施例1
と同条件の高速液体クロマトグラフィーにより分析し、
得られた分析結果を同一条件で分析した標品の分析結果
と比較した。その結果、本実施例5で生成した2−ヒド
ロキシ−4−フェニルブチロニトリルの光学純度は10
%e、e、であった。
In addition, the produced 2-hydroxy-4-phenylbutyronitrile was acid-hydrolyzed in the same manner as in Example 1 to produce 2-hydroxy-4-phenylbutyric acid, and concentrated to dryness in the same manner as in Example 1. After obtaining, this concentrated and dried product was prepared in Example 1.
Analyzed by high performance liquid chromatography under the same conditions as
The analysis results obtained were compared with those of a standard sample analyzed under the same conditions. As a result, the optical purity of 2-hydroxy-4-phenylbutyronitrile produced in Example 5 was 10
It was %e,e.

なお標品としては、常法に従ってフェニルプロピオンア
ルデヒドと青酸よりシアンヒドリンを生成させ、このシ
アンヒドリンを酸加水分解して得られた(D、L)−2
−ヒドロキシ−4−フェニル酪酸を用いた。本分析条件
下の標品のリテンションタイムは42.5分、53.4
分であった。
The standard sample was (D,L)-2, which was obtained by generating cyanohydrin from phenylpropionaldehyde and cyanide according to a conventional method, and acid hydrolyzing this cyanohydrin.
-Hydroxy-4-phenylbutyric acid was used. The retention time of the standard under this analytical condition was 42.5 minutes and 53.4 minutes.
It was a minute.

また、酸加水分解後の濃縮乾固物の比旋光度は[α]D
=+1.3°であり、+であるから、D体であることが
わかった。
In addition, the specific rotation of the concentrated dry product after acid hydrolysis is [α]D
= +1.3°, and since it is +, it was found that it is a D body.

この結果も表−1に示す。The results are also shown in Table-1.

実施例6(光学活性なシアンヒドリンの製造)原料アル
デヒドとして2−フェニルアセトアルデヒドを用い、リ
パーゼとして大野製薬■製のリパーゼ(商品名:ニュー
ラーゼF)を50mg用いた以外は実施例1と同様にし
て反応液の調製および反応を実施した。
Example 6 (Production of optically active cyanohydrin) The same procedure as in Example 1 was carried out except that 2-phenylacetaldehyde was used as the raw material aldehyde and 50 mg of lipase (trade name: Neurase F) manufactured by Ohno Pharmaceutical ■ was used as the lipase. A reaction solution was prepared and the reaction was carried out.

反応終了後、実施例1と同様にして反応生成物の濃縮乾
固物を得、この濃縮乾固物をIH−NMR(CDCf3
)により分析したところ、下記の結果が得られた。
After the reaction was completed, the reaction product was concentrated to dryness in the same manner as in Example 1, and this concentrated and dried product was subjected to IH-NMR (CDCf3
), the following results were obtained.

IH−NMR(CDCβ3)分析結果 3.10 (d、cH2,2H) 、3.40 (s、
OH,LH)、4.60 (t、CH−CN、LH)、
7.37’ (s、aron+、H,5H)この結果よ
り、反応生成物は2−ヒドロキシ−3−フェニルプロピ
オニトリルであることが確認された。
IH-NMR (CDCβ3) analysis results 3.10 (d, cH2,2H), 3.40 (s,
OH, LH), 4.60 (t, CH-CN, LH),
7.37' (s, aron+, H, 5H) From this result, it was confirmed that the reaction product was 2-hydroxy-3-phenylpropionitrile.

また、生成した2−ヒドロキシ−3−フエニルジ0ビオ
ニトリルを実施例1と同様にして酸加水分解して3−フ
ェニル乳酸を生成させ、実施例1と同様にして濃縮乾固
物を得た後、この濃縮乾固物を、検出波長を230nm
とした以外は実施例1と同条件の高速液体クロマトグラ
フィーにより分析し、得られた分析結果を同一条件で分
析した標品の分析結果と比較して、実施例1と同様にし
て本実施例6で生成した2−ヒドロキシ−3−フェニル
フロピオニトリルの光学純度を求めた。この結果も表−
1に示す。
In addition, the produced 2-hydroxy-3-phenyl diobionitrile was acid-hydrolyzed to produce 3-phenyl lactic acid in the same manner as in Example 1, and a concentrated dry product was obtained in the same manner as in Example 1. Detection wavelength of this concentrated dry product is 230nm.
This example was analyzed in the same manner as in Example 1, except that it was analyzed by high performance liquid chromatography under the same conditions as in Example 1. The optical purity of 2-hydroxy-3-phenylfuropionitrile produced in step 6 was determined. This result is also shown in the table.
Shown in 1.

なお、標品としては市販の(D、L)−3−フェニル乳
酸および(L)−3−フェニル乳酸を用イタ。また本分
析条件下での(D) −3−−yエニル乳酸のリテンシ
ョンタイムは47.5分、(L)−3−フェニル乳酸の
リテンションタイムは59゜6分であった。
In addition, commercially available (D, L)-3-phenyl lactic acid and (L)-3-phenyl lactic acid were used as standards. Under the present analysis conditions, the retention time of (D)-3-yenyl lactic acid was 47.5 minutes, and the retention time of (L)-3-phenyl lactic acid was 59.6 minutes.

実施例7(光学活性なシアンヒドリンの製造)原料アル
デヒドとしてn−ブチルアルデヒドの99%溶液を用い
、リパーゼとして和光純薬■製のリパーゼ(商品名:リ
パーゼP、N)を50mg用いた以外は実施例1と同様
にして反応液の調製および反応を実施した。
Example 7 (Production of optically active cyanohydrin) The same procedure was carried out except that a 99% solution of n-butyraldehyde was used as the raw material aldehyde, and 50 mg of lipase (trade name: Lipase P, N) manufactured by Wako Pure Chemical Industries Ltd. was used as the lipase. A reaction solution was prepared and the reaction was carried out in the same manner as in Example 1.

反応終了後、実施例1と同様にして反応生成物の濃縮乾
固物を得、この濃縮乾固物をIH−NMR(CDCj2
3)により分析したところ、下記の結果が得られた。
After the reaction was completed, the reaction product was concentrated to dryness in the same manner as in Example 1, and this concentrated and dried product was subjected to IH-NMR (CDCj2
3), the following results were obtained.

IH−NMR(CD123 )分析結果1.2 (d、
CHa 、3H)、1.6 (m、cH2,4H)、4
.6 (t、CH−CN、LH)、4.0 (s、OH
,LH)この結果より、反応生成物は2−ヒドロキシブ
チロニトリルであることが確認された。
IH-NMR (CD123) analysis results 1.2 (d,
CHa, 3H), 1.6 (m, cH2,4H), 4
.. 6 (t, CH-CN, LH), 4.0 (s, OH
, LH) From this result, it was confirmed that the reaction product was 2-hydroxybutyronitrile.

また、生成した2−ヒドロキシブチロニトリルを実施例
1と同様にして酸加水分解して2−ヒドロキシペンタン
酸を生成させ、実施例1と同様にして濃縮乾固物を得た
後、この濃縮乾固物を、検出波長を230nmとした以
外は実施例1と同条件の高速液体クロマトグラフィーに
より分析し、得られた分析結果を同一条件で分析した標
品の分析結果と比較して、実施例1と同様にして本実施
例7で生成した2−ヒドロキシブチロニトリルの光学純
度を求めた。その結果、本実施例7で生成した2−ヒド
ロキシブチロニトリルの光学純度は33%e、e、であ
った。
In addition, the produced 2-hydroxybutyronitrile was acid-hydrolyzed to produce 2-hydroxypentanoic acid in the same manner as in Example 1, and a concentrated dry product was obtained in the same manner as in Example 1. The dried product was analyzed by high performance liquid chromatography under the same conditions as in Example 1 except that the detection wavelength was 230 nm, and the obtained analysis results were compared with the analysis results of the standard sample analyzed under the same conditions. The optical purity of 2-hydroxybutyronitrile produced in Example 7 was determined in the same manner as in Example 1. As a result, the optical purity of 2-hydroxybutyronitrile produced in Example 7 was 33%e,e.

なお、標品としては市販の(D、L)−2−ヒドロキシ
ペンタン酸を用いた。本分析条件での標品のリテンショ
ンタイムは22. 6分、26.4分であった。
In addition, commercially available (D, L)-2-hydroxypentanoic acid was used as a standard product. The retention time of the standard under these analysis conditions is 22. 6 minutes, 26.4 minutes.

また、酸加水分解後の濃縮乾固物の比旋光度は[α]o
=+1.05°であり、十であるから、D体であること
がわかった。
In addition, the specific rotation of the concentrated dry product after acid hydrolysis is [α]o
= +1.05°, and since it is 10, it was found that it is a D body.

この結果も表−1に示す。The results are also shown in Table-1.

実施例8(光学活性なシアンヒドリンの製造)まず、本
実施例で用いるリパーゼを、以下の要領で得た。
Example 8 (Production of optically active cyanohydrin) First, lipase used in this example was obtained in the following manner.

蒸溜水1!にグルコース(最終濃度2%)、オリーブ油
(最終濃度2%)、ペプトン(最終濃度2%)、リン酸
1水素2カリウム・12水塩(最終濃度0.1%)、硫
酸アンモニウム(最終濃度0.2%)、および硫酸マグ
ネシウム・7水塩(最終濃度0.1%)を溶解さた溶液
のpHを7.0に調節して培地とし、この培地100減
を500d容培養フラスコにとってオートクレーブで滅
菌した後、同様の培地を用いて30℃で2日間培養した
種培養歯(アクロモバクタ−リティカス[Achrom
obacter 1yticus (I F O127
26)コを接種し、30℃、20 Orpm振盪条件下
で培養した。
Distilled water 1! Glucose (final concentration 2%), olive oil (final concentration 2%), peptone (final concentration 2%), dipotassium monohydrogen phosphate decahydrate (final concentration 0.1%), ammonium sulfate (final concentration 0.1%). 2%) and magnesium sulfate heptahydrate (final concentration 0.1%), adjust the pH to 7.0 and use it as a medium, and add 100 ml of this medium to a 500 d culture flask and sterilize it in an autoclave. After that, a seed culture tooth (Achromobacter lyticus [Achrom
obacter 1yticus (IF O127
26) was inoculated and cultured under shaking conditions at 30°C and 20 Orpm.

培養上澄のリパーゼ活性を順次測定し、リパーゼ活性が
最大値になった時点で遠心分離により菌体を除去して培
養上澄液を得、さらに限外ろ過膜を用いてこの上澄液を
濃縮した。また、除去した培養菌体は10mMリン酸バ
ッファで洗浄し、超音波細胞破壊装置により水冷下に破
砕して、未破砕菌体を遠心分離して除去後、−20℃下
でエタノールを添加し、リパーゼ活性を存する沈澱画分
を得た。
The lipase activity of the culture supernatant is sequentially measured, and when the lipase activity reaches the maximum value, the bacterial cells are removed by centrifugation to obtain a culture supernatant, and this supernatant is further filtered using an ultrafiltration membrane. Concentrated. In addition, the removed cultured cells were washed with 10mM phosphate buffer, disrupted under water cooling using an ultrasonic cell disruption device, and unbroken microbial cells were removed by centrifugation, followed by the addition of ethanol at -20°C. , a precipitate fraction containing lipase activity was obtained.

この後、培養上澄液の濃縮物とリパーゼ活性を有する沈
澱画分とを混合して、粗酵素液(本発明においてリパー
ゼと総称されるものの1つ)を得た。
Thereafter, a concentrate of the culture supernatant and a precipitated fraction having lipase activity were mixed to obtain a crude enzyme solution (one of the substances generally referred to as lipase in the present invention).

次いで、リパーゼとして上記粗酵素液0.5dを用いた
以外は実施例1と同様にして、反応液の調製および反応
を実施した。
Next, a reaction solution was prepared and a reaction was carried out in the same manner as in Example 1, except that 0.5 d of the above crude enzyme solution was used as lipase.

反応終了後、反応液をメルク社製プレート(商品名:R
P−18)にスポットし、展開液としてメタノールと水
の1=1混液を用いた逆相薄層クロマトグラフィーによ
り分析し、風乾後、波長254nmの紫外線ランプ下で
Rf値を求めた。
After the reaction is complete, transfer the reaction solution to a Merck plate (product name: R
P-18) and analyzed by reverse phase thin layer chromatography using a 1=1 mixture of methanol and water as a developing solution. After air drying, the Rf value was determined under an ultraviolet lamp with a wavelength of 254 nm.

この結果、本実施例8で得られた反応生成物のRf値は
、市販のマンゾロニトリルのRf値と同様の0.34〜
0.36であり、本実施例8で得られた反応生成物はマ
ンゾロニトリルであることが確認された。
As a result, the Rf value of the reaction product obtained in Example 8 was 0.34 to 0.34, which is similar to the Rf value of commercially available manzolonitrile.
0.36, and it was confirmed that the reaction product obtained in Example 8 was manzolonitrile.

また、反応液からタンパク質およびHCNを除去した後
、生成したマンゾロニトリルの光学純度を実施例1と同
様にして求めた。この結果も表−1に示す。
Furthermore, after removing protein and HCN from the reaction solution, the optical purity of the produced manzolonitrile was determined in the same manner as in Example 1. The results are also shown in Table-1.

(以下余白) 表−1から明らかなように、実施例1〜8で得られたシ
アンヒドリンは、いずれも光学活性なシアンヒドリンで
ある。
(The following is a blank space) As is clear from Table 1, the cyanohydrins obtained in Examples 1 to 8 are all optically active cyanohydrins.

実施例9(光学活性なラクトンの製造)原料アルデヒド
としてヒドロキシピバルアルデヒドを用い、以下の要領
で光学活性なパントラクトンを製造した。
Example 9 (Production of optically active lactone) Using hydroxypivalaldehyde as a raw material aldehyde, optically active pantolactone was produced in the following manner.

まず、反応溶媒として100mM酢酸バッファ(p H
5,6)を用い、この酢酸バッファ3成を5成反応容器
に入れた後、NaCNの10M水溶液を100mM濃度
となるように上記反応容器に添加し、さらに当量のHC
j2を添加した。
First, 100mM acetate buffer (pH
5, 6), this acetate buffer 3 component was placed in a 5 component reaction vessel, a 10M aqueous solution of NaCN was added to the reaction vessel to a concentration of 100mM, and an equivalent amount of HC was added to the reaction vessel.
j2 was added.

次いで、天野製薬株製のリパーゼ(商品名:Lipas
eP rアマノ」)を30mg添加し、液のpHを5.
6に調節した後にヒドロキシピバルアルデヒドの1M水
溶液を100mM濃度(10+wg/ j2 )となる
ように添加して、反応液を調製した。
Next, lipase manufactured by Amano Pharmaceutical Co., Ltd. (product name: Lipas
30 mg of eP r Amano) was added, and the pH of the liquid was adjusted to 5.
6, and then added a 1M aqueous solution of hydroxypivalaldehyde to a concentration of 100mM (10+wg/j2) to prepare a reaction solution.

次いで、反応液を撹拌しながら、反応温度25℃、反応
時間30分として反応を実施して、3゜3−ジメチル−
2,4−ジヒドロキシブチロニトリルを生成させた。
Next, while stirring the reaction solution, the reaction was carried out at a reaction temperature of 25°C and a reaction time of 30 minutes to form 3゜3-dimethyl-
2,4-dihydroxybutyronitrile was produced.

反応終了後、反応液にN2気流を吹き込むことにより未
反応のHCNを除去した後、エーテルにより反応生成物
を抽出し、エーテル抽出層を無水硫酸ナトリウムにより
脱水した後に濃縮乾固して得た濃縮乾固物を6NのHC
/に溶解させ、60℃で3時間酸加水分解を実施した。
After the reaction was completed, unreacted HCN was removed by blowing a stream of N2 into the reaction solution, the reaction product was extracted with ether, the ether extracted layer was dehydrated with anhydrous sodium sulfate, and then concentrated to dryness. 6N HC
/ and acid hydrolysis was performed at 60°C for 3 hours.

この後、加水分解液中の反応生成物をエーテルにより抽
出し、エーテル抽出層を濃縮乾固して得た濃縮乾固物を
、光学異性体分離カラムを用いた高速液体クロマトグラ
フィー(ウォーターズ社製)により以下の条件で分析し
た。
Thereafter, the reaction product in the hydrolysis solution was extracted with ether, and the ether extract layer was concentrated to dryness. ) was analyzed under the following conditions.

カラム:キラルセルOA(商品名、ダイセル化学■製、
φ4.6X250關) 流速二〇、5厩/分 流出液:n−へキサンとイソプロパツールとの9=1混
液 検 出:紫外線検出器(波長230 ni)この結果、
本実施例9で最終的に得られた反応生成物は、パントラ
クトンであることが確認された。
Column: Chiralcel OA (trade name, manufactured by Daicel Chemical ■,
φ4.6 x 250 mm) Flow rate 20.5 m/min Effluent: 9=1 mixture of n-hexane and isopropanol Detection: Ultraviolet detector (wavelength 230 ni) As a result,
The reaction product finally obtained in Example 9 was confirmed to be pantolactone.

また、この分析結果を、同一条件で分析した標品の分析
結果と比較し、実施例1と同様にして、本実施例10で
得られたパントラクトンの光学純度を求めた。この結果
を表−2に示す。
Furthermore, this analysis result was compared with the analysis result of a standard sample analyzed under the same conditions, and in the same manner as in Example 1, the optical purity of pantolactone obtained in Example 10 was determined. The results are shown in Table-2.

なお、標品としては市販の(D)−パントラクトンおよ
び(L)−パントラクトンを用いた。本分析条件下での
(D)−パントラクトンのリテンションタイムは28.
8分、(L)−パントラクトンのリテンションタイムは
25.8分であった。
In addition, commercially available (D)-pantolactone and (L)-pantolactone were used as standards. The retention time of (D)-pantolactone under this analytical condition is 28.
8 minutes, and the retention time of (L)-pantolactone was 25.8 minutes.

実施例10〜18(光学活性なラクトンの製造)リパー
ゼとしてそれぞれ表−2に示すリパーゼを10〜50m
g用いた以外は実施例9と同様にして反応液を調製し、
反応温度20〜25℃、反応時間30〜60分として反
応を実施して3.3−ジメチル−2,4−ジヒドロキシ
ブチロニトリルを生成させ、さらに実施例9と同様にし
て酸加水分解を行った後、濃縮乾固物を得た。
Examples 10 to 18 (Production of optically active lactone) 10 to 50 m
A reaction solution was prepared in the same manner as in Example 9 except that g was used,
The reaction was carried out at a reaction temperature of 20 to 25 °C and a reaction time of 30 to 60 minutes to produce 3,3-dimethyl-2,4-dihydroxybutyronitrile, and further acid hydrolysis was performed in the same manner as in Example 9. After that, a concentrated dry product was obtained.

得られた各濃縮乾固物を実施例9と同様にして分析した
ところ、いずれの実施例においてもパントラクトンが生
成したことが確認された。
When each of the obtained concentrated and dried products was analyzed in the same manner as in Example 9, it was confirmed that pantolactone was produced in all Examples.

また、各実施例で生成したパントラクトンの光学純度を
実施例9と同様にして求めた。これらの結果を表−2に
示す。
Furthermore, the optical purity of pantolactone produced in each example was determined in the same manner as in Example 9. These results are shown in Table-2.

実施例19(光学活性なラクトンの製造)まず、種培養
歯としてシュードモス フルオレセンス[Pseudo
monas fluorescens  (I F 0
3081)]を用いた以外は実施例8と同様にして、粗
酵素液を得た。
Example 19 (Production of optically active lactone) First, Pseudomos fluorescens was used as a seed culture tooth.
monas fluorescens (I F 0
A crude enzyme solution was obtained in the same manner as in Example 8, except that 3081)] was used.

次いで、リパーゼとしてこの粗酵素液0. 57111
2を用いた以外は実施例9と同様にして、反応液の調製
および反応を実施して3.3−ジメチル−2゜4−ジヒ
ドロキシブチロニトリルを生成させ、さらに実施例9と
同様にして酸加水分解を行った。
Next, 0.0% of this crude enzyme solution was used as lipase. 57111
A reaction solution was prepared and the reaction was carried out in the same manner as in Example 9 except that 3.3-dimethyl-2゜4-dihydroxybutyronitrile was produced. Acid hydrolysis was performed.

この後、加水分解液中の反応生成物を実施例9と同様に
して抽出、分析した。
Thereafter, the reaction product in the hydrolysis solution was extracted and analyzed in the same manner as in Example 9.

この結果、本実施例19で最終的に得られた反応生成物
はパントラクトンであることが確認された。
As a result, it was confirmed that the reaction product finally obtained in Example 19 was pantolactone.

また、加水分解液からタンパク質およびHCNを除去し
た後、生成したパントラクトンの光学純度を実施例9と
同様にして求めた。この結果も表−2に示す。
Furthermore, after removing protein and HCN from the hydrolysis solution, the optical purity of the produced pantolactone was determined in the same manner as in Example 9. The results are also shown in Table-2.

(以下余白) 表−2から明らかなように、実施例9〜19で得られた
ラクトンは、いずれも光学活性なラクトンである。
(Left below) As is clear from Table 2, the lactones obtained in Examples 9 to 19 are all optically active lactones.

[発明の効果] 以上説明したように、本発明によれば、比較的安価に、
かつ量的に安定して入手することが可能な酵素を用いて
光学活性なヒアンヒドリンおよび光学活性なラクトンを
得ることができる。
[Effects of the Invention] As explained above, according to the present invention, relatively inexpensive
Furthermore, optically active hyaline hydrin and optically active lactone can be obtained using enzymes that can be obtained in a stable quantity.

したがって、本発明を実施することにより、光学活性な
シアンヒドリンおよび光学活性なラクトンを工業的によ
り簡易に、かつ、より安定して供給することが可能とな
る。
Therefore, by carrying out the present invention, optically active cyanohydrin and optically active lactone can be supplied industrially more easily and more stably.

Claims (5)

【特許請求の範囲】[Claims] (1)下記一般式( I ) R−CHO・・・( I ) (式中、Rはアルキル基、置換アルキル基、アリールア
ルキル基、置換アリールアルキル基、アリール基および
置換アリール基からなる群より選択される置換基である
。) で表されるアルデヒドと青酸とをリパーゼの存在下で反
応させることを特徴とする、下記一般式(II) ▲数式、化学式、表等があります▼・・・(II) (式中、Rは前記一般式( I )に同じ。) で表される光学活性なシアンヒドリンの製造方法。
(1) The following general formula (I) R-CHO...(I) (wherein R is from the group consisting of an alkyl group, a substituted alkyl group, an arylalkyl group, a substituted arylalkyl group, an aryl group, and a substituted aryl group) The following general formula (II) is characterized by reacting an aldehyde represented by (the selected substituent) with hydrocyanic acid in the presence of lipase ▲There are mathematical formulas, chemical formulas, tables, etc.▼... (II) A method for producing an optically active cyanohydrin represented by the following formula (wherein R is the same as in the above general formula (I)).
(2)リパーゼとして微生物由来のリパーゼを用いる、
請求項(1)記載の光学活性なシアンヒドリンの製造方
法。
(2) Using a lipase derived from a microorganism as the lipase,
A method for producing optically active cyanohydrin according to claim (1).
(3)下記一般式(i) ▲数式、化学式、表等があります▼・・・(i) (式中、R^1、R^2、R^3およびR^4はそれぞ
れ水素原子または炭素数1〜4のアルキル基を示し、R
^1、R^2、R^3およびR^4はそれぞれ同一であ
っても異なっていてもよい。)で表されるアルデヒドと
青酸とをリパーゼの存在下で反応させて、下記一般式(
ii) ▲数式、化学式、表等があります▼・・・(ii) (式中、R^1、R^2、R^3およびR^4は前記一
般式(i)に同じ。) で表される光学活性なシアンヒドリンを得た後、このシ
アンヒドリンに酸加水分解処理を施すことを特徴とする
、一般式(iii) ▲数式、化学式、表等があります▼・・・(iii) (式中、R^1、R^2、R^3およびR^4は前記一
般式(i)に同じ。) で表される光学活性なラクトンの製造方法。
(3) The following general formula (i) ▲There are mathematical formulas, chemical formulas, tables, etc.▼... (i) (In the formula, R^1, R^2, R^3 and R^4 are each hydrogen atom or carbon Represents an alkyl group of numbers 1 to 4, R
^1, R^2, R^3 and R^4 may be the same or different. ) is reacted with hydrocyanic acid in the presence of lipase to form the following general formula (
ii) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(ii) (In the formula, R^1, R^2, R^3 and R^4 are the same as the general formula (i) above.) After obtaining optically active cyanohydrin, this cyanohydrin is subjected to acid hydrolysis treatment. , R^1, R^2, R^3 and R^4 are the same as in the general formula (i) above.) A method for producing an optically active lactone represented by:
(4)一般式(i)で表されるアルデヒドとしてヒドロ
キシピバルアルデヒドを用いて、一般式(iii)で表
されるラクトンとしてパントラクトンを得る、請求項(
3)記載の光学活性なラクトンの製造方法。
(4) Pantolactone is obtained as the lactone represented by the general formula (iii) by using hydroxypivalaldehyde as the aldehyde represented by the general formula (i).
3) The method for producing an optically active lactone as described above.
(5)リパーゼとして微生物由来のリパーゼを用いる、
請求項(3)または(4)記載の光学活性なラクトンの
製造方法。
(5) Using a lipase derived from a microorganism as the lipase,
A method for producing an optically active lactone according to claim (3) or (4).
JP33645190A 1990-11-30 1990-11-30 Production of optically active cyanohydrin and optically active lactone Pending JPH04207197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33645190A JPH04207197A (en) 1990-11-30 1990-11-30 Production of optically active cyanohydrin and optically active lactone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33645190A JPH04207197A (en) 1990-11-30 1990-11-30 Production of optically active cyanohydrin and optically active lactone

Publications (1)

Publication Number Publication Date
JPH04207197A true JPH04207197A (en) 1992-07-29

Family

ID=18299275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33645190A Pending JPH04207197A (en) 1990-11-30 1990-11-30 Production of optically active cyanohydrin and optically active lactone

Country Status (1)

Country Link
JP (1) JPH04207197A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714357A (en) * 1993-02-03 1998-02-03 Nitto Chemical Industry Co., Ltd. Process for producing optically active α-hydroxycarboxylic acid having phenyl group

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714357A (en) * 1993-02-03 1998-02-03 Nitto Chemical Industry Co., Ltd. Process for producing optically active α-hydroxycarboxylic acid having phenyl group

Similar Documents

Publication Publication Date Title
JP2676568B2 (en) Method for producing R (-)-mandelic acid and its derivatives
JPS61239899A (en) Biotechnological production of optically active alpha-arylalkanoic acid
US5302528A (en) Process for the enzymatic separation of the optical isomers of alpha-substituted carboxylic acids using esterase from Brevibacterium imperiale
JPH047195B2 (en)
JPH04207197A (en) Production of optically active cyanohydrin and optically active lactone
JP4735263B2 (en) Process for producing optically active 2-alkylcysteine, its derivative and process
JPH0630790A (en) Production of optically active 1,2-propanediol
JP3006615B2 (en) Method for producing D-β-hydroxy amino acid
JPH06141888A (en) Production of d-mandelic acid
EP0751224B1 (en) Process for producing (r)-2-amino-1-phenylethanol or halogenated derivative thereof, process for producing optically active phenylserine or halogenated derivative thereof, and novel compound 3-(3-chlorophenyl)serine
JP2883712B2 (en) Production method of optically active 1,3-butanediol
JPH03254690A (en) Production of optically active aromatic cyanohydrin acetate
JP3391814B2 (en) Production method of optically active aromatic cyanohydrin acetate by biochemical method
JP3747640B2 (en) Process for producing optically active 1,2-diol cyclic carbonate
JP2786500B2 (en) Production method of optically active 1,3-butanediol
JP2840723B2 (en) Method for producing 4-halo-3-hydroxybutyronitrile
JP2761064B2 (en) Production method of optically active 1,3-butanediol
JP2670130B2 (en) Method for culturing Rhodococcus bacteria and method for producing 2-ketobutyric acid using the microorganism
JP2006000006A (en) Method for producing optically active 2-alkyl-d-cysteine ester
JPH02104295A (en) Production of optically active amine and its derivative
JP3893721B2 (en) Method for producing optically active compound
JPS63173595A (en) Production of d-alpha-amino acid
JPH04141096A (en) Production of r(-)-1,3-butanediol
JPH10113198A (en) Production of optically active 2-arylpropionic acid
JPH08173188A (en) Production of d-lysine