JPH04207089A - High-output semiconductor laser diode and its manufacture - Google Patents

High-output semiconductor laser diode and its manufacture

Info

Publication number
JPH04207089A
JPH04207089A JP33989390A JP33989390A JPH04207089A JP H04207089 A JPH04207089 A JP H04207089A JP 33989390 A JP33989390 A JP 33989390A JP 33989390 A JP33989390 A JP 33989390A JP H04207089 A JPH04207089 A JP H04207089A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
current
semiconductor
laser diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33989390A
Other languages
Japanese (ja)
Inventor
Yoichi Osawa
洋一 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP33989390A priority Critical patent/JPH04207089A/en
Publication of JPH04207089A publication Critical patent/JPH04207089A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a withstand voltage level of a current-prevention layer to be increased and linearity of an application current versus optical output characteristic to be improved by providing a semiconductor layer with a band- gap energy difference at a PNPN junction part of the current-prevention layer. CONSTITUTION:A double-striped grooves 20, 20 and a mesa-type projecting part which is sandwiched by these stripe grooves 20 are formed on a semiconductor substrate 10 and then an activation layer 13, a first clad layer 12, a current- preventing layer 11, and a cap layer 19 are formed on this semiconductor substrate 10 in sequence by epitaxial growth process. Current is narrowed by the current-prevention layer 11 at the grooves 20 at both sides of the projecting part and current flows to a part of a top 21 of a mesa projecting part only. Also, since the activation layer thickness is thick at both sides and is curved gradually, light is leaked to both sides of the projecting part and a high-order horizontal mode does not exist since a change in an effective refractive index is small. Also, since a quaternary layers is provided also at a channel part, laser beam output increases linearly and a high-output operation can be achieved.

Description

【発明の詳細な説明】 産1」ゴlt1分盟− この発明は、発振モードを単一に制御でき、内部に電流
狭窄層を有する半導体レーザダイオードの構造に関する
ものであり、特に高光出力動作が可能な光通信用メサス
トライプ型半導体レーザダイオードおよびその製造方法
に関するものである。
Detailed Description of the Invention This invention relates to the structure of a semiconductor laser diode that can control the oscillation mode in a single manner and has a current confinement layer inside. The present invention relates to a mesa stripe type semiconductor laser diode for optical communication and a method for manufacturing the same.

進法4社1[ 従来、この種のレーザダイオードは、第5図に示すよう
に低電流動作と発振モードの単一化を図るため、次のよ
うな構造を採用している。すなわち、屈折率の大きい活
性層13を屈折率の小さいクラッド層10.12で挾み
、光導波路を形成し、そのダブルへテロ接合となる平行
方向の活性層13を、それより深い2本の平行な溝20
の間にメサ型のストライプ状に残し、発光領域22とす
る。その後、この発光領域以外に電流阻止層11を埋め
込み成長し、電流阻止領域とすることによって、電流狭
窄による駆動電流の低減化と、レーザ発振モードの単一
化を実現している。(例えば、”ElectronLe
tter″18(1982) 953頁)日 の   
        “        :従来の第5図に
示す構造のレーザダイオードでは、クラッド層10.1
2及び活性層13で積層されるチャンネル部のPN接合
を通過する電流I ct。
Shinpo 4 companies 1 Conventionally, this type of laser diode has adopted the following structure in order to achieve low current operation and unify the oscillation mode, as shown in FIG. That is, an active layer 13 with a high refractive index is sandwiched between cladding layers 10.12 with a low refractive index to form an optical waveguide, and the active layer 13 in the parallel direction, which forms a double heterojunction, is sandwiched between two deeper layers. parallel grooves 20
A mesa-shaped stripe is left in between to form a light emitting region 22. Thereafter, a current blocking layer 11 is buried and grown in a region other than this light emitting region to form a current blocking region, thereby realizing a reduction in drive current due to current confinement and a single laser oscillation mode. (For example, “ElectronLe
tter″18 (1982) 953 pages)
": In the conventional laser diode having the structure shown in FIG. 5, the cladding layer 10.1
A current I ct passes through the PN junction of the channel portion stacked with 2 and the active layer 13 .

IC2が、発振閾値電流Ithの30%以上を占め、漏
れ電流成分となっている。また、電流阻止部で電流阻止
層11により形成されるPNPN接合は、印加電圧を増
大すると、サイリスタがターンオンして導通し、IBI
、In2が増加し光出力が飽和。
IC2 accounts for 30% or more of the oscillation threshold current Ith and is a leakage current component. Furthermore, when the applied voltage increases, the PNPN junction formed by the current blocking layer 11 in the current blocking section turns on the thyristor and becomes conductive.
, In2 increases and the optical output becomes saturated.

減少する。このため、単一モードでの電流−光出力特性
の直線性が失われ、高出力動作ができなくなる。
Decrease. As a result, the linearity of the current-optical output characteristic in a single mode is lost, making high-output operation impossible.

これは、後述するように上記、チャンネル部のPNPN
A接合には、エネルギーギャップ差のある半導体層、例
えば、四元化合物半導体層が存在していない。すなわち
、エネルギーキャップ差によるポテンシャル障壁で、電
子流を阻止する程度が、チャンネル部以外の部分のPN
PN1サイリスターより小さい事が、キャリア輸送効率
を高め、結果的にサイリスターの耐圧を低下させる要因
となり、高出力駆動を防げている欠点があると考えられ
る。
As described later, this is the PNPN of the channel section above.
A semiconductor layer with an energy gap difference, for example, a quaternary compound semiconductor layer does not exist in the A junction. In other words, the extent to which the electron flow is blocked by the potential barrier due to the energy cap difference is greater than the PN in the area other than the channel area.
The fact that it is smaller than the PN1 thyristor is thought to be a factor in increasing the carrier transport efficiency, resulting in a decrease in the withstand voltage of the thyristor, and preventing high output driving.

さらに、通電を続けてチャンネル部のPN接合界面20
が劣化すると、このレーザ発振に寄与しない漏れ電流工
C1,I C2が増加して駆動電流がさらに増え、通電
劣化が加速されることが知られている。これは、チャン
ネル部のPN接合が、製作上第1の成長工程後にエツチ
ング処理され、次に第2の成長工程により形成される不
連続工程のために、連続成長工程で形成されたPN接合
よりも、界面準位が多いためであるとされている。
Furthermore, by continuing to conduct electricity, the PN junction interface 20 of the channel part
It is known that when the laser diode deteriorates, the leakage currents C1 and IC2 that do not contribute to laser oscillation increase, the driving current further increases, and the current deterioration is accelerated. This is because the PN junction in the channel part is etched after the first growth process and then formed in the second growth process, which is a discontinuous process. This is also said to be due to the large number of interface states.

なお、従来技術の課題を詳細に解析すると、以下のよう
になる。
A detailed analysis of the problems of the prior art is as follows.

トランジスタにおいて、電流利得係数α、注入効率γと
すると、イースに注入された少数キャリアが、コレクタ
ーに到達する輸送効率は、α=γα丁と表せる。
In a transistor, if the current gain coefficient is α and the injection efficiency is γ, then the transport efficiency of the minority carriers injected into the E to reach the collector can be expressed as α = γα.

2元化合物のC7はα−r = [:cosh (WB
/LD)]−”4元化合物のC7は βL2/Ll 6丁 = sinhr、5Inhr2+L2/Ll  βcosh
r 、 coshr2なお、βαeXP  (−ΔEg
/RT)2元および4元層での伝導帯実効状態密度とE
gの差から定義 上式より、 4元層 → β(ΔEgが大)が小 β小  → C1が小 γ=1でもαは小この発明のレ
ーザダイオードは、従来のレーザ光出力レベルの数倍以
上の高出力動作時に生ずる。流れ電流成分の増加に伴う
、電流阻止領域(PNPN接合)のターンオンを防ぐた
めに、チャンネル部に、エネルギーギャップの異なる半
導体層を配置した構造から成る。
C7 of the binary compound is α−r = [:cosh (WB
/LD)]-”C7 of the quaternary compound is βL2/Ll 6 = sinhr, 5Inhr2+L2/Ll βcosh
r, coshr2, βαeXP (−ΔEg
/RT) Conduction band effective density of states and E in binary and quaternary layers
From the difference in g, from the definitional formula, 4-element layer → β (ΔEg is large) is small β is small → C1 is small Even when γ = 1, α is small The laser diode of this invention has several times the output level of conventional laser light This occurs during high output operation. In order to prevent the current blocking region (PNPN junction) from being turned on as the flowing current component increases, it has a structure in which semiconductor layers with different energy gaps are arranged in the channel portion.

すなわち、この発明は、第1導電型半導体基板表面に二
重のストライプ状の溝に挟まれたメサ型のストライプ状
凸部を有する半導体基板と、この基板よりも、バンドギ
ャップが小さい材質からなる半導体層が全面に配置され
、活性領域が前記凸部上面に平坦に形成された発光層と
、クラッド層としての第2導電型半導体層と、電流阻止
層としての第1I第2導電型半導体層を前記凸部以外の
領域に設けられ、さらに、第2導電型半導体埋め込み層
が全体にわたって積層されることを特徴とする二重チャ
ンネル埋め込み構造半導体レーザダイオードとするもの
である。
That is, the present invention comprises a semiconductor substrate having a mesa-shaped striped protrusion sandwiched between double striped grooves on the surface of the first conductivity type semiconductor substrate, and a material having a smaller band gap than this substrate. A light emitting layer in which a semiconductor layer is disposed over the entire surface and an active region is formed flat on the upper surface of the convex portion, a second conductivity type semiconductor layer as a cladding layer, and a first conductivity type semiconductor layer as a current blocking layer. A semiconductor laser diode having a double channel buried structure is provided in a region other than the convex portion, and further includes a second conductivity type semiconductor buried layer laminated over the entire surface.

さらにまた、この発明は、活性層を含む全面に、反射導
電型の第1のクラッド層及びキャップ層を順次形成する
工程を含んで、活性層の形成、第2のクラッド層形成、
反対導電型と一導電型電流阻止層を形成の各工程を、液
相エピタキシャル成長法による連続した一度の成長工程
で行うか、あるいは、活性層、第2のクラッド層形成工
程を有機金属気相成長法で形成し、続いて、電流阻止層
、第2のクラッド層及びキャップ層形成工程を液相エピ
タキシャル成長法で行う半導体レーザダイオードの製造
方法を提供するものである。
Furthermore, the present invention includes the steps of sequentially forming a reflective conductivity type first cladding layer and a cap layer on the entire surface including the active layer, forming the active layer, forming the second cladding layer,
Either the steps of forming the current blocking layers of opposite conductivity type and one conductivity type are performed in one successive growth step by liquid phase epitaxial growth method, or the step of forming the active layer and second cladding layer is performed by organometallic vapor phase epitaxy. The present invention provides a method for manufacturing a semiconductor laser diode, in which a current blocking layer, a second cladding layer, and a cap layer are formed by a liquid phase epitaxial growth method.

作l− 上記の構成によると、レーザ発振に寄与する注入電流は
、発光領域である活性層および、凸部斜面に注入される
。発振モードに関しては、実施例の項で詳述するが、単
一モード発振は保証される。
According to the above configuration, the injection current contributing to laser oscillation is injected into the active layer, which is the light emitting region, and the slope of the convex portion. Regarding the oscillation mode, which will be explained in detail in the embodiment section, single mode oscillation is guaranteed.

この発明の特徴となる、レーザ光の高出力動作は、前述
したように、電流阻止層としてのPNPN接合に、バン
ドギャップエネルギー差がある材質を用いることによっ
て、電流が阻止され、少数キャリアの輸送効率が低下す
ると、電流利得係数が下がる。そのため、PN接合のブ
レークダウン電圧が増大する。すなわち高出力動作に伴
う漏れ電流が増えても、サイリスターのターンオン耐圧
が維持できる。
As mentioned above, the high-power operation of the laser beam, which is a feature of this invention, is achieved by using a material with a band gap energy difference in the PNPN junction as the current blocking layer, which blocks current and transports minority carriers. As efficiency decreases, the current gain factor decreases. Therefore, the breakdown voltage of the PN junction increases. In other words, even if leakage current increases due to high output operation, the turn-on withstand voltage of the thyristor can be maintained.

さらに、この発明のチャンネル部は、従来の製造方法と
異なり、あらかじめ、基板にチャンネルを形成し、結晶
成長を行うことが可能であるために、チャンネル部のP
N接合は、連続した結晶成長工程で形成される。従って
、前記課題の項で述べたように、不連続工程で形成され
たことに奇因するPN接合の通電劣化が低減され、漏れ
電流増を抑えることが可能になる。
Furthermore, unlike conventional manufacturing methods, the channel portion of the present invention allows the channel to be formed in advance on the substrate and crystal growth is performed.
N-junctions are formed through successive crystal growth steps. Therefore, as described in the problem section, the deterioration of the PN junction due to current conduction caused by the discontinuous process is reduced, and the increase in leakage current can be suppressed.

夾胤五 次に図面を参照しながら本発明の詳細な説明する。Five Kyotane Next, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例のレーザ光に垂直な素子の
主要断面図、第2図は電流狭窄部の製造過程を示す斜視
図である。本実施例は、第2図のように半導体基板10
上に二重のストライプ溝(二重チャンネル) 20.2
0と、これらのストライプ溝20によって挟まれたメサ
型の凸部とが形成され、この半導体基板10上に活性層
13、第1のクラッド層12、電流阻止層11および、
キャップ層19がエピタキシャル成長工程で順次形成さ
れたものである。
FIG. 1 is a main sectional view of an element perpendicular to a laser beam according to an embodiment of the present invention, and FIG. 2 is a perspective view showing the manufacturing process of a current confinement portion. In this embodiment, a semiconductor substrate 10 as shown in FIG.
Double stripe groove on top (double channel) 20.2
0 and a mesa-shaped convex portion sandwiched between these striped grooves 20 are formed, and an active layer 13, a first cladding layer 12, a current blocking layer 11, and a mesa-shaped convex portion are formed on this semiconductor substrate 10.
A cap layer 19 is sequentially formed in an epitaxial growth process.

尚、実施例において凸部の両側の溝20では、電流阻止
層11によって電流が狭窄され、メサ凸部の頂上21部
分のみに電流が流れる。
In the embodiment, the current is constricted by the current blocking layer 11 in the grooves 20 on both sides of the convex portion, and the current flows only at the top 21 of the mesa convex portion.

横モードの制御性については、一般に活性層の実効屈折
率Neffは層厚が薄くなる程小さくなり、漏れやすく
なる。又、接合には平行な方向に活性層のNeffの変
化率が大きくなると、光の閉じ込め効果が大きくなり、
発光スポットサイズが2〜3μm以上になると容易に高
次に横モードが発生してしまう。しかし、第3図に示す
ように、本実施例の凸部頂上21の巾は1〜2μm程度
であり、活性層厚は溝の両側の方が厚くかつ、なだらか
に湾曲している。そのため、光は凸部の両側に漏れ、か
つ、実効屈折率の変化が小さいから、高次の横モードは
存在しなくなる。従って、基本モードのみとなり安定し
た単一モード制御が可能となる。
Regarding the controllability of the transverse mode, the effective refractive index Neff of the active layer generally becomes smaller as the layer thickness becomes thinner, and leakage becomes more likely. Also, as the rate of change of Neff of the active layer increases in the direction parallel to the junction, the light confinement effect increases,
When the emission spot size is 2 to 3 μm or more, a high-order transverse mode easily occurs. However, as shown in FIG. 3, the width of the top 21 of the convex portion in this embodiment is about 1 to 2 μm, and the active layer is thicker on both sides of the groove and curved gently. Therefore, since light leaks to both sides of the convex portion and the change in the effective refractive index is small, no higher-order transverse modes exist. Therefore, stable single mode control is possible with only the basic mode.

この発明の半導体レーザダイオードは、さらに、レーザ
光の高出力動作のために順方向電流を約100〜300
mA程度流しても作用の項で述べたように、チャンネル
部にも、4元層が設けられているため、漏れ電流増によ
る電流阻止層の耐圧低下が抑えられ、レーザ光出力が1
00〜200 mWレベルまで、直線的に増加し、高出
力動作が可能になった。
The semiconductor laser diode of the present invention further has a forward current of about 100 to 300 for high output operation of laser light.
As mentioned in the operation section, even when a current of about mA is applied, the quaternary layer is also provided in the channel section, so the drop in breakdown voltage of the current blocking layer due to an increase in leakage current is suppressed, and the laser light output is reduced to 1.
It increased linearly from 00 to 200 mW level, making high-power operation possible.

実温[ 第4図は、この発明の第2実施例を示すレーザダイオー
ドの縦断面図である。この実施例は、前記第1の実施例
に、埋め込み成長の第1層目が、同一導電型になるよう
に成長層を追加したものであり、同一部分には、同一参
照符号を付して、その説明を省略する。
Actual temperature [ FIG. 4 is a longitudinal sectional view of a laser diode showing a second embodiment of the present invention. In this embodiment, a growth layer is added to the first embodiment so that the first layer of buried growth has the same conductivity type, and the same parts are given the same reference numerals. , the explanation thereof will be omitted.

この実施例では、第2段階での電流阻止層11を形成す
る際に、下地と同一導電型の層15を形成し次に、連続
的にPN接合部を形成することによって、課題の高で述
べた欠点である、PN接合の劣化を抑える構造を特徴と
している。
In this example, when forming the current blocking layer 11 in the second stage, a layer 15 of the same conductivity type as the underlying layer is formed, and then a PN junction is continuously formed to solve the problem of high resistance. It is characterized by a structure that suppresses the deterioration of the PN junction, which is the drawback mentioned above.

次に、この発明の半導体レーザダイオードの製造方法に
ついて説明する。
Next, a method for manufacturing a semiconductor laser diode according to the present invention will be explained.

第2図はこの発明のレーザダイオードの製造方法につい
て説明するために示した断面図である。
FIG. 2 is a cross-sectional view for explaining the method of manufacturing a laser diode of the present invention.

まず、第2図に示すように、(100)面を上面にした
n型1nP基板IOの上面にフォトレジストを塗布し、
これを幅数μm8間隔200〜300μmのストライプ
形状で選択エツチングを行い、メサ凸部の頂上21の巾
が0.5〜2μmで、凸部の両側に、溝f&がそれぞれ
2〜5μmになる二重チャンネル20を形成する。
First, as shown in FIG. 2, a photoresist is applied to the top surface of the n-type 1nP substrate IO with the (100) plane as the top surface.
This is then selectively etched in a stripe shape with a width of several μm and an interval of 200 to 300 μm, and the width of the top 21 of the mesa convex portion is 0.5 to 2 μm, and the grooves f& are 2 to 5 μm each on both sides of the convex portion. A heavy channel 20 is formed.

そして、基板IOの洗浄処理工程を経て、通常のボート
スライド法液相エピタキシャル成長を行う。すなわち、
高純度のグラファイト製ボートにn型1nP基板IOお
よび、各層成長用材料を配置した後に、高純度水素ガス
雰囲気中に、約630〜670℃で2〜4時間保持した
後に、冷却速度0.3〜0.8℃/mjnで徐令し、数
℃降温した時点で、n型1nGaAsP 4元混晶を所
望の活性層波長組成に制御して、凸部頂上21での、活
性層120層厚が0.05〜0.15μmに成るように
成長せしめる。
After the substrate IO is cleaned, ordinary boat slide liquid phase epitaxial growth is performed. That is,
After arranging the n-type 1nP substrate IO and each layer growth material in a high-purity graphite boat, it was held at approximately 630-670°C for 2-4 hours in a high-purity hydrogen gas atmosphere, and then the cooling rate was 0.3. The n-type 1nGaAsP quaternary mixed crystal is gradually aged at ~0.8°C/mjn, and when the temperature is lowered by several°C, the active layer wavelength composition is controlled to the desired active layer wavelength composition, and the active layer thickness is increased to 120 layers at the top 21 of the convex portion. It is grown so that it becomes 0.05 to 0.15 μm.

この成長条件は溶液の過冷却度を極めて小さく抑え、準
平衡状態に制御することである。即ち、面方位に成長速
度依存性を強めて、溶質が凸部傾斜面に拡散し、凸部頂
上21付近に存在せしめないことが重要な成長条件とな
る。
The growth conditions are to suppress the degree of supercooling of the solution to an extremely low level and to control it to a quasi-equilibrium state. That is, an important growth condition is to increase the dependence of the growth rate on the plane orientation, so that the solute diffuses to the inclined surface of the convex portion and does not exist near the top 21 of the convex portion.

さらに、亜鉛が添加され、キャリア濃度が5〜20X1
0  [cj]のP型1nP層を1〜3μm成長せしめ
、さらに電極形成のためのP型キャップ層I5を0.5
〜3μm1−度の液相エピタキシャル成長工程で形成す
る。続いて、ウェーハ製造工程で、電極形成しさらに、
素子製造工程を経て、出来た半導体レーザダイオードに
順方向電流を流して、発振閾値が数mA程度で数mW以
上の単一モード光出力を得ることができ、印加電流を増
すと、レーザ光が直線的に増加し、数10mW−100
mWの光出力を得ることができる。
Furthermore, zinc is added to increase the carrier concentration from 5 to 20X1.
A P-type 1nP layer of 0 [cj] is grown to a thickness of 1 to 3 μm, and a P-type cap layer I5 for electrode formation is grown to a thickness of 0.5 μm.
It is formed by a liquid phase epitaxial growth process of ~3 μm 1-degree. Next, in the wafer manufacturing process, electrodes are formed and
Through the device manufacturing process, by passing a forward current through the semiconductor laser diode, it is possible to obtain a single mode optical output of several mW or more with an oscillation threshold of about several mA, and as the applied current increases, the laser light increases. Increases linearly, several tens of mW-100
A light output of mW can be obtained.

なお、第1表に示すように活性層13およびクラッド層
18を形成する工程をを機金属気相成長法で形成する場
合の製造方法を以下に示す。
In addition, as shown in Table 1, the manufacturing method in the case where the steps of forming the active layer 13 and the cladding layer 18 are formed by metallurgical vapor phase epitaxy is shown below.

前記、基板10を形成した後、洗浄工程を経て一般に用
いられている横型もしくは縦型の石英製反応炉に、サセ
プターに載置した基板lOを導入し、成長温度的600
〜650°C1圧力数10torrで、ジャワガス流量
1〜10!/MI、、、で所望の混晶比になる元素比(
V/I比)のキャリア及びソニス流量のもとで、前記基
板10上に約0.05〜0.15μmのInGaAsP
の4元化合物半導体層を成長せしめ、連続して、第1の
クラッド層12を約0.5〜1.5μm成長せしめる。
After forming the substrate 10, the substrate 10 placed on a susceptor was introduced into a generally used horizontal or vertical quartz reactor through a cleaning process, and the growth temperature was increased to 600°C.
~650°C1 pressure 10 torr, Java gas flow rate 1~10! The elemental ratio (
Under a carrier and sonis flow rate of (V/I ratio), about 0.05 to 0.15 μm of InGaAsP is deposited on the substrate 10.
A quaternary compound semiconductor layer is grown, and the first cladding layer 12 is successively grown to a thickness of about 0.5 to 1.5 μm.

その後の、電流阻止層11を形成する工程以降は、前記
液相エピタキシャル成長法を用い、素子製造を行う。
After the subsequent step of forming the current blocking layer 11, the device is manufactured using the liquid phase epitaxial growth method.

主帆q効果 以上、説明したように、この発明は、第1に、電流阻止
層のPNPN接合部に、バンドギヤ・ノブエネルギー差
のある半導体層を設けたことで、電流阻止層の耐圧レベ
ルを高め、印加電流対先出力特性の直線性が、約200
mWまで維持できる効果がある。第2にPN接合面が連
続工程で形成可能であるため、接合面の劣化に伴う漏れ
電流増を抑え高信頼度の半導体レーザダイオードを供給
できる効果がある。
Main sail q effect As explained above, firstly, this invention provides a semiconductor layer with a band gear knob energy difference at the PNPN junction of the current blocking layer, thereby increasing the withstand voltage level of the current blocking layer. The linearity of the applied current vs. output characteristic is approximately 200
It has the effect of being able to maintain up to mW. Second, since the PN junction surface can be formed in a continuous process, it is possible to suppress an increase in leakage current due to deterioration of the junction surface and to provide a highly reliable semiconductor laser diode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の半導体レーザダイオード
の概略的縦断面図、第2図は第1の成長工程により形成
された活性層、クラッド層とを示す縦断面図、第3図は
第2図の100面を上面にしたInP基板に、二重のス
トライプ溝を形成し、発光領域と電流通路を形成した様
子を示す斜視図、第4図はこの発明の第2の実施例を示
す縦断面図、第5図は従来の半導体レーザダイオードの
主要部を示す縦断面図である。 10・・・・・・半導体1nP基板、 ■1・・・・・・電流阻止層(n”lnP層)12・・
・・・・第1のクラッド層、 13・・・・・・活性層(InGaAsP層)、15・
・・・・・電流通路となる第1の埋め込み層、18・・
・・・・埋め込みによるクラッド層、19・・・・・・
キャップ層、 20・・・・・・二重のストライブ溝(チャンネル)、
21・・・・・・電流通路、 22・・・・・・発光領域(電流注入部)。 13  シ占1 、(p・しぞ斉T7パ旙・7トコ゛′
−44nAへ4L)141図 第 2 図 21督」こL洛 第3図 1114図(σ) 第5図 手続補正書(方式) 平成 3年 4月11日 1、事件の表示 平成2年特 許 願 第339893号2、発明の名称 高出力半導体レーザダイオードおよびその製造方法3、
補正をする者 事件の関係  特許出願人 〒520滋賀県大津市晴嵐2丁目9番1号関西日本電気
株式会社 5、補正の対象 (1)出願明細書の「発明の詳細な説明」の欄。 (2)出願明細書に添付の「図面」7 6、補正の内容 /(1)明細書の第13頁第1θ行を別紙のとおりに訂
正する。 (2)明細書に添付の図面の第5図と同一図面上の第1
表をなお、次に示す第1表に示すように活性層13およ
びクラXiセニ イ多l]  の イ芝≧−ずメ久多]
FIG. 1 is a schematic vertical cross-sectional view of a semiconductor laser diode according to an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view showing the active layer and cladding layer formed in the first growth step, and FIG. FIG. 2 is a perspective view showing how double stripe grooves are formed on an InP substrate with the 100 plane as the top surface to form a light emitting region and a current path, and FIG. 4 is a perspective view showing a second embodiment of the present invention. FIG. 5 is a vertical cross-sectional view showing the main parts of a conventional semiconductor laser diode. 10... Semiconductor 1nP substrate, ■1... Current blocking layer (n''lnP layer) 12...
...First cladding layer, 13... Active layer (InGaAsP layer), 15.
...First buried layer serving as a current path, 18...
...Clad layer by embedding, 19...
Cap layer, 20... double stripe grooves (channels),
21... Current path, 22... Light emitting region (current injection part). 13 Shizo 1, (p・shizosai T7 paaa・7toko゛′
-44nA to 4L) Figure 2 Figure 21 Figure 3 Figure 1114 (σ) Figure 5 Procedural Amendment (Method) April 11, 1991 1, Indication of Case 1990 Patent Application No. 339893 2, Title of the invention: High power semiconductor laser diode and method for manufacturing the same 3;
Relationship with the case of the person making the amendment Patent applicant: 5 Kansai NEC Corporation, 2-9-1 Seiran, Otsu City, Shiga Prefecture, 520 Subject of amendment (1) The "Detailed Description of the Invention" column of the application specification. (2) “Drawing” 76 attached to the application specification, contents of amendment/(1) Line 1θ of page 13 of the specification is corrected as shown in the attached sheet. (2) Figure 1 on the same drawing as Figure 5 of the drawings attached to the specification
The table is as shown in Table 1 below.
Made by

Claims (2)

【特許請求の範囲】[Claims] (1)二重のストライプ状の溝を両側に有し、この二重
溝に挟まれたメサ型ストライプ状凸部を形成した一導電
型半導体基板と、この基板よりも、バンドギャップエネ
ルギーが小さい一導電型半導体層が全面に設けられ、前
記凸部頂上面に平坦に形成された発光領域としての活性
層と、クラッド層としての反射導電型の半導体層と、前
記活性層に隣接して、前記凸部頂上平坦部以外を埋める
ように設けられた反対導電型の第一の電流阻止層と、一
導電型の第二の電流阻止層と、前記活性層の上に設けら
れた反対導電型の第二のクラッド層と、前記第二のクラ
ッド層の上に設けられたキャップ層とを含むことを特徴
とする半導体レーザダイオード。
(1) A single-conductivity type semiconductor substrate that has double striped grooves on both sides and mesa-shaped striped protrusions sandwiched between the double grooves, and has a smaller band gap energy than this substrate. A semiconductor layer of one conductivity type is provided on the entire surface, an active layer as a light emitting region formed flat on the top surface of the convex portion, a reflective conductivity type semiconductor layer as a cladding layer, and adjacent to the active layer, a first current blocking layer of an opposite conductivity type provided to fill the area other than the flat part at the top of the convex portion; a second current blocking layer of one conductivity type; and an opposite conductivity type provided on the active layer. A semiconductor laser diode comprising: a second cladding layer; and a cap layer provided on the second cladding layer.
(2)(a)一導電型半導体基板に、メサ型のストライ
プ状凸部を形成する工程と、 (b)前記凸部を含む全表面に、一導電型活性層を形成
する工程と、 (c)前記凸部を含む全表面に、反対導電型の第二のク
ラッド層を形成する工程と、 (d)前記凸部頂上平坦部以外の部分に、反対導電型と
一導電型電流阻止層を形成する工程と、(e)前記活性
層を含む全面に反対導電型の第二のクラッド層及び、キ
ャップ層を順次形成する工程とを含み、 前記(b)〜(e)の各工程を液相エピタキシャル成長
法による連続した一度の成長工程で行うか、あるいは、
前記(b)、(c)工程を、有機金属気相成長法で形成
し、続いて、(d)、(e)工程を、液相エピタキシャ
ル成長法で行うことを特徴とする半導体レーザダイオー
ドの製造方法。
(2) (a) A step of forming mesa-shaped striped convex portions on a semiconductor substrate of one conductivity type; (b) A step of forming an active layer of one conductivity type on the entire surface including the convex portions; c) forming a second cladding layer of opposite conductivity type on the entire surface including the convex portion; (d) forming a current blocking layer of opposite conductivity type and one conductivity type on the portion other than the flat portion at the top of the convex portion; and (e) sequentially forming a second cladding layer of an opposite conductivity type and a cap layer on the entire surface including the active layer, and each of the steps (b) to (e) above. It can be done in one continuous growth step by liquid phase epitaxial growth method, or
Manufacturing a semiconductor laser diode, characterized in that the steps (b) and (c) are formed by metal organic vapor phase epitaxy, and then the steps (d) and (e) are performed by liquid phase epitaxial growth. Method.
JP33989390A 1990-11-30 1990-11-30 High-output semiconductor laser diode and its manufacture Pending JPH04207089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33989390A JPH04207089A (en) 1990-11-30 1990-11-30 High-output semiconductor laser diode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33989390A JPH04207089A (en) 1990-11-30 1990-11-30 High-output semiconductor laser diode and its manufacture

Publications (1)

Publication Number Publication Date
JPH04207089A true JPH04207089A (en) 1992-07-29

Family

ID=18331804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33989390A Pending JPH04207089A (en) 1990-11-30 1990-11-30 High-output semiconductor laser diode and its manufacture

Country Status (1)

Country Link
JP (1) JPH04207089A (en)

Similar Documents

Publication Publication Date Title
US4124826A (en) Current confinement in semiconductor lasers
JPH0274088A (en) Semiconductor laser device
JPH07106685A (en) Semiconductor laser
JPH077183A (en) Semiconductor light emitting device and fabrication thereof
US7215691B2 (en) Semiconductor laser device and method for fabricating the same
US6822989B1 (en) Semiconductor laser and a manufacturing method for the same
JPH11121860A (en) Compound semiconductor light emitting device and its forming method
JP3763459B2 (en) Semiconductor laser device and manufacturing method thereof
JPH04207089A (en) High-output semiconductor laser diode and its manufacture
JPH10256647A (en) Semiconductor laser element and fabrication thereof
JPH065920A (en) Light emitting element
JP3801410B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0239483A (en) Semiconductor laser diode and manufacture thereof
JPH03203282A (en) Semiconductor laser diode
JP2738040B2 (en) Semiconductor light emitting device
JP3229085B2 (en) Semiconductor laser device and method of manufacturing the same
JP3213428B2 (en) Semiconductor laser device and method of manufacturing the same
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
KR100311459B1 (en) Method for manufacturing laser diode
JPH0629616A (en) Semiconductor laser diode and manufacturing method thereof
JPH02202085A (en) Manufacture of semiconductor laser device
JPH0537084A (en) Semiconductor laser device
JP2001085795A (en) Semiconductor device and semiconductor light-emitting element
KR940011271B1 (en) Manufacturing method of laser diode array
JPH0227829B2 (en)