JP2721536B2 - Method for obtaining D-β-hydroxy amino acid - Google Patents

Method for obtaining D-β-hydroxy amino acid

Info

Publication number
JP2721536B2
JP2721536B2 JP4020389A JP4020389A JP2721536B2 JP 2721536 B2 JP2721536 B2 JP 2721536B2 JP 4020389 A JP4020389 A JP 4020389A JP 4020389 A JP4020389 A JP 4020389A JP 2721536 B2 JP2721536 B2 JP 2721536B2
Authority
JP
Japan
Prior art keywords
glycine
reaction
solution
acid
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4020389A
Other languages
Japanese (ja)
Other versions
JPH01317391A (en
Inventor
正明 加藤
忠志 守川
照三 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP4020389A priority Critical patent/JP2721536B2/en
Publication of JPH01317391A publication Critical patent/JPH01317391A/en
Application granted granted Critical
Publication of JP2721536B2 publication Critical patent/JP2721536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、D−β−ヒドロキシアミノ酸を取得する方
法に関する。D−β−ヒドロキシアミノ酸は抗生物質、
酵素阻害剤等の各種の医薬、農薬類、その他各種の生理
活性物質の合成原料として有用である。
The present invention relates to a method for obtaining D-β-hydroxy amino acid. D-β-hydroxy amino acids are antibiotics,
It is useful as a raw material for synthesizing various medicines such as enzyme inhibitors, agricultural chemicals, and other various physiologically active substances.

〔従来の技術及び発明が解決しようとする課題〕 D−β−ヒドロキシアミノ酸は有機合成法やL−アミ
ノ酸のラセミ化で作つたDL−アミノ酸を光学分割して製
造されている。その場合、D−アミノ酸は長い工程を経
て製造される為に、その手間が大変であり、また収率も
低くなつていた。
[Problems to be solved by the prior art and the invention] D-β-hydroxyamino acids are produced by optical resolution of DL-amino acids produced by an organic synthesis method or racemization of L-amino acids. In that case, since the D-amino acid is produced through a long process, the labor is troublesome and the yield is low.

安価で大量に生産されているグリシンとアルデヒド化
合物とを、D−スレオニンアルドラーゼ(D−スレオニ
ンをグリシンとアセトアルデヒドに分解する酵素で、逆
反応を触媒する活性も有する)の存在下で反応させるこ
とにより、対応するD−β−ヒドロキシアミノ酸を製造
する方法が知られている(特開昭58−116690号公報)。
しかし、この方法ではアルデヒド化合物がグリシンやD
−β−ヒドロキシアミノ酸(以後、これらをアミノ酸と
略記する)と非酵素的に副反応を起こすので反応収率が
低く、また、未反応のグリシンが多量に残存する等の課
題があつた。
Glycine and aldehyde compounds, which are produced inexpensively and in large quantities, are reacted in the presence of D-threonine aldolase (an enzyme that decomposes D-threonine into glycine and acetaldehyde and also has an activity of catalyzing the reverse reaction). A method for producing the corresponding D-β-hydroxyamino acid is known (JP-A-58-116690).
However, in this method, the aldehyde compound is glycine or D
A non-enzymatic side reaction with -β-hydroxy amino acid (hereinafter abbreviated as amino acid) causes a low reaction yield and a large amount of unreacted glycine remains.

〔課題を解決する為の手段〕[Means for solving the problem]

本発明の第1の発明は、グリシン金属錯体とアルデヒ
ド化合物とを、D−スレオニンアルドラーゼの存在下、
反応させて、D−β−ヒドロキシアミノ酸金属錯体に変
換して後、D−β−ヒドロキシアミノ酸を取得する方法
である。
The first invention of the present invention provides a method for preparing a glycine metal complex and an aldehyde compound in the presence of D-threonine aldolase.
This is a method of obtaining a D-β-hydroxyamino acid after reacting and converting to a D-β-hydroxyamino acid metal complex.

第2の発明は、ニツケル及び/又はコバルトをグリシ
ン金属錯体の金属として用いるものである。
The second invention uses nickel and / or cobalt as the metal of the glycine metal complex.

D−β−ヒドロキシアミノ酸金属錯体からは、公知の
方法により脱金属して容易にD−β−ヒドロキシアミノ
酸を取得出来る。
From the metal complex of D-β-hydroxy amino acid, D-β-hydroxy amino acid can be easily obtained by demetalation by a known method.

グリシン金属錯体を基質として用いる本発明の方法に
よれば次の利点がある第一に、ニツケル及び/又はコバ
ルトが上記アミノ酸と安定な錯体を形成するので、上記
アミノ酸とアルデヒド化合物との副反応が抑制され、高
収率でD−β−ヒドロキシアミノ酸を得ることができ
る。
The method of the present invention using a glycine metal complex as a substrate has the following advantages. First, since nickel and / or cobalt forms a stable complex with the amino acid, a side reaction between the amino acid and the aldehyde compound is prevented. Suppressed and D-β-hydroxyamino acid can be obtained in high yield.

第二に上記グリシン金属錯体を基質に用いて反応する
と遊離のグリシンを用いた場合に比べて高い基質転化率
を得ることが出来る。
Second, when the reaction is performed using the glycine metal complex as a substrate, a higher substrate conversion can be obtained as compared with the case where free glycine is used.

第三に、高濃度のグリシンニツケル錯体やグリシンコ
バルト錯体が、菌体内に含まれる望ましくない反応の触
媒として作用する酵素、例えば、L−アロスレオニンア
ルドラーゼ(L−アロスレオニンをグリシンとアセトア
ルデヒドに分解する酵素で、逆反応を触媒する活性も有
する)や、L−スレオニンアルドラーゼ(L−スレオニ
ンをグリシンとアセトアルデヒドに分解する酵素で、逆
反応の触媒として作用する活性も有する)を強力に阻害
・不活性化するので、菌体や粗精製の酵素を用いること
が出来る。
Third, a high concentration of a glycine nickel complex or glycine cobalt complex decomposes an enzyme that acts as a catalyst for an undesirable reaction contained in the cells, for example, L-allothreonine aldolase (decomposes L-allothreonine into glycine and acetaldehyde). Strongly inhibits and inactivates L-threonine aldolase (an enzyme that also degrades L-threonine to glycine and acetaldehyde, which also has the activity of catalyzing the reverse reaction). Therefore, it is possible to use cells or a crudely purified enzyme.

本発明のごとく、高濃度の金属錯体を基質とする酵素
反応は知られておらず、従つて、本発明の方法は新規な
酵素反応方法である。
As in the present invention, an enzymatic reaction using a high-concentration metal complex as a substrate is not known, and therefore, the method of the present invention is a novel enzymatic reaction method.

本発明で用いるグリシン金属錯体としては、グリシン
ニツケル錯体又はグリシンコバルト錯体がD−スレオニ
ンアルドラーゼとの反応性やD−β−ヒドロキシアミノ
酸の収率の点で好適である。他の金属錯体としてはカド
ミウム、鉄、マンガン、マグネシウム等の金属錯体を使
用できる。更にこれらの錯体を任意に併用できるが、こ
の中でニツケル錯体とコバルト錯体の併用がよい。本発
明に好適に用いるグリシンニツケル錯体、又はグルシン
コバルト錯体の一般式は 〔M(NH2CH2CO2)m〕・nH2O (式中、Mは金属であり、Mがニツケルの場合m=2、
n=0〜2、Mがコバルトの場合m=3、n=0〜2で
ある) で示される化合物である。また、二種類以上の金属を含
むグリシン金属錯体、例えばニツケルとコバルトの両者
を含むグリシン金属錯体等も使用できる。
As the glycine metal complex used in the present invention, a glycine nickel complex or a glycine cobalt complex is preferable in terms of the reactivity with D-threonine aldolase and the yield of D-β-hydroxy amino acid. As other metal complexes, metal complexes such as cadmium, iron, manganese and magnesium can be used. Further, these complexes can be used arbitrarily, and among them, a nickel complex and a cobalt complex are preferably used in combination. The general formula of the glycine nickel complex or glycine cobalt complex preferably used in the present invention is [M (NH 2 CH 2 CO 2 ) m] · nH 2 O (where M is a metal and M is nickel) m = 2,
n = 0 to 2, when M is cobalt, m = 3 and n = 0 to 2). Further, a glycine metal complex containing two or more metals, for example, a glycine metal complex containing both nickel and cobalt can be used.

本発明で用いるグリシン金属錯体は、例えば、金属塩
水水溶液にグリシンとアルカリを加えて加熱するなどの
通常の方法で合成することが出来る。
The glycine metal complex used in the present invention can be synthesized by an ordinary method such as, for example, adding glycine and an alkali to an aqueous solution of a metal salt solution and heating.

本発明に用いるアルデヒド化合物は、脂肪族アルデヒ
ド、脂環式アルデヒド、芳香族アルデヒド、複素環式ア
ルデヒド化合物等であり、例えば、脂肪族アルデヒド化
合物として、アセトアルデヒド、1−プロパナール、1
−ブタナール、2−メチルプロパナール、1−ペンタナ
ール、1−ヘキサナール、1−ヘプタナール、クロロア
セトアルデヒド、フロロアセトアルデヒド、ニトロアセ
トアルデヒド、エトキシアセトアルデヒド等、 脂環式アルデヒド化合物として、シクロペンチルアル
デヒド、シクロペンテニルアルデヒド、シクロヘキシル
アルデヒド、シクロヘキセニルアルデヒド、シクロヘキ
シルアセトアルデヒド、シクロヘキセニルアセトアルデ
ヒド等、 芳香族アルデヒド化合物として、ベンズアルデヒド、
フロロベンズアルデヒド、クロロベンズアルデヒド、ブ
ロモベンズアルデヒド、ニトロベンズアルデヒド、クロ
ロニトロベンズアルデヒド、ヒドロキシニトロベンズア
ルデヒド、メトキシベンズアルデヒド、フロロメトキシ
ベンズアルデヒド、トルアルデヒド、トリフロロトルア
ルデヒド、フエニルアセトアルデヒド等、 複素環式アルデヒド化合物として、2−チオフエンア
ルデヒド、ブロモ−2−チオフエンアルデヒド、4−フ
オルミルイミダゾール、4−メチル−5−フオルミルイ
ミダゾール等を用いることが出来る。
The aldehyde compound used in the present invention is an aliphatic aldehyde, an alicyclic aldehyde, an aromatic aldehyde, a heterocyclic aldehyde compound, and the like. For example, acetaldehyde, 1-propanal,
-As cycloaliphatic aldehyde compounds such as butanal, 2-methylpropanal, 1-pentanal, 1-hexanal, 1-heptanal, chloroacetaldehyde, fluoroacetaldehyde, nitroacetaldehyde, and ethoxyacetaldehyde; cyclopentylaldehyde, cyclopentenylaldehyde, cyclohexylaldehyde , Cyclohexenyl aldehyde, cyclohexyl acetaldehyde, cyclohexenyl acetaldehyde, etc., aromatic aldehyde compounds such as benzaldehyde,
2-thiothiophene as heterocyclic aldehyde compound For example, phenaldehyde, bromo-2-thiophenealdehyde, 4-formylimidazole, 4-methyl-5-formylimidazole can be used.

本発明で用いるD−スレオニンアルドラーゼはD−ス
レオニンに作用してグリシンとアセトアルデヒドとに分
解する酵素であり、例えば、アルカリゲネス・ハエカリ
ス(Alcaligenes faecalis)(IFO12669)シユードモナ
ス(Pseudomonas)DK−2(微工研菌寄6200号)、アリ
スロバクター(Arthrobacter)DK−19(微工研菌寄6201
号)、及びキサントモナス・オリザエ(Xanthomonas or
yzae)(IAM1657)等がこのD−スレオニンアルドラー
ゼを生産する能力を有する。
The D-threonine aldolase used in the present invention is an enzyme which acts on D-threonine to decompose into glycine and acetaldehyde. No. 6200), Arisrobacter DK-19 (6201)
No.) and Xanthomonas oryzae
yzae) (IAM1657) and the like have the ability to produce this D-threonine aldolase.

上記微生物は常法に従つて培養することが出来る。培
養に用いられる培地は、微生物の生育に必要な炭素源、
窒素源、無機物質等を含む通常の培地である。更に、ビ
タミン、アミノ酸などの有機微量栄養素を添加すると望
ましい結果が得られる場合が多い。
The microorganism can be cultured according to a conventional method. The medium used for the culture is a carbon source necessary for the growth of microorganisms,
This is a normal medium containing a nitrogen source, an inorganic substance, and the like. Furthermore, the addition of organic micronutrients such as vitamins and amino acids often produces desirable results.

培養は好気的条件下でpH4〜10、温度20〜60℃の適当
な範囲に制御しつ1〜10日間培養を行う。
Cultivation is performed under aerobic conditions for 1 to 10 days while controlling the pH to an appropriate range of 4 to 10 and a temperature of 20 to 60 ° C.

反応にあたつては、微生物の培養液、培養液から分離
した培養菌体、乾燥菌体、菌体破砕液等のほか、硫酸ア
ンモニウムや有機溶媒等で分画した粗精製酵素、単離さ
れた酵素、更には、菌体、菌体処理物、あるいは酵素自
体の固定化物、その他何れも使用出来る。
In the reaction, a culture solution of microorganisms, culture cells separated from the culture solution, dried cells, cell lysate, etc., as well as crude purified enzymes fractionated with ammonium sulfate, organic solvent, etc., were isolated. Enzymes, furthermore, microbial cells, processed microbial cells, immobilized products of the enzymes themselves, and the like can be used.

グリシン金属錯体とアルデヒド化合物を対応するD−
β−ヒドロキシアミノ酸金属錯体に変換する方法は、水
性媒体中にて上記グリシン金属錯体とアルデヒド化合物
を、上記微生物の培養液、菌体、菌体処理物、酵素、あ
るいは、これらを通常の方法で固定化したものと接触さ
せればよい。かかる反応時の水性媒体としては、例え
ば、水、緩衝液、及び含水有機溶媒等が使用できる。
A glycine metal complex and an aldehyde compound corresponding to D-
The method of converting the β-hydroxy amino acid metal complex into the above-mentioned glycine metal complex and an aldehyde compound in an aqueous medium is performed by a conventional method using a culture solution of the microorganism, a bacterial cell, a treated bacterial cell, an enzyme, or a conventional method. What is necessary is just to contact with the thing fixed. As the aqueous medium at the time of such a reaction, for example, water, a buffer, a water-containing organic solvent and the like can be used.

反応液のアルデヒド化合物の濃度は酵素を著しく阻害
・失活させない程度であればよいが、0.05〜2.0モル/
が好ましい。
The concentration of the aldehyde compound in the reaction solution may be such that the enzyme is not significantly inhibited or deactivated.
Is preferred.

上記グリシン金属錯体は、アルデヒド化合物と等モル
程度でよいが、グリシンの反応収率を高めるためには、
アルデヒド化合物より少なくするのがよい。かかるグリ
シン金属錯体、及びアルデヒド化合物の添加は反応の任
意の段階で可能であり、一括、連続、分割のいずれの手
段でも実施出来る。
The glycine metal complex may be about equimolar to the aldehyde compound, but in order to increase the reaction yield of glycine,
It is better to use less than the aldehyde compound. The addition of the glycine metal complex and the aldehyde compound can be performed at any stage of the reaction, and can be performed by any of batch, continuous, and divided means.

反応濃度は10〜70℃がよいが、10〜40℃がより好適で
ある。反応時のpHは5〜10、好ましくは、5.5〜7.0に維
持するのがよい。補酵素として、ピリドキサール−5′
−リン酸を反応系に添加すると酵素活性を高めて反応を
促進させることが出来る。
The reaction concentration is preferably from 10 to 70 ° C, more preferably from 10 to 40 ° C. The pH during the reaction is preferably maintained at 5 to 10, preferably 5.5 to 7.0. Pyridoxal-5 'as a coenzyme
-When phosphoric acid is added to the reaction system, the enzyme activity can be increased to promote the reaction.

また、反応系にマグネシウムイオンやマンガンイオン
を添加することにより酵素活性、及び活性の安定性を高
めて反応を促進させることが出来る。反応はバツチ方式
がよく、連続方式で行つてもよい。かくして、反応は0.
5〜50時間程度で終了する。
In addition, by adding magnesium ions or manganese ions to the reaction system, the enzyme activity and the stability of the activity can be enhanced to promote the reaction. The reaction is preferably performed in a batch system or may be performed in a continuous system. Thus, the reaction is 0.
It takes about 5 to 50 hours.

このようにして得られたD−β−ヒドロキシアミノ酸
を反応液から採取するには、例えば、上記アミノ酸金属
錯体を溶解して後、限外濾過等で除タンパクし、イオン
交換樹脂等で分離・回収する方法や、反応液を濃縮して
上記アミノ酸金属錯体を析出させた後、溶解し、脱金属
する方法など、通常の方法を用いることが出来る。
In order to collect the D-β-hydroxyamino acid thus obtained from the reaction solution, for example, after dissolving the amino acid metal complex, the protein is removed by ultrafiltration or the like, and separated by an ion exchange resin or the like. Conventional methods can be used, such as a recovery method, and a method of concentrating the reaction solution to precipitate the amino acid metal complex, and then dissolving and removing the metal.

例えば、反応混合物を強カチオン交換樹脂に吸着させ
た後に、アルカリ金属塩の水溶液で溶出すれば、能率良
く高収率で、上記三成分を同時に分離・回収できる。
For example, if the reaction mixture is adsorbed on a strong cation exchange resin and then eluted with an aqueous solution of an alkali metal salt, the three components can be simultaneously separated and recovered efficiently and with high yield.

上記操作で反応液から分離したD−β−ヒドロキシア
ミノ酸はイオン交換樹脂処理、活性炭処理、晶析等の方
法で精製し、この反応液を濃縮するなどして単離・精製
することが出来る。
The D-β-hydroxyamino acid separated from the reaction solution by the above operation can be purified by a method such as ion exchange resin treatment, activated carbon treatment, crystallization, and the like, and can be isolated and purified by concentrating the reaction solution.

〔実施例〕〔Example〕

次に、実施例により本発明の方法を更に詳しく説明す
る。例中%は重量%を示す。また、記号Thr、Alloはそ
れぞれスレオニン、アロスレオニンを表わす。
Next, the method of the present invention will be described in more detail with reference to examples. In the examples,% indicates% by weight. The symbols Thr and Allo represent threonine and arosthreonine, respectively.

酵素製造例 ポリペプトン0.5%、酵母エキス0.5%、KH2PO40.1%
からなるpH7.5の培地を調製し、5容の培養槽にその
3を投入して120℃で15分間加熱殺菌した。この培地
にアリスロバクター(Arthrobacter)DK−19(微工研菌
寄第6201号)を接種し、pH7.5に保ちながら30℃で20時
間通気および撹拌をしつつ培養した。
Enzyme production example Polypeptone 0.5%, Yeast extract 0.5%, KH 2 PO 4 0.1%
Was prepared in a 5 volume culture tank, and sterilized by heating at 120 ° C. for 15 minutes. This medium was inoculated with Arthrobacter DK-19 (No. 6201, manufactured by B.I.K.) and cultured at 30.degree. C. for 20 hours with aeration and stirring while maintaining the pH at 7.5.

培養終了後、培養液から菌体を遠心分離し、生理食塩
水で洗浄後、この湿菌体を0.1mMピリドキサール−5′
−リン酸、および1.0mM MnCl2を含むpH7.5の0.1Mトリス
−塩酸緩衝液100ml中に懸濁した。この菌体懸濁液を20K
Hz、3分間の超音波処理を4回行ない菌体を破砕し、懸
濁物質を遠心分離で除去して粗製酵素液を調製した。
After completion of the culture, the cells were centrifuged from the culture solution, washed with physiological saline, and the wet cells were washed with 0.1 mM pyridoxal-5 '.
- phosphoric acid, and 1.0 mM MnCl pH 7.5 in 0.1M Tris containing 2 - was suspended in hydrochloric acid buffer solution 100 ml. 20K of this cell suspension
The cells were sonicated four times at 3 Hz for 3 minutes to disrupt the cells, and the suspended substances were removed by centrifugation to prepare a crude enzyme solution.

次に、粗酵素液を撹拌しながら、冷アセトンを添加
し、アセトン濃度45〜65%区間の析出物を分取し、上記
緩衝液10mlに溶解してアセトン分画酵素液を調製した。
Next, while stirring the crude enzyme solution, cold acetone was added thereto, and the precipitate in the range of acetone concentration of 45 to 65% was fractionated and dissolved in 10 ml of the above buffer solution to prepare an acetone fractionated enzyme solution.

熱処理菌体製造例 酵素製造例1と同様の方法で培養して得たアリスロバ
クター(Arthrobacter)DK−19(微工研菌寄6201号)の
培養液3.0から遠心分離で菌体を集菌・水洗し、この
湿菌体を0.01mMピリドキサール−5′−リン酸、及び1.
0mM MnCl2を含む水溶液100mlに懸濁し、pH6.0に合わせ
た。次に、この菌体懸濁液を55℃で120分間加熱処理を
行い、遠心分離で集菌・水洗後、10mlの上記水溶液に懸
濁して、熱処理菌体懸濁液を調製した。
Example of heat-treated bacterial cell production The cells were collected by centrifugation from the culture solution 3.0 of Arisrobacter (Arthrobacter) DK-19 obtained by culturing in the same manner as in Enzyme Production Example 1. Wash with water, and wash the wet cells with 0.01 mM pyridoxal-5'-phosphate and 1.
It was suspended in 100 ml of an aqueous solution containing 0 mM MnCl 2 and adjusted to pH 6.0. Next, this bacterial cell suspension was subjected to a heat treatment at 55 ° C. for 120 minutes, and the cells were collected by centrifugation, washed with water, and suspended in 10 ml of the above aqueous solution to prepare a heat-treated bacterial cell suspension.

実施例1 酵素製造例で得た粗酵素液10mlにグリシンニツケル錯
体〔Ni(NH2CH2CO2〕・2H2O、グリシンコバルト錯
体〔Co(NH2CH2CO2〕・2H2Oまたは、グリシン水溶
液に、水酸化コバルトと水酸化ニツケルを加え、加熱・
濃縮して得たグリシン・コバルト・ニツケル錯体〔Co・
Ni・(NH2CH2CO2〕・4H2Oを0.15g及び、アセトアル
デヒド0.2gを含む0.5Mトリス−塩酸緩衝液(pH7.5)を1
0ml混合し、密閉容器内で30℃、10時間反応させた。
Example 1 Glycine nickel complex [Ni (NH 2 CH 2 CO 2 ) 2 ] · 2H 2 O, glycine cobalt complex [Co (NH 2 CH 2 CO 2 ) 3 ] · was added to 10 ml of the crude enzyme solution obtained in the enzyme production example. Add cobalt hydroxide and nickel hydroxide to 2H 2 O or glycine aqueous solution and heat
Glycine-cobalt nickel complex [Co.
Ni · (NH 2 CH 2 CO 2 ) 5 ] · 4H 2 O and 0.15 g of 0.5 M Tris-HCl buffer (pH 7.5) containing 0.2 g of acetaldehyde in 1
0 ml was mixed and reacted at 30 ° C. for 10 hours in a closed container.

反応終了後、0.3N塩酸を20ml加えた後、遠心分離で不
溶物を除去し、約10培に希釈した反応液をDowex A−1
(Na型、100〜200メツシユ、ダウケミカル社)で脱金属
して、HPLC(日立アミノ酸分析システム)でグリシン、
及びスレオニン異性体混合物を定量した。各々のスレオ
ニン異性体は、N−カルボキシL−フエニルアラニン無
水物(NCA)と反応させてジアステレオマーに変換後、H
PLC(カラム:ODS6.0×250mm、移動相:0.1M KH2PO4−K2H
PO4(pH5.0)/CH3CN=96/4、流速:1.0ml/分、検出:210n
m)で分析した。また、比較としてグリシン0.1gを基質
に用いて上記の方法と同様にして反応を行つた。
After the reaction was completed, 20 ml of 0.3N hydrochloric acid was added, insoluble materials were removed by centrifugation, and the reaction solution diluted to about 10 times was added to Dowex A-1.
(Na-type, 100-200 mesh, Dow Chemical), demetallized, and glycine by HPLC (Hitachi amino acid analysis system),
And the mixture of threonine isomers was quantified. Each threonine isomer is converted to a diastereomer by reacting with N-carboxy L-phenylalanine anhydride (NCA) and then converted to H
PLC (column: ODS6.0 × 250mm, mobile phase: 0.1M KH 2 PO 4 −K 2 H
PO 4 (pH 5.0) / CH 3 CN = 96/4, flow rate: 1.0 ml / min, detection: 210 n
m). For comparison, a reaction was carried out in the same manner as described above using 0.1 g of glycine as a substrate.

これらの分析結果を第1表に示す。 Table 1 shows the results of these analyses.

実施例2 酵素製造例で得たアリスロバクター(Arthrobacter)
DK−19(微工研菌寄6201号)の酵素液100mlにグリシン
ニツケル3.0gr、MnCl20.1mモル及びアセトアルデヒド0.
5mlを30分毎に10回添加(合計5.0ml)とし、撹拌下、30
℃で反応を行なつた。反応中は密閉状態を保ち、0.2N−
NaOHで反応pHを6.5に保つた。
Example 2 Arthrobacter obtained in an enzyme production example
3.0 g of glycine nickel, 0.1 mmol of MnCl 2 and 0.1 ml of acetaldehyde were added to 100 ml of the enzyme solution of DK-19 (Microtechnical Laboratories No. 6201).
Add 5 ml 10 times every 30 minutes (total 5.0 ml), and add 30 ml with stirring.
The reaction was carried out at ° C. Keep closed during the reaction, 0.2N
The reaction pH was kept at 6.5 with NaOH.

反応開始20時間後、濃塩酸で反応液のpHを2.0に低下
させ、遠心分離で不溶物を除去した後、分画分子量5万
の限外ろ過膜で懸濁物質と高分子量物質を除去した。次
に、この反応液を減圧蒸発して未反応のアセトアルデヒ
ドを除去し、10mlの活性炭カラム(ツルミコールGL−3
0)に通液後、H+型にしたDowex50Wx8(50から100メツシ
ユ、ダウケミカル社製)を充填した100mlのカラムに通
液し、脱イオン水で洗浄後、0.2Mのアンモニア水で吸着
物質を溶出させ、β−ヒドロキシ−α−アミノ酪酸を含
む画分を採取し、濃縮後、メタノールを加えて結晶を析
出させ、0.8gの結晶を得た。この結晶についてNMR,IR,
元素分析を行ないβ−ヒドロキシ−α−アミノ酪酸であ
ることを確認した。更に、実施例1と同様の方法でスレ
オニン異性体分析を行なつたところ全てD−体であり、
D−スレオニンとD−アロスレオニンの比が2.5であつ
た。
20 hours after the start of the reaction, the pH of the reaction solution was lowered to 2.0 with concentrated hydrochloric acid, and insolubles were removed by centrifugation. Then, suspended substances and high molecular weight substances were removed with an ultrafiltration membrane having a molecular weight cutoff of 50,000. . Next, the reaction solution was evaporated under reduced pressure to remove unreacted acetaldehyde, and a 10 ml activated carbon column (Turmicol GL-3) was used.
After passing through 0), the solution was passed through a 100 ml column filled with H + type Dowex50Wx8 (50-100 mesh, manufactured by Dow Chemical Company), washed with deionized water, and adsorbed with 0.2M ammonia water. Was eluted, and a fraction containing β-hydroxy-α-aminobutyric acid was collected and concentrated, and then methanol was added to precipitate crystals to obtain 0.8 g of crystals. NMR, IR,
Elemental analysis confirmed that the product was β-hydroxy-α-aminobutyric acid. Furthermore, when threonine isomer analysis was performed in the same manner as in Example 1, all were in D-form,
The ratio of D-threonine to D-arothreonine was 2.5.

実施例3 グリシン金属錯体としてグリシンニツケルを用いて、
各種アルデヒド化合物について実施例1と同様な方法で
反応を行なつた。
Example 3 Using glycine nickel as a glycine metal complex,
Various aldehyde compounds were reacted in the same manner as in Example 1.

反応終了後、薄層クロマトグラフイーで生成β−ヒド
ロキシアミノ酸を分離・定量した。薄層クロマトグラフ
イーは、1−プロパノールと25%アンモニア水の比が2:
1の混合液を展開溶媒としてシリカゲル薄層上でクロマ
トグラフイーを行い、ニンヒドリンで発色させ、デンシ
トメーター(CS−910、島津製作所)で定量した。これ
らの分析結果を第3表に示す。
After completion of the reaction, the generated β-hydroxyamino acid was separated and quantified by thin-layer chromatography. Thin-layer chromatography shows that the ratio of 1-propanol and 25% ammonia water is 2:
Chromatography was performed on a silica gel thin layer using the mixed solution of No. 1 as a developing solvent, the color was developed with ninhydrin, and quantified using a densitometer (CS-910, Shimadzu Corporation). Table 3 shows the results of these analyses.

生成β−ヒドロキシアミノ酸の同定は、反応液を限外
ろ過し、イオン交換樹脂カラム精製後、上記した条件の
薄層クロマトグラフイーで展開し、生成物を抽出、真空
乾燥してC13−NMR、及びH1−NMRで分析することにより
行なつた。
Identification of the generated β-hydroxyamino acid was performed by ultrafiltration of the reaction solution, purification of the ion-exchange resin column, development by thin-layer chromatography under the above conditions, extraction of the product, vacuum drying, and C 13 -NMR. , And H 1 -NMR.

また、生成β−ヒドロキシアミノ酸の光学純度はN−
カルボキシL−フエニルアラニン無水物(NCA)と反応
させ、ジアステレオマーに変換した後、ODSカラムを用
いる液体クロマトグラフイーによる分析、光学分割カラ
ム(キラルパツク、ダイセル社製)を用いる液体クロマ
トグラフイーによる分析、及びシフト試薬を用いたNMR
分析により測定した。上記の方法で生成β−ヒドロキシ
アミノ酸を分析したところ全てD−体であつた。
The optical purity of the produced β-hydroxyamino acid is N-
After reacting with carboxy L-phenylalanine anhydride (NCA) to convert to diastereomer, analysis by liquid chromatography using an ODS column, liquid chromatography using an optical resolution column (Chiralpack, manufactured by Daicel) And NMR using shift reagent
It was determined by analysis. When the β-hydroxyamino acids produced were analyzed by the above method, they were all D-forms.

実施例4 酵素製造例で得たアリスロバクター(Arthrobacter)
DK−19(微工研菌寄6201号)の酵素液100mlにグリシン
ニツケル3.0g、MnCl20.1mモル及びo−フロロベンズア
ルデヒド0.5mlを30分毎に10回添加(合計5.0ml)して、
撹はんで下で30℃で反応を行なつた。反応中は密閉状態
を保ち、0.2N−NaOHで反応pHを6.5に保つた。
Example 4 Arthrobacter obtained from an enzyme production example
3.0 g of glycine nickel, 0.1 mmol of MnCl 2 and 0.5 ml of o-fluorobenzaldehyde were added 10 times every 30 minutes (total 5.0 ml) to 100 ml of the enzyme solution of DK-19 (Microtechnical Laboratories No. 6201).
The reaction was carried out at 30 ° C. under stirring. During the reaction, the sealed state was maintained, and the reaction pH was maintained at 6.5 with 0.2N-NaOH.

反応開始20時間後、濃塩酸で反応液のpHを2.0に低下
させ、遠心分離で不溶物を除去した後、分画分子量5万
の限外ろ過膜で懸濁物質と高分子量物質を除去した。次
に、この反応液を50mlの活性炭カラム(ツルミコールGL
−30)に通液して生成物を吸着させ、脱イオン水で十分
に洗浄した後、酢酸20%、フエノール5.0%の混合水溶
液で吸着物質を溶出させ、o−フロロフエニルセリンの
溶出部分を採取した。
20 hours after the start of the reaction, the pH of the reaction solution was lowered to 2.0 with concentrated hydrochloric acid, and insolubles were removed by centrifugation. Then, suspended substances and high molecular weight substances were removed with an ultrafiltration membrane having a molecular weight cutoff of 50,000. . Next, this reaction solution was applied to a 50 ml activated carbon column (Tsurumi Coal GL).
-30) to adsorb the product, wash thoroughly with deionized water, elute the adsorbed material with a mixed aqueous solution of 20% acetic acid and 5.0% phenol, and elute the o-fluorophenylserine Was collected.

次に、このo−フロロフエニルセリンの溶出部分を脱
イオン水で1.0に希釈し、H+型にしたDowex50Wx8(50
から100メツシユ、ダウケミカル社製)を充填した100ml
のカラムに通液し、脱イオン水で洗浄後、0.5Mのアンモ
ニア水で吸着物質を溶出させ、o−フロロフエニルセリ
ンの溶出部分を採取した。
Next, the eluted portion of the o-fluorophenylserine was diluted to 1.0 with deionized water to make H + form Dowex50Wx8 (50
From 100 Mesh, manufactured by Dow Chemical Company)
After washing with deionized water, the adsorbed substance was eluted with 0.5 M aqueous ammonia, and the eluted portion of o-fluorophenylserine was collected.

次に、1−プロパノールと25%アンモニア水の比が2:
1の混合液を展開溶媒としてシリカゲル薄層上でクロマ
トグラフイーを行い、生成物を抽出後、エタノールで結
晶化して0.1gの結晶を得た。この結晶はIR,NMR、及び元
素分析からo−フロロフエニルセリンであることを確認
した。また、実施例3と同様の方法で光学純度を測定し
たところ全てD−体であつた。
Next, the ratio of 1-propanol and 25% ammonia water is 2:
Chromatography was performed on a thin layer of silica gel using the mixed solution of 1 as a developing solvent, and the product was extracted and crystallized with ethanol to obtain 0.1 g of a crystal. The crystals were confirmed to be o-fluorophenylserine by IR, NMR and elemental analysis. When the optical purity was measured by the same method as in Example 3, all the compounds were in D-form.

実施例5 シユードモナス(Pseudomonas)DK−2(微工研菌寄
第6200号)を用い、酵素製造例と同様に培養し、培養液
から調製したアセトン分画酵素液を用いて、実施例1と
同様にして反応し、反応液に含まれるアミノ酸を分離・
定量した。
Example 5 Using Pseudomonas DK-2 (Microtechnical Laboratory No. 6200), culturing was performed in the same manner as in the enzyme production example, and using the acetone fractionated enzyme solution prepared from the culture solution, the same procedure as in Example 1 was performed. React in the same way to separate amino acids contained in the reaction solution.
Quantified.

これらの分析結果を第4表に示す。 Table 4 shows the results of these analyses.

実施例6 アルカリゲネス ハエカリス(Alcaligenes faecalis
IFO 12669)を用い、酵素製造例と同様に培養し、培養
液から調製したアセトン分画酵素液を用いて、実施例1
と同様にして反応させ、反応液に含まれるアミノ酸を分
離・定量した。
Example 6 Alcaligenes faecalis
IFO 12669), and cultured in the same manner as in the enzyme production example.
The reaction was carried out in the same manner as described above, and the amino acids contained in the reaction solution were separated and quantified.

これらの分析結果を第5表に示す。 Table 5 shows the results of these analyses.

実施例7 シユードモナス(Pseudomonas)DK−2(微工研菌寄6
200号)、アルカリゲネス・ハエカリス(Alcaligenes f
aecalis)(IFO12669)、及びキサントモナス・オリザ
エ(Xanthomonas oryzae)(IAM1657)を用い、酵素製
造例と同様に培養し、培養液から調製したアセトン分画
酵素液を用い、グリシンニツケルとベンズアルデヒドを
基質とし、実施例1と同様の方法で酵素反応を行い、生
成物を分離・定量した。これらの分析結果を第6表に示
す。生成フエニルセリンは全て−体であつた。
Example 7 Pseudomonas DK-2
No. 200), Alcaligenes f.
aecalis) (IFO12669) and Xanthomonas oryzae (IAM1657), cultivated in the same manner as in the enzyme production example, using an acetone fractionated enzyme solution prepared from the culture solution, using glycine nickel and benzaldehyde as substrates, An enzymatic reaction was carried out in the same manner as in Example 1, and the product was separated and quantified. Table 6 shows the results of these analyses. The resulting phenylserine was all in the -form.

実施例8(菌体反応の例) 酵素製造例と同様の方法で培養して得たアリスロバク
ター(Arthrobacter)DK−19(微工研菌等6201号)の培
養液3.0から遠心分離で菌体を集菌・水洗し、0.01mM
ピリドキサール−5′−リン酸、及び1.0mM MnCl2を含
む水溶液100mlに懸濁し、pHを6.0に調製した。次に、こ
の菌体懸濁液を55℃で120分間加熱処理を行ない、遠心
分離で水洗・集菌後、10mlの上記水溶液に懸濁した。こ
の菌体懸濁液を用いて実施例1と同様にして反応、分析
を行なつた結果を第7表に示す。
Example 8 (Example of microbial cell reaction) The cells were centrifuged from the culture solution 3.0 of Arisrobacter (Arthrobacter) DK-19 (Microtechnical Laboratories No. 6201) obtained by culturing in the same manner as in the enzyme production example. Collect and wash the body with water, 0.01 mM
Pyridoxal-5'-phosphate, and suspended in an aqueous solution 100ml containing 1.0 mM MnCl 2, pH was adjusted to 6.0. Next, this cell suspension was subjected to a heat treatment at 55 ° C. for 120 minutes, washed with water and collected by centrifugation, and suspended in 10 ml of the above aqueous solution. Table 7 shows the results of the reaction and analysis performed using this cell suspension in the same manner as in Example 1.

実施例9(熱処理菌体の例、グリシンニツケル) 熱処理菌体製造例で得た菌体懸濁液100mlにグリシン
ニツケル錯体〔Ni(NH2CH2CO2〕・2H2Oを3.0g及
び、アセトアルデヒド0.5mlを30分毎に10回添加し(合
計5ml)、撹はんしながら30℃で20時間反応を行なつ
た。反応中は密閉状態を保ち、0.2N−NaOHで反応液のpH
を6.0に維持した。反応液に含まれるアミノ酸を定量し
たところ、D−β−ヒドロキシアミノ酪酸1.24g、グシ
リン0.97gであつた。
Example 9 (Example of heat-treated cells, glycine nickel) 3.0 g of glycine nickel complex [Ni (NH 2 CH 2 CO 2 ) 2 ] · 2H 2 O was added to 100 ml of the cell suspension obtained in the heat-treated cell production example. And 0.5 ml of acetaldehyde was added 10 times every 30 minutes (total 5 ml), and the reaction was carried out at 30 ° C. for 20 hours with stirring. Keep the sealed condition during the reaction, and adjust the pH of the reaction solution with 0.2N-NaOH.
Was maintained at 6.0. When the amino acids contained in the reaction solution were quantified, the amount was 1.24 g of D-β-hydroxyaminobutyric acid and 0.97 g of gucillin.

反応終了後、濃塩酸で反応液のpHを2.0に低下させ、
遠心分離で不溶物を除去した後、分画分子量5万の限外
ろ過膜で懸濁物質と高分子量物質を除去した。次に、こ
の反応液を減圧蒸発して未反応のアセトアルデヒドを除
去し、10mlの活性炭カラム(ツルミコールGL−30)に通
液し、精製反応液を調製した。次に、この反応液を200m
lに希釈し、H+型にしたDowex50Wx8(50から100メツシ
ユ、ダウケミカル社製)を充填した65mlのカラムに通液
し、脱イオン水300mlで洗浄後、0.2Mの塩化ナトリウム
水溶液で吸着物質を溶出させた。溶出液量が50mlから25
0mlの画分にD−β−ヒドロキシアミノ酪酸が溶出し、2
50から300mlの画分にD−β−ヒドロキシアミノ酪酸と
グリシンの混合物が、次の300mlから600mlの溶出画分に
グリシンが溶出した。グリシンが溶出した後、1.7Mの塩
化ナトリウム水溶液をカラムに通液したところ、600か
ら840mlの画分にニツケルが溶出した。
After completion of the reaction, the pH of the reaction solution was reduced to 2.0 with concentrated hydrochloric acid,
After removing insolubles by centrifugation, suspended substances and high molecular weight substances were removed with an ultrafiltration membrane having a molecular weight cutoff of 50,000. Next, the reaction solution was evaporated under reduced pressure to remove unreacted acetaldehyde, and the solution was passed through a 10 ml activated carbon column (Turmicol GL-30) to prepare a purified reaction solution. Next, this reaction solution was
The solution was passed through a 65 ml column packed with Dowex50Wx8 (50-100 mesh, Dow Chemical Co.) diluted in H + form and washed with 300 ml of deionized water, and adsorbed with 0.2 M aqueous sodium chloride. Was eluted. Eluate volume from 50ml to 25
D-β-hydroxyaminobutyric acid eluted in 0 ml fraction, 2
The mixture of D-β-hydroxyaminobutyric acid and glycine eluted in the 50 to 300 ml fraction, and glycine eluted in the next 300 to 600 ml eluted fraction. After glycine was eluted, when a 1.7 M aqueous sodium chloride solution was passed through the column, nickel was eluted in a fraction of 600 to 840 ml.

D−β−ヒドロキシアミノ酪酸の溶出画分を蒸発乾固
し、エタノールから再結晶させD−β−ヒドロキシアミ
ノ酪酸の結晶を0.95gを得た。
The eluted fraction of D-β-hydroxyaminobutyric acid was evaporated to dryness and recrystallized from ethanol to obtain 0.95 g of D-β-hydroxyaminobutyric acid crystals.

D−β−ヒドロキシアミノ酪酸とグリシンの混合物溶
出画分も同様にして結晶化し、D−β−ヒドロキシアミ
ノ酪酸0.23gとグリシン0.18gの混合物を得た。また、グ
リシンの溶出画分についても同様にして結晶化してグリ
シンの結晶0.71gを得た。
The fraction eluted with the mixture of D-β-hydroxyaminobutyric acid and glycine was similarly crystallized to obtain a mixture of 0.23 g of D-β-hydroxyaminobutyric acid and 0.18 g of glycine. The glycine eluted fraction was crystallized in the same manner to obtain 0.71 g of glycine crystals.

溶出したニツケルは炭酸ナトリウムと反応させて炭酸
ニツケルに変換し、酵素反応に使用した量のほぼ全量を
回収した。
The eluted nickel was converted into nickel carbonate by reacting with sodium carbonate, and almost all of the amount used for the enzyme reaction was recovered.

実施例10(熱処理菌体の例、グリシンコバルト) グリシンコバルト錯体〔Co(NH2CH2CO2〕・2H2O
3.0gを基質として、実施例1と同様に酵素反応を行い、
D−β−ヒドロキシアミノ酪酸1.36g、グリシン0.88gを
含む酵素反応液を得た。
Example 10 (Example of heat-treated cells, glycine cobalt) Glycine cobalt complex [Co (NH 2 CH 2 CO 2 ) 3 ] · 2H 2 O
Using 3.0 g as a substrate, an enzyme reaction was carried out in the same manner as in Example 1,
An enzyme reaction solution containing 1.36 g of D-β-hydroxyaminobutyric acid and 0.88 g of glycine was obtained.

この反応液を実施例9と同様にしてD−β−ヒドロキ
シアミノ酪酸、グリシン、及びコバルトを溶出・分離し
た。
D-β-hydroxyaminobutyric acid, glycine, and cobalt were eluted and separated from this reaction solution in the same manner as in Example 9.

次に、D−β−ヒドロキシアミノ酪酸の溶出画分を蒸
発乾固し、エタノールから再結晶させD−β−ヒドロキ
シアミノ酪酸の結晶を0.94g得た。
Next, the eluted fraction of D-β-hydroxyaminobutyric acid was evaporated to dryness and recrystallized from ethanol to obtain 0.94 g of D-β-hydroxyaminobutyric acid crystals.

D−β−ヒドロキシアミノ酪酸とグリシンの混合物溶
出画分も同様にして結晶化し、D−β−ヒドロキシアミ
ノ酪酸0.24gとグリシン0.17gの混合物を得た。又、グリ
シンの溶出画分についても同様にして結晶化してグリシ
ンの結晶0.66gを得た。
The fraction eluted with the mixture of D-β-hydroxyaminobutyric acid and glycine was similarly crystallized to obtain a mixture of 0.24 g of D-β-hydroxyaminobutyric acid and 0.17 g of glycine. The glycine eluted fraction was crystallized in the same manner to obtain 0.66 g of glycine crystals.

溶出したコバルトは炭酸ナトリウムと反応させて炭酸
コバルトに変換し、酵素反応に使用した量のほぼ全量を
回収した。
The eluted cobalt was converted to cobalt carbonate by reacting with sodium carbonate, and almost all of the amount used for the enzyme reaction was recovered.

〔発明の効果〕〔The invention's effect〕

本発明の方法によれば大量に生産されているグリシン
とアルデヒド化合物から対応するD−β−ヒドロキシア
ミノ酸を製造しうるので、工業的なD−β−ヒドロキシ
アミノ酸の製造法として極めて優れた方法である。
According to the method of the present invention, the corresponding D-β-hydroxyamino acid can be produced from glycine and an aldehyde compound which are produced in large quantities, so that the method is extremely excellent as an industrial method for producing D-β-hydroxyamino acid. is there.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】グリシン金属錯体とアルデヒド化合物と
を、D−スレオニンアルドラーゼの存在下、反応させ
て、D−β−ヒドロキシアミノ酸金属錯体に変換して
後、D−β−ヒドロキシアミノ酸を取得する方法。
1. A method for reacting a glycine metal complex with an aldehyde compound in the presence of D-threonine aldolase to convert it to a D-β-hydroxyamino acid metal complex and then obtaining D-β-hydroxyamino acid .
【請求項2】グリシン金属錯体の金属が、ニツケル及び
/又は、コバルトである請求項1)記載のD−β−ヒド
ロキシアミノ酸を取得する方法。
2. The method for obtaining D-β-hydroxyamino acid according to claim 1, wherein the metal of the glycine metal complex is nickel and / or cobalt.
JP4020389A 1988-03-11 1989-02-22 Method for obtaining D-β-hydroxy amino acid Expired - Fee Related JP2721536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4020389A JP2721536B2 (en) 1988-03-11 1989-02-22 Method for obtaining D-β-hydroxy amino acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-57818 1988-03-11
JP5781888 1988-03-11
JP4020389A JP2721536B2 (en) 1988-03-11 1989-02-22 Method for obtaining D-β-hydroxy amino acid

Publications (2)

Publication Number Publication Date
JPH01317391A JPH01317391A (en) 1989-12-22
JP2721536B2 true JP2721536B2 (en) 1998-03-04

Family

ID=26379646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4020389A Expired - Fee Related JP2721536B2 (en) 1988-03-11 1989-02-22 Method for obtaining D-β-hydroxy amino acid

Country Status (1)

Country Link
JP (1) JP2721536B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266468A (en) * 1990-06-04 1993-11-30 University Of Notre Dame Du Lac Process for preparing β-hydroxy-α amino acids
CN114176084B (en) * 2021-12-06 2022-09-20 南京天秾生物技术有限公司 Use of 2-amino-3-hydroxy-3-methylbutyric acid and/or 2-amino-3- (4-hydroxyphenyl) butyric acid
CN114794113A (en) * 2022-02-18 2022-07-29 南京天秾生物技术有限公司 Use of 2-amino-3-phenylbutyric acid or derivatives thereof as plant growth regulators

Also Published As

Publication number Publication date
JPH01317391A (en) 1989-12-22

Similar Documents

Publication Publication Date Title
US4335209A (en) Process for preparation of L-tryptophan by enzyme
JP2721536B2 (en) Method for obtaining D-β-hydroxy amino acid
US4492757A (en) Process for preparing L-threonine
JP3006615B2 (en) Method for producing D-β-hydroxy amino acid
JP3116102B2 (en) Method for producing L-3,4-dihydroxyphenylalanine
JPS58201992A (en) Preparation of beta-substituted propionic acid or amide thereof by microorganism
JPH01168292A (en) Production of d-glyceric acid
US5036004A (en) Process for producing L-serine
KR950005925B1 (en) Process for producing d-1-tartaric acid
JP3117790B2 (en) Method for producing L-α-aminoadipic acid
JP3647065B2 (en) Method for producing optically active alanine
JP3030916B2 (en) Method for producing β-glucooligosaccharide
EP0323068A2 (en) Enzymatic carbon-carbon bond formation
KR830002328B1 (en) Method for preparing L-Tryptophan by enzyme
JP3012990B2 (en) Method for producing D-aspartic acid
JPH0591895A (en) Production of d-serine
JPH0254077B2 (en)
JP2690779B2 (en) L-ascorbic acid derivative and method for producing the same
JPH0254076B2 (en)
JP2000253893A (en) Production of d-serine
JPS6125359B2 (en)
JP3345551B2 (en) Method for producing S-phenyl-L-cysteine
JPS61260889A (en) Production of calcium malate
JPS6219098A (en) Separation of d-isomer from dl mixture of serine
JPS615793A (en) Production of d-aspartic acid

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees