JP3006615B2 - Method for producing D-β-hydroxy amino acid - Google Patents

Method for producing D-β-hydroxy amino acid

Info

Publication number
JP3006615B2
JP3006615B2 JP1027586A JP2758689A JP3006615B2 JP 3006615 B2 JP3006615 B2 JP 3006615B2 JP 1027586 A JP1027586 A JP 1027586A JP 2758689 A JP2758689 A JP 2758689A JP 3006615 B2 JP3006615 B2 JP 3006615B2
Authority
JP
Japan
Prior art keywords
reaction
aldehyde
enzyme
producing
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1027586A
Other languages
Japanese (ja)
Other versions
JPH02207793A (en
Inventor
正明 加藤
忠志 守川
照三 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP1027586A priority Critical patent/JP3006615B2/en
Publication of JPH02207793A publication Critical patent/JPH02207793A/en
Application granted granted Critical
Publication of JP3006615B2 publication Critical patent/JP3006615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はグリシンとアルデヒド化合物とをD−スレオ
ニンアルドラーゼの存在下で反応させて対応するD−β
−ヒドロキシアミノ酸を製造する方法に関する。D−β
−ヒドロキシアミノ酸は抗生物質、酵素阻害剤等の各種
医薬、農薬、その他各種の生理活性物質の合成原料とし
て有用である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the reaction of glycine with an aldehyde compound in the presence of D-threonine aldolase to form a corresponding D-β
A method for producing hydroxyamino acids. D-β
-Hydroxyamino acids are useful as raw materials for synthesizing various drugs such as antibiotics and enzyme inhibitors, agricultural chemicals, and other various physiologically active substances.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

従来、D−β−ヒドロキシアミノ酸を製造する方法と
しては、ラセミ混合物を優先晶析する方法(特公昭54−
25006号公報)が知られているが、操作が煩雑であり、
又収率も極めて低い。一方、酵素・微生物を用いる方法
として、5−置換ヒダントイン化合物に微生物を作用さ
せてD−β−ヒドロキシアミノ酪酸に変換する方法(特
開昭61−212292号公報)、D−β−ヒドロキシアミノ酪
酸アミドに微生物を作用させて不斉加水分解する方法
(特開昭61−274690号公報)等が知られているが、これ
らの方法は高価な出発物質を必要とする。
Conventionally, as a method for producing D-β-hydroxyamino acid, a method of preferentially crystallization of a racemic mixture (Japanese Patent Publication No.
No. 25006) is known, but the operation is complicated,
Also, the yield is extremely low. On the other hand, as a method using an enzyme or a microorganism, a method in which a 5-substituted hydantoin compound is reacted with a microorganism to convert the compound into D-β-hydroxyaminobutyric acid (JP-A-61-212292), D-β-hydroxyaminobutyric acid A method of causing asymmetric hydrolysis by reacting a microorganism with an amide (Japanese Patent Application Laid-Open No. 61-274690) is known, but these methods require expensive starting materials.

〔課題を解決する為の手段〕[Means for solving the problem]

本発明は、グリシンと、脂環式アルデヒド、芳香族ア
ルデヒド又は複素環式アルデヒドをD−スレオニンアル
ドラーゼの存在下、反応させることを特徴とするD−β
−ヒドロキシアミノ酸の製造法でる。
The present invention provides a D-β, comprising reacting glycine with an alicyclic aldehyde, an aromatic aldehyde or a heterocyclic aldehyde in the presence of D-threonine aldolase.
-A process for producing hydroxyamino acids.

本発明に用いる脂環式アルデヒド、芳香族アルデヒド
又は複素環式アルデヒドは、例えば、 脂環式アルデヒドとして、シクロペンチルアルデヒ
ド、シクロペンテニルアルデヒド、シクロヘキシルアル
デヒド、シクロヘキセニルアルデヒド、シクロヘキシル
アセトアルデヒド、シクロヘキセニルアセトアルデヒド
等、 芳香族アルデヒドとして、ベンズアルデヒド、フロロ
ベンズアルデヒド、クロロベンズアルデヒド、ブロモベ
ンズアルデヒド、ニトロベンズアルデヒド、クロロニト
ロベンズアルデヒド、ヒドロキシニトロベンズアルデヒ
ド、メトキシベンズアルデヒド、フロロメトキシベンズ
アルデヒド、トルアルデヒド、トリフロロトルアルデヒ
ド、フエニルアセトアルデヒド等、 複素環式アルデヒドとして、2−チオフエンアルデヒ
ド、ブロモ−2−チオフエンアルデヒド、4−フオルミ
ルイミダゾール、4−メチル−5−フオルミルイミダゾ
ール等を用いることが出来る。
The alicyclic aldehyde, aromatic aldehyde or heterocyclic aldehyde used in the present invention is, for example, an alicyclic aldehyde such as cyclopentyl aldehyde, cyclopentenyl aldehyde, cyclohexyl aldehyde, cyclohexenyl aldehyde, cyclohexyl acetaldehyde, cyclohexenyl acetaldehyde, etc. Heterocyclic aldehydes such as benzaldehyde, fluorobenzaldehyde, chlorobenzaldehyde, bromobenzaldehyde, nitrobenzaldehyde, chloronitrobenzaldehyde, hydroxynitrobenzaldehyde, methoxybenzaldehyde, fluoromethoxybenzaldehyde, tolualdehyde, trifluorotolualdehyde, and phenylacetaldehyde As 2-thiophenealdehyde, Romo 2-Chi off ene aldehyde, 4-off Ol mill imidazole, 4-methyl-5 full ol mill imidazole can be used.

本発明に用いるグリシンは通常の方法で製造したもの
でよく、その製法は問わない。
Glycine used in the present invention may be produced by a usual method, and the production method is not limited.

本発明で用いるD−スレオニンアルドラーゼはD−ス
レオニンに作用してグリシンとアセトアルデヒドとに分
解する酵素であり、例えば、アルカリゲネス・ハエカリ
ス(Alcaligenes faecalis)(IFO12669)、シユードモ
ナス(Pseudomonas)DK−2(微工研磨寄6200号)、ア
リスロバクター(Arthrobacter)(DK−19微工研磨寄62
01号)、及びキサントモナス・オリザエ(Xanthomonaso
ryzae)(IAM1657)等がこのD−スレオニンアルドラー
ゼを生産する能力を有する。
The D-threonine aldolase used in the present invention is an enzyme that acts on D-threonine to decompose into glycine and acetaldehyde. For example, Alcaligenes faecalis (IFO12669), Pseudomonas DK-2 (fine-crafted) No. 6200), Ahrismobacter (DK-19)
No. 01) and Xanthomonaso oryzae
ryzae) (IAM1657) have the ability to produce this D-threonine aldolase.

本発明に用いる微生物は常法に従つて培養することが
出来る。培養に用いられる培地は微生物の生育に必要な
炭素源、窒素源、無機物質等を含む通常の培地である。
更に、ビタミン、アミノ酸等の有機微量栄養素を添加す
ると望ましい結果が得られる場合が多い。培養は、好気
的条件下でpH4から10、温度20から60℃の任意の範囲に
制御して1〜10日間培養を行なえばよい。
The microorganism used in the present invention can be cultured according to a conventional method. The medium used for the culture is a usual medium containing a carbon source, a nitrogen source, an inorganic substance, and the like necessary for the growth of the microorganism.
Further, the addition of organic micronutrients such as vitamins and amino acids often provides desirable results. The cultivation may be carried out under aerobic conditions at pH 4 to 10 and at a temperature in the range of 20 to 60 ° C. for 1 to 10 days.

酵素反応にあたつては、微生物の培養液から分離した
培養菌体、乾燥菌体、菌体破砕液等のほか、無機塩や有
機溶媒等で分画した粗精製酵素、単離された酵素、さら
には、菌体、菌体処理物、あるいは、酵素自体の固定化
物、その他何れも使用できる。
For the enzyme reaction, cultured cells, dried cells, cell lysate, etc., separated from the culture solution of microorganisms, crudely purified enzymes fractionated with inorganic salts, organic solvents, etc., isolated enzymes Further, cells, cells treated with the cells, immobilized products of the enzymes themselves, and the like can also be used.

酵素反応を実施する方法は、水性媒体中にてグリシン
とアルデヒド化合物を上記した微生物の培養液、菌体、
菌体処理物、酵素、あるいはこれらを通常の方法で固定
化したものと接触させれば良い。かかる反応時の水性媒
体としては、例えば、水、緩衝液、及び、含水有機溶媒
等が使用出来る。
The method of performing the enzyme reaction is a culture solution of the above-described microorganism, glycine and aldehyde compound in an aqueous medium, cells,
What is necessary is just to make it contact with the processed cells, the enzyme, or those obtained by immobilizing them by a usual method. As the aqueous medium at the time of such a reaction, for example, water, a buffer, a water-containing organic solvent, or the like can be used.

反応液のアルデヒド化合物の濃度は酵素を著しく阻
害、失活させない程度であれば良く、0.05から2.0M/Lが
好ましい。一方の基質であるグリシンは、アルデヒド化
合物と等モル程度でよい。かかるグリシン、およびアル
デヒド化合物の添加は反応の任意の段階で可能であり、
一括、連続、分割のいずれの手段でも実施できる。
The concentration of the aldehyde compound in the reaction solution may be such that the enzyme is not significantly inhibited or deactivated, and is preferably 0.05 to 2.0 M / L. Glycine, one of the substrates, may be about equimolar to the aldehyde compound. Such glycine and aldehyde compounds can be added at any stage of the reaction,
It can be implemented by any of batch, continuous, and divisional means.

反応温度は、10から70℃が良く、10から40℃がより好
適である。反応時のpHは5から10、好ましくは5.5から
7.0である。補酵素として、ピリドキサール5′リン酸
を反応系に添加すると酵素活性を高めて反応を促進させ
ることが出来る。
The reaction temperature is preferably from 10 to 70 ° C, more preferably from 10 to 40 ° C. The pH during the reaction is 5 to 10, preferably 5.5
7.0. When pyridoxal 5'-phosphate is added to the reaction system as a coenzyme, the enzyme activity can be increased to promote the reaction.

また、反応系に2−メルカプトエタノールや亜硫酸水
素ナトリウムなどを添加することにより反応収率を高め
ることが出来る場合がある。
In some cases, the reaction yield can be increased by adding 2-mercaptoethanol or sodium bisulfite to the reaction system.

反応形式はバツチ方式、連続方式のいずれでも良い。
かくして、反応は0.5から50時間程度で終了する。
The reaction system may be a batch system or a continuous system.
Thus, the reaction is completed in about 0.5 to 50 hours.

このようにして得られたD−β−ヒドロキシアミノ酸
を酵素液から採取するには、通常の方法、例えば遠心分
離や限外ろ過等で除菌・除タンパクし、活性炭やイオン
交換樹脂等で分離・精製するなどの方法により行なうこ
とが出来る。
The D-β-hydroxyamino acid thus obtained can be collected from the enzyme solution by a conventional method such as centrifugation or ultrafiltration to remove bacteria, remove proteins, and separate with activated carbon or ion exchange resin. -It can be performed by a method such as purification.

〔実施例〕〔Example〕

例中%は重量%を示す。 In the examples,% indicates% by weight.

酵素製造例1 ポリペプトン0.5%、酵母エキス0.5%、KH2PO40.1%
から成るpH7.5の培地を調製し、5の培養槽にその3
を添加し、120℃で15分間加熱殺菌した。その培地に
アリスロバクター(Arthrobacter)(DK−19微工研菌寄
6201号)を接種し、pH7.5に保ちながら30℃で20時間通
気及び、攪はんをしつつ培養した。
Enzyme production example 1 Polypeptone 0.5%, yeast extract 0.5%, KH 2 PO 4 0.1%
PH 7.5 medium was prepared, and 3
Was added and sterilized by heating at 120 ° C. for 15 minutes. In the culture medium, Arisrobacter (Arthrobacter) (DK-19
No. 6201), and cultured at 30 ° C. for 20 hours with aeration and stirring while maintaining the pH at 7.5.

培養終了後、培養液から菌体を遠心分離で集菌、水洗
後、0.01mMピリドキサール−5′−リン酸、及び1.0mM
塩化マンガンを含むpH7.5の0.01Mトリス−塩酸緩衝液10
0mlに懸濁し、この懸濁液を20KHz,3分間の超音波破砕処
理を4回行い、破砕枠の懸濁物質を遠心分離で除去して
粗製酵素液を調製した。
After completion of the culture, the cells were collected from the culture by centrifugation, washed with water, and washed with 0.01 mM pyridoxal-5'-phosphate and 1.0 mM.
0.01 M Tris-HCl buffer solution (pH 7.5) containing manganese chloride 10
The suspension was subjected to ultrasonic crushing at 20 KHz for 3 minutes four times, and the suspended substance in the crushing frame was removed by centrifugation to prepare a crude enzyme solution.

次に、この粗製酵素液に冷アセトンを攪はんしながら
徐々に添加し、アセトン濃度45から65%画分の析出物を
分取し、上記緩衝液10mlに溶解してアセトン分画酵素液
を調製した。
Next, cold acetone was gradually added to the crude enzyme solution while stirring, and the precipitate of an acetone concentration of 45 to 65% was fractionated, dissolved in 10 ml of the above buffer solution, and acetone fractionated enzyme solution was added. Was prepared.

酵素製造例2 シユードモナス(Pseudomonas)DK−2(微工研菌寄6
200号)、アルカリゲネス・ハエカリス(Alcaligenes f
aecalis)(IFO12699)、及びキサントモナス・オリザ
エ(Xanthomonas oryzae)(IAM1657)を酵素製造例1
と同様の方法で菌体、及びアセトン分画酵素液を調製し
た。
Enzyme Production Example 2 Pseudomonas DK-2
No. 200), Alcaligenes f.
aecalis) (IFO12699) and Xanthomonas oryzae (IAM1657)
A bacterial cell and an acetone fractionated enzyme solution were prepared in the same manner as described above.

実施例1 酵素製造例1で得たアリスロバクター(Arthrobacte
r)DK−19(微工研菌寄6201号)の酵素液10mlにグリシ
ンを2.0mモル、アルデヒド化合物2.0mモル、2−メルカ
プトエタノール2.0mモル、ピリドキサール−5′−リン
酸2.0μモル、塩化マンガン(2価)20μモル、及びpH
6.8の0.5M−HEPES緩衝液(Dctite Good's緩衝液)10ml
より成る基質溶液を加え30℃で20時間反応させた。
Example 1 Athrobacter (Arthrobacte) obtained in Enzyme Production Example 1
r) 2.0 mmol of glycine, 2.0 mmol of aldehyde compound, 2.0 mmol of 2-mercaptoethanol, 2.0 μmol of pyridoxal-5'-phosphoric acid in 10 ml of enzyme solution of DK-19 (Microtechnical Laboratories No. 6201), Manganese chloride (divalent) 20 μmol, and pH
10 ml of 6.8 0.5 M-HEPES buffer (Dctite Good's buffer)
A substrate solution was added and reacted at 30 ° C. for 20 hours.

反応終了後、薄層クロマトグラフイーで生成β−ヒド
ロキシアミノ酸を分離・定量した。薄層クロマトグラフ
イーは、1−プロパノールと25%アンモニア水の比が2:
1の混合液を展開溶媒としてシリカゲル薄層上でクロマ
トグラフイーを行い、ニンヒドリンで発色させ、デンシ
トメーター(CS−910、島津製作所)で定量した。これ
らの分析結果を第1表に示す。
After completion of the reaction, the generated β-hydroxyamino acid was separated and quantified by thin-layer chromatography. Thin-layer chromatography shows that the ratio of 1-propanol and 25% ammonia water is 2:
Chromatography was performed on a silica gel thin layer using the mixed solution of No. 1 as a developing solvent, the color was developed with ninhydrin, and quantified using a densitometer (CS-910, Shimadzu Corporation). Table 1 shows the results of these analyses.

生成β−ヒドロキシアミノ酸の同定は、反応液を限外
ろ過し、イオン交換樹脂カラムで精製後、上記した条件
の薄層クロマトグラフイーで展開し、生成物を抽出、真
空乾燥してC13−NMR、及びH1−NMR分析により行なつ
た。
The product β-hydroxyamino acid was identified by ultrafiltration of the reaction solution, purification by an ion-exchange resin column, development by thin-layer chromatography under the above conditions, extraction of the product, vacuum drying, and C 13 − Performed by NMR and H 1 -NMR analysis.

また、生成β−ヒドロキシアミノ酸の光学純度はN−
カルボキシアラニン無水物(NCA)と反応させジアステ
レオマーに変換した後、CDSカラムを用いる液体クロマ
トグラフイーによる分析、光学分割カラム(キラルパツ
ク、ダイセル社製)を用いる液体クロマトグラフイーに
よる分析、及びシフト試薬を用いたNMR分析により測定
した。上記の方法で生成β−ヒドロキシアミノ酸を分析
したところ全てD−体であつた。
The optical purity of the produced β-hydroxyamino acid is N-
After reaction with carboxyalanine anhydride (NCA) to convert to diastereomer, analysis by liquid chromatography using a CDS column, analysis by liquid chromatography using an optical resolution column (Chiralpack, manufactured by Daicel), and shift It was measured by NMR analysis using a reagent. When the β-hydroxyamino acids produced were analyzed by the above method, they were all D-forms.

実施例2 酵素製造例2で得たシユードモナス(Pseudomonas)D
K−2(微工研菌寄6200号)、アルカリゲネス・ハエカ
リス(Alcaligenes faecalis)(IFO12669)、及びキサ
ントモナス・オリザエ(Xanthomonas oryzae)(IAM165
7)の酵素液を用い、グリシンとベンズアルデヒドを基
質とし、実施例1と同様の方法で酵素反応を行い、生成
物を分離・定量した。これらの分析結果を第2表に示
す。尚、生成フエニルセリンは全てD−体であつた。
Example 2 Pseudomonas D obtained in Enzyme Production Example 2
K-2 (Microtechnical Laboratories No. 6200), Alcaligenes faecalis (IFO12669), and Xanthomonas oryzae (IAM165)
Using the enzyme solution of 7), glycine and benzaldehyde were used as substrates, and an enzymatic reaction was carried out in the same manner as in Example 1, and the product was separated and quantified. Table 2 shows the results of these analyses. The phenylserine formed was all D-form.

実施例3 酵素製造例1で得たアリスロバクター(Arthrobacte
r)DK−19(微工研菌寄6201号)の酵素液100mlにグリシ
ン3.0g、2−メルカプトエタノール3.0ml、塩化マンガ
ン0.1mモル及びo−フロロベンズアルデヒド0.5mlを30
分毎に10回添加(合計5.0ml)して、攪はん下で30℃
で、20時間反応を行なつた。反応中は密閉状態を保ち、
0.2N−NaOHで反応pHを6.5に保つた。
Example 3 Athrobacter (Arthrobacte) obtained in Enzyme Production Example 1
r) 30 g of glycine, 3.0 ml of 2-mercaptoethanol, 0.1 mmol of manganese chloride and 0.5 ml of o-fluorobenzaldehyde were added to 30 ml of the enzyme solution of DK-19 (Microtechnical Laboratories No. 6201) in 30 ml.
Add 10 times per minute (total of 5.0 ml) and stir at 30 ° C
And reacted for 20 hours. Keep closed during the reaction,
The reaction pH was kept at 6.5 with 0.2N-NaOH.

反応終了後、濃塩酸で反応液のpHを2.0に低下させ、
遠心分離で不溶物を除去した後、分画分子量5万の限下
ろ過膜で懸濁物質と高分子量物質を除去した。次に、こ
の反応液を50mlの活性炭カラム(ツルミコールGL−30)
に通液して生成物を吸着させ、脱イオン水で十分に洗浄
した後、酢酸20重量%、フエノール5.0%の混合水溶液
で吸着物質を溶出させ、o−フロロフエニルセリンの溶
出部分を採取した。
After completion of the reaction, the pH of the reaction solution was reduced to 2.0 with concentrated hydrochloric acid,
After removing insoluble matter by centrifugation, suspended substances and high molecular weight substances were removed with a ultrafiltration membrane having a molecular weight cutoff of 50,000. Next, this reaction solution was applied to a 50 ml activated carbon column (Tsurumi Coal GL-30).
The product is adsorbed by passing it through the column and washed thoroughly with deionized water. The adsorbed substance is eluted with a mixed aqueous solution of 20% by weight of acetic acid and 5.0% of phenol, and the elution portion of o-fluorophenylserine is collected. did.

次に、このo−フロロフエニルセリンの溶出部分を脱
イオン水1.0に希釈し、H+型にしたDowex50Wx8(50か
ら100メツシユ、ダウケミカル社製)を充填した100mlの
カラムに通液し、脱イオン水で洗浄後、0.5Mのアンモニ
ア水で吸着物質を溶出させ、o−フロロフエニルセリン
の溶出部分を採取した。
Next, the eluted portion of the o-fluorophenylserine was diluted with deionized water 1.0 and passed through a 100 ml column packed with Dowex 50Wx8 (50 to 100 mesh, manufactured by Dow Chemical Co.) in H + form, After washing with deionized water, the adsorbed substance was eluted with 0.5 M ammonia water, and an elution portion of o-fluorophenylserine was collected.

次に、1−プロパノールと25%アンモニア水の比が2:
1の混合液を展開溶媒としてシリカゲル薄層上でクロマ
トグラフイーを行い、生成物を抽出後、エタノールで結
晶化して0.1gの結晶を得た。この結晶はIR,NMR、及び元
素分析からo−フロロフエニルセリンであることを確認
した。また、実施例1と同様の方法で光学純度を測定し
たところ全てD−体であつた。
Next, the ratio of 1-propanol and 25% ammonia water is 2:
Chromatography was performed on a thin layer of silica gel using the mixed solution of 1 as a developing solvent, and the product was extracted and crystallized with ethanol to obtain 0.1 g of a crystal. The crystals were confirmed to be o-fluorophenylserine by IR, NMR and elemental analysis. Further, the optical purity was measured by the same method as in Example 1, and all of them were D-forms.

〔発明の効果〕〔The invention's effect〕

本発明の方法によれば、大量に生産されているグリシ
ンとアルデヒド化合物から一挙に対応するD−β−ヒド
ロキシアミノ酸を製造しうるので、工業的なD−β−ヒ
ドロキシアミノ酸の製造法として極めて優れている。
According to the method of the present invention, D-β-hydroxyamino acids corresponding to glycine and aldehyde compounds which are produced in large quantities can be produced at once, which is extremely excellent as an industrial method for producing D-β-hydroxyamino acids. ing.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C12R 1:64) (56)参考文献 特開 昭50−63192(JP,A) 特開 昭49−117684(JP,A) 特開 昭58−116690(JP,A)────────────────────────────────────────────────── (5) Continuation of the front page (51) Int.Cl. 7 Identification code FIC12R 1:64) (56) References JP-A-50-63192 (JP, A) JP-A-49-117684 (JP, A) JP-A-58-116690 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】グリシンと、脂環式アルデヒド、芳香族ア
ルデヒド又は複素環式アルデヒドをD−スレオニンアル
ドラーゼの存在下、反応させることを特徴とするD−β
−ヒドロキシアミノ酸の製造法。
1. D-β characterized by reacting glycine with an alicyclic aldehyde, aromatic aldehyde or heterocyclic aldehyde in the presence of D-threonine aldolase.
-A process for producing hydroxyamino acids.
JP1027586A 1989-02-08 1989-02-08 Method for producing D-β-hydroxy amino acid Expired - Fee Related JP3006615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1027586A JP3006615B2 (en) 1989-02-08 1989-02-08 Method for producing D-β-hydroxy amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1027586A JP3006615B2 (en) 1989-02-08 1989-02-08 Method for producing D-β-hydroxy amino acid

Publications (2)

Publication Number Publication Date
JPH02207793A JPH02207793A (en) 1990-08-17
JP3006615B2 true JP3006615B2 (en) 2000-02-07

Family

ID=12225058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1027586A Expired - Fee Related JP3006615B2 (en) 1989-02-08 1989-02-08 Method for producing D-β-hydroxy amino acid

Country Status (1)

Country Link
JP (1) JP3006615B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005278401A (en) * 2002-09-09 2005-10-13 Nippon Kayaku Co Ltd Method for producing optically active erythro-3-cyclohexylserine
EP3612533A1 (en) * 2017-04-20 2020-02-26 Immunogen, Inc. Methods of preparing indolinobenzodiazepine derivatives
ES2948496T3 (en) * 2017-07-20 2023-09-13 Valanx Biotech Gmbh New amino acids that have a norbornene residue

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543952B2 (en) * 1973-03-22 1979-02-28
JPS5412554B2 (en) * 1973-10-02 1979-05-23
JPS58116690A (en) * 1981-12-28 1983-07-11 Denki Kagaku Kogyo Kk Preparation of d-beta-hydroxyamino acid

Also Published As

Publication number Publication date
JPH02207793A (en) 1990-08-17

Similar Documents

Publication Publication Date Title
JP2676568B2 (en) Method for producing R (-)-mandelic acid and its derivatives
JP3006615B2 (en) Method for producing D-β-hydroxy amino acid
JPS60188355A (en) Manufacture of d-2-amino-2,3-dimethylbutylamide, d-2-amino-2,3-dimethylbutylamide and/or l-2-amino-2,3-dimethylbutyric acid
JP2721536B2 (en) Method for obtaining D-β-hydroxy amino acid
JP3116102B2 (en) Method for producing L-3,4-dihydroxyphenylalanine
JPH01168292A (en) Production of d-glyceric acid
JPS58201992A (en) Preparation of beta-substituted propionic acid or amide thereof by microorganism
EP0187525B1 (en) Process for producing l-serine
US5707837A (en) Method of producing (R)-tertiary leucine
JPH02276586A (en) Production of d-homophenylalanine
JP2924679B2 (en) Production method of D-lysine
JPS58116690A (en) Preparation of d-beta-hydroxyamino acid
JP3016647B2 (en) Preparation of L-serine solution
JP4286364B2 (en) Method for producing L-threo-3- (3,4-dihydroxyphenyl) serine derivative
JP2882305B2 (en) Method for producing D-methionine
JP3129180B2 (en) Method for producing D-histidine
JPH02104295A (en) Production of optically active amine and its derivative
JP2886576B2 (en) Preparation of cyclohexanecarboxylic acid derivatives
JPH0254077B2 (en)
JP2000253893A (en) Production of d-serine
JP2674076B2 (en) Method for producing D-α-amino acid
JPS615793A (en) Production of d-aspartic acid
JPH0380476B2 (en)
JPH04346795A (en) Production of l-3,4-dihydroxyphenylserine derivative
JPS6262157B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees