JPH04207060A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04207060A
JPH04207060A JP34013890A JP34013890A JPH04207060A JP H04207060 A JPH04207060 A JP H04207060A JP 34013890 A JP34013890 A JP 34013890A JP 34013890 A JP34013890 A JP 34013890A JP H04207060 A JPH04207060 A JP H04207060A
Authority
JP
Japan
Prior art keywords
wafer
substrate
sealing frame
thin film
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34013890A
Other languages
Japanese (ja)
Inventor
Akira Okada
晃 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP34013890A priority Critical patent/JPH04207060A/en
Publication of JPH04207060A publication Critical patent/JPH04207060A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PURPOSE:To inhibit a rise in temperature in a wafer scale memory efficiently and obtain a high heat dissipation property transferring directly the heat generated from the wafer to a sealing frame which serves as heat dissipation fins by way of a metal film formed on a wafer-mounted substrate without a bonding agent. CONSTITUTION:A copper-made metal thin film 8 is formed on the whole surface of a substrate 2 where a wafer 1 is mounted on a wafer-mount section on the surface by way of a bonding agent made of acrylic resin. An insulation film 9 is laid out around the wafer-mount section by way of the bonding agent. On the surface there is formed a metal-gauge wire-based bonding section which connects the wafer 1 with the substrate 2. A sealing frame 5 is laid out around the outer periphery of the insulation film 9 where the bonding agent 6 is applied only on the surface located inside the wafer-mount section of the sealing frame 5, which makes it possible to connect the wafer-mount substrate 2 with the sealing frame 5 and the metal thin film 8 formed on the substrate 2 with the sealing frame 5 directly as well.

Description

【発明の詳細な説明】 〔概要〕 放熱機構を備えた半導体装置、特に基板に搭載される素
子がウェハであるウェハスケールメモリモジュールに関
し、 半導体装置内に発生した熱を効率良く外部に放熱するこ
とのできる半導体装置を提供することを目的とし、 半導体素子を搭載するパッケージにおいて、該半導体素
子が搭載される素子搭載基板の素子搭載面の端部周囲に
設けた放熱フィンを兼ねる封止枠と、少な(とも前記素
子搭載基板の素子搭載面の端部周囲に該基板と前記封止
枠の両方に接するように設けた金属薄膜と、前記素子搭
載基板と前記封止枠を接着するように、前記素子搭載基
板及び前記封止枠の前記素子収容部の内部に位置する面
に塗布した接着剤とを有することを特徴とした構成であ
る。
[Detailed Description of the Invention] [Summary] To efficiently radiate heat generated within the semiconductor device to the outside regarding a semiconductor device equipped with a heat dissipation mechanism, particularly a wafer scale memory module in which an element mounted on a substrate is a wafer. The present invention aims to provide a semiconductor device in which a semiconductor element is mounted, and a sealing frame that also serves as a heat dissipation fin provided around an end of an element mounting surface of an element mounting board on which the semiconductor element is mounted; a metal thin film provided around the edge of the element mounting surface of the element mounting substrate so as to be in contact with both the substrate and the sealing frame, and bonding the element mounting substrate and the sealing frame; This configuration is characterized by comprising the element mounting substrate and an adhesive applied to a surface of the sealing frame located inside the element housing section.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置に関し、 更に詳しく言えば、半導体素子を搭載する半導体パッケ
ージの放熱性を高め、半導体内部に発生する熱を効率良
く外部へ放熱する半導体装置に関する。
The present invention relates to a semiconductor device, and more specifically, to a semiconductor device that improves the heat dissipation performance of a semiconductor package in which a semiconductor element is mounted, and efficiently dissipates heat generated inside the semiconductor to the outside.

近年の半導体装置においては、半導体素子の大規模化、
高集積化が進むと共に素子からの発熱量が大幅に増加し
ている。特にウェハスケールメモリモジュールは、ウェ
ハ上に非常に多くの素子が形成されているため発熱量が
大きい。
In recent years, in semiconductor devices, the scale of semiconductor elements has increased,
As the degree of integration progresses, the amount of heat generated from elements is increasing significantly. In particular, wafer-scale memory modules generate a large amount of heat because a large number of elements are formed on a wafer.

そのため、特にウェハスケールメモリモジュールを搭載
するPKGにおいては、半導体装置内部で発生した熱を
効率良く外部へ放熱することが望まれている。
Therefore, especially in a PKG equipped with a wafer-scale memory module, it is desired to efficiently radiate heat generated inside the semiconductor device to the outside.

〔従来の技術〕[Conventional technology]

第4図は、従来のウェハスケールメモリモジュールを示
す断面図である。
FIG. 4 is a cross-sectional view showing a conventional wafer scale memory module.

図中、1はウェハ上に多数のDRAMを形成させ、ウェ
ハ形状のまま大容量DRAMとして機能するウェハメモ
リ、2はガラスエポキシ樹脂からなるウェハ搭載基板、
3はアクリル系樹脂からなる接着剤、4はウェハの各チ
ップと配線層とを結ぶ金属細線であり、パッケージ外部
との接続はコネクタにより接続される。
In the figure, 1 is a wafer memory in which a large number of DRAMs are formed on a wafer and functions as a large-capacity DRAM in the wafer shape, 2 is a wafer mounting substrate made of glass epoxy resin,
3 is an adhesive made of acrylic resin, 4 is a thin metal wire connecting each chip of the wafer to the wiring layer, and connection to the outside of the package is made by a connector.

5はアルミニウムからなり放熱フィンを兼ねた封止枠、
6はシリコンラバーよりなる接着剤、7はステンレス製
のキャップをそれぞれ示す。
5 is a sealing frame made of aluminum that also serves as a heat dissipation fin;
6 indicates an adhesive made of silicone rubber, and 7 indicates a cap made of stainless steel.

従来のウェハスケールメモリモジュールは次の様なもの
である。
Conventional wafer scale memory modules are as follows.

ウェハ搭載基板2上にアクリル系樹脂からなる接着剤3
を介してウェハ1が搭載されている。
An adhesive 3 made of acrylic resin is placed on the wafer mounting substrate 2.
The wafer 1 is mounted via the wafer 1.

前記基板2のウェハ1搭載部周囲に予め配線層を形成し
ておき、該ウェハ1の各チップと該配線層とを金属細線
4でボンディングし、前記基板2上面の端部周囲に接着
剤6を塗布して封止枠5が接着されている。
A wiring layer is formed in advance around the wafer 1 mounting portion of the substrate 2, each chip of the wafer 1 and the wiring layer are bonded with a thin metal wire 4, and an adhesive 6 is applied around the edge of the upper surface of the substrate 2. The sealing frame 5 is bonded by applying .

なお、該封止枠5と前記基板2との接着強度を高めるた
めに前記封止枠5直下の前記基板2底面からネジ穴を設
は前記基板2と前記封止枠5とをネジ止めしてもよい。
In addition, in order to increase the adhesive strength between the sealing frame 5 and the substrate 2, screw holes are provided from the bottom surface of the substrate 2 directly below the sealing frame 5, so that the substrate 2 and the sealing frame 5 are screwed together. It's okay.

封止キャップ7は接着剤6を介して前記封止枠5と接着
した構成を有している。
The sealing cap 7 has a structure in which it is adhered to the sealing frame 5 via an adhesive 6.

上記の構成により、前記ウェハスケールメモリモジエー
ル内に生じた熱は、基板2から接着剤6を介して封止枠
5に伝わり外部へ放熱される。
With the above configuration, the heat generated in the wafer scale memory module is transmitted from the substrate 2 to the sealing frame 5 via the adhesive 6 and is radiated to the outside.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した従来技術で形成されたウェハスケールメモリモ
ジュールでは、ウェハ1内に形成された多数の半導体チ
ップから発生した熱が、金属細線4と基板2上の配線層
を通り、基板2と、放熱フィンを兼ねる封止枠5間の接
着剤6を介して該封止枠5から放熱していた。
In the wafer-scale memory module formed using the above-mentioned conventional technology, heat generated from a large number of semiconductor chips formed in the wafer 1 passes through the thin metal wires 4 and the wiring layer on the substrate 2, and then passes through the substrate 2 and the heat dissipation fin. Heat was radiated from the sealing frames 5 through the adhesive 6 between the sealing frames 5, which also served as the sealing frame 5.

しかしながら、接着剤6の熱伝導率は金属に比べ大幅に
劣るために充分な放熱をすることができず、半導体素子
の性質上、温度が上がると次第に素子の特性が悪くなっ
ていき、誤動作などの問題が生じ、信顛性に問題が残っ
ていた。
However, the thermal conductivity of the adhesive 6 is significantly lower than that of metals, so it cannot dissipate sufficient heat, and due to the nature of semiconductor devices, as the temperature rises, the characteristics of the device gradually deteriorate, leading to malfunctions and other problems. Problems arose, and problems with credibility remained.

本発明は、このような問題点に鑑み、半導体装置内に発
生した熱を効率良く外部に放熱することのできる半導体
装置を提供することを目的としている。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide a semiconductor device that can efficiently radiate heat generated within the semiconductor device to the outside.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では上記目的を達成するために、半導体素子を搭
載するパッケージにおいて、該半導体素子の搭載される
素子搭載基板2の素子搭載面の端部周囲に設けた放熱フ
ィンを兼ねる封止枠5と、少なくとも前記素子搭載基板
2の素子搭載面の端部周囲に該基板2と前記封止枠5の
両方に接するように設けた金属薄膜8と、前記素子搭載
基板2と前記封止枠5を接着するように、前記素子搭載
基板2及び前記封止枠5の前記素子収容部の内部に位置
する面に塗布した接着剤6とを有することを特徴とする
半導体装置を提供する。
In order to achieve the above object, in the present invention, in a package on which a semiconductor element is mounted, a sealing frame 5 which also serves as a heat dissipation fin is provided around the edge of the element mounting surface of the element mounting substrate 2 on which the semiconductor element is mounted. , a metal thin film 8 provided at least around the edge of the element mounting surface of the element mounting substrate 2 so as to be in contact with both the substrate 2 and the sealing frame 5; There is provided a semiconductor device characterized in that it has an adhesive 6 applied to the element mounting substrate 2 and the surface of the sealing frame 5 located inside the element accommodating portion so as to adhere to each other.

〔作用] 第1図は、本発明に係るウェハスケールメモリモジュー
ルの原理図を示す。図中、第4図と同じ箇所には同一の
番号を付している。
[Operation] FIG. 1 shows a principle diagram of a wafer scale memory module according to the present invention. In the figure, the same parts as in FIG. 4 are given the same numbers.

また、8は銅からなる金属薄膜を示す。Further, 8 indicates a metal thin film made of copper.

ウェハを搭載した基板2上面の端部周囲に銅からなる金
属薄膜8を介し、封止枠5を配置した後、該封止枠5の
ウェハ収容部の内部に位置する面にのみ接着剤6を塗布
することによって、前記ウェハ搭載基板2と前記封止枠
5とを接着する。
After placing the sealing frame 5 around the edge of the upper surface of the substrate 2 on which the wafer is mounted, with a metal thin film 8 made of copper interposed therebetween, an adhesive 6 is applied only to the surface of the sealing frame 5 located inside the wafer accommodating part. The wafer mounting substrate 2 and the sealing frame 5 are bonded together by applying .

これにより、前記基板2上に形成された前記金属薄膜8
と前記封止枠5を直接接触させることができる。
As a result, the metal thin film 8 formed on the substrate 2
The sealing frame 5 can be brought into direct contact with the sealing frame 5.

従って、従来技術では接着剤6を介して前記封止枠5と
前記基板2を結合して、前記ウェハスケールメモリモジ
ュール内に発生した熱を外部に放熱していたのに比べ、
本願のように熱伝導率の良い前記金属薄膜8を直接に、
封止枠5と前記基板2の間に挟み込むことによって、前
記ウェハスケールメモリモジュール内部から効率良く熱
を該ウェハスケールメモリモジュールの外部へ放熱する
ことができる。
Therefore, in contrast to the prior art, in which the sealing frame 5 and the substrate 2 are bonded via an adhesive 6 to radiate the heat generated within the wafer scale memory module to the outside.
As in the present application, the metal thin film 8 having good thermal conductivity is directly applied.
By sandwiching it between the sealing frame 5 and the substrate 2, heat can be efficiently radiated from inside the wafer scale memory module to the outside of the wafer scale memory module.

〔実施例〕〔Example〕

第2図は、本発明の第1の実施例のウェハスケールメモ
リモジュールを示す断面図である。
FIG. 2 is a cross-sectional view showing a wafer scale memory module according to a first embodiment of the present invention.

図中、第1図と同じ箇所には同一の番号を付している。In the figure, the same parts as in FIG. 1 are given the same numbers.

9はポリイミドからなる絶縁膜を示す。9 indicates an insulating film made of polyimide.

基板2上に銅からなり、35μm程度の厚さをもつ金属
薄膜8を全面に形成し、該金属薄膜8表面のウェハ搭載
部に、アクリル系樹脂からなる接着剤3を介してウェハ
1が搭載されている。
A metal thin film 8 made of copper and having a thickness of about 35 μm is formed on the entire surface of the substrate 2, and the wafer 1 is mounted on the wafer mounting portion on the surface of the metal thin film 8 via an adhesive 3 made of acrylic resin. has been done.

前記ウェハ搭載部周囲に絶縁膜9が接着剤を介して配置
されていて、その表面に前記ウェハ1と基板2とを接続
する金属細線4のボンディング部が形成されている。
An insulating film 9 is disposed around the wafer mounting portion via an adhesive, and a bonding portion of a thin metal wire 4 connecting the wafer 1 and the substrate 2 is formed on the surface of the insulating film 9.

また、前記ボンディング部と基板2に形成された配線層
とは、前記絶縁膜9と前記金属薄膜8に予め形成された
スルーホールにより接続されている。
Further, the bonding portion and the wiring layer formed on the substrate 2 are connected through a through hole formed in the insulating film 9 and the metal thin film 8 in advance.

封止枠5は、前記絶縁膜9の外周に配置され、該封止枠
5のウェハ収容部の内部に位置する面にのみ接着剤6を
塗布することによって、前記ウェハ搭載基板2と前記封
止枠5とを接着すると共に、前記基板2上に形成された
前記金属薄膜8と前記封止枠5を直接接触させることが
できる。
The sealing frame 5 is disposed around the outer periphery of the insulating film 9, and is bonded to the wafer mounting substrate 2 by applying adhesive 6 only to the surface of the sealing frame 5 located inside the wafer accommodating portion. In addition to adhering the sealing frame 5, the metal thin film 8 formed on the substrate 2 and the sealing frame 5 can be brought into direct contact.

本実施例では、前記金属薄膜8として熱伝導率が良く安
価な銅を用いたが、これに限定されるものではなく、金
、白金などの熱伝導率の良い金属を用いてもよい。
In this embodiment, copper, which has good thermal conductivity and is inexpensive, is used as the metal thin film 8, but the present invention is not limited to this, and metals with good thermal conductivity such as gold and platinum may also be used.

なお、前記封止枠5と前記基板2との接着強度を高める
ために封止枠5直下の基板2下面からネジ穴を設は前記
基板2と前記封止枠5をネジ止めしてもよい。
Incidentally, in order to increase the adhesive strength between the sealing frame 5 and the substrate 2, screw holes may be provided from the bottom surface of the substrate 2 directly below the sealing frame 5, and the substrate 2 and the sealing frame 5 may be screwed together. .

第3図は、本発明の第2の実施例のウェハスケールメモ
リモジュールを示す断面図である。
FIG. 3 is a cross-sectional view showing a wafer scale memory module according to a second embodiment of the present invention.

図中、第1図、第2図と同じ箇所には同一の番号を付し
ている。
In the figure, the same parts as in FIGS. 1 and 2 are given the same numbers.

本実施例では、本発明のウェハスケールメモリモジュー
ルをウェハ1が対向するように上下一対にしてシリコン
ラバーよりなる接着剤6により接着したものである。
In this embodiment, the wafer scale memory modules of the present invention are arranged in a pair of upper and lower parts with the wafers 1 facing each other and are bonded together using an adhesive 6 made of silicone rubber.

更に、第1の実施例同様に、封止枠5と基板2との接着
強度を高めるために封止枠5直下の基板2下面からネジ
穴を設は前記基板2と前記封止枠5をネジ止めしてもよ
い。
Further, as in the first embodiment, in order to increase the adhesive strength between the sealing frame 5 and the substrate 2, screw holes are provided from the bottom surface of the substrate 2 directly below the sealing frame 5. It may be fixed with screws.

また本実施例では、ウェハを搭載したウェハスケールメ
モリモジュールに関して説明したが、これに限定される
ものではなく半導体チップを搭載した半導体装置などに
も適用することができる。
Furthermore, although this embodiment has been described with respect to a wafer-scale memory module mounted with a wafer, the present invention is not limited to this, and can be applied to a semiconductor device mounted with a semiconductor chip.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のウェハスケールメモリモジ
ュールによれば、ウェハからの発熱をウェハ搭載基板上
に形成された金属薄膜により、接着剤を介さずに直接に
放熱フィンを兼ねた封止枠に伝えられるため、ウェハス
ケールメモリモジュール内の温度上昇を効率的に抑える
ことができ、高い放熱特性を得ることができる。
As explained above, according to the wafer scale memory module of the present invention, heat generated from the wafer is transferred directly to the sealing frame that also serves as a heat dissipation fin, without using an adhesive, by means of a metal thin film formed on the wafer mounting substrate. As a result, temperature rise within the wafer-scale memory module can be effectively suppressed, and high heat dissipation characteristics can be obtained.

従って、ウェハの発熱が原因で起こる誤動作等の発生率
をかなり低く抑えることができ、素子の大規模化、高集
積化に伴う素子の放熱対策に有効である。
Therefore, the incidence of malfunctions caused by heat generation in the wafer can be suppressed to a considerably low level, and this is effective as a measure against heat dissipation from devices as devices become larger and more highly integrated.

さらに、ウェハスケールメモリモジュールに限定されず
、半導体チップを搭載した半導体装置の性能向上、耐久
性向上にもたいへん有効である。
Furthermore, it is very effective not only for wafer scale memory modules but also for improving the performance and durability of semiconductor devices equipped with semiconductor chips.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図であり、ウェハスケールメモリ
モジュールを示している。 第2図は本発明の第1の実施例のウェハスケールメモリ
モジュールを示す断面図である。 第3図は本発明の第2の実施例のウェハスケールメモリ
モジュールを示す断面図である。 第4図は従来のウェハスケールメモリモジュールを示す
断面図である。 また、図中1はウェハ、 2はウェハ搭載基板、3は接着剤、 4は金属細線、5は封止枠、6は接着剤、7は封止キャ
ンプ、8は金属薄膜、 9は絶縁膜 をそれぞれ示す。 本宛唱n勺月\スケールヌ乞り七ジュールn尻理図隼 
1  凹 i>妃帆ハ手1r光例乞示4ウユハスケールメ七り七シ
゛ニールO餌[fl医 賂 2  m
FIG. 1 is a principle diagram of the present invention, showing a wafer scale memory module. FIG. 2 is a sectional view showing a wafer scale memory module according to a first embodiment of the present invention. FIG. 3 is a sectional view showing a wafer scale memory module according to a second embodiment of the present invention. FIG. 4 is a sectional view showing a conventional wafer scale memory module. In addition, in the figure, 1 is a wafer, 2 is a wafer mounting substrate, 3 is an adhesive, 4 is a thin metal wire, 5 is a sealing frame, 6 is an adhesive, 7 is a sealing camp, 8 is a metal thin film, 9 is an insulating film are shown respectively. Singing to the book n Tsuzuki \ scale n beggars seven joules n Shiri Zu Hayabusa
1 concave i > princess sail hand 1 r light example request 4 uyuha scale me 7ri 7 vinyl o bait [fl medical bribe 2 m

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子(1)を搭載するパッケージにおいて
、 該半導体素子(1)が搭載される素子搭載基板(2)の
素子搭載面の端部周囲に設けた放熱フィンを兼ねる封止
枠(5)と、 少なくとも前記素子搭載基板(2)の素子搭載面の端部
周囲に該基板(2)と前記封止枠(5)に挟まれるよう
に設けた金属薄膜(8)と、 前記素子搭載基板(2)と前記封止枠(5)を接着する
ように、前記素子搭載基板(2)及び前記封止枠(5)
の前記素子(1)収容部の内部に位置する面に塗布した
接着剤(6)とを有することを特徴とする半導体装置。
(1) In a package on which a semiconductor element (1) is mounted, a sealing frame (5 ), a metal thin film (8) provided at least around the edge of the element mounting surface of the element mounting substrate (2) so as to be sandwiched between the substrate (2) and the sealing frame (5), and the element mounting surface. The element mounting substrate (2) and the sealing frame (5) are bonded together so that the substrate (2) and the sealing frame (5) are bonded together.
and an adhesive (6) applied to a surface of the element (1) located inside the accommodating portion.
(2)前記素子搭載基板(2)の素子搭載面の全面に前
記金属薄膜(8)を設けたことを特徴とする請求項(1
)記載の半導体装置。
(2) Claim (1) characterized in that the metal thin film (8) is provided on the entire surface of the element mounting surface of the element mounting substrate (2).
).
JP34013890A 1990-11-30 1990-11-30 Semiconductor device Pending JPH04207060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34013890A JPH04207060A (en) 1990-11-30 1990-11-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34013890A JPH04207060A (en) 1990-11-30 1990-11-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04207060A true JPH04207060A (en) 1992-07-29

Family

ID=18334092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34013890A Pending JPH04207060A (en) 1990-11-30 1990-11-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04207060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073843A1 (en) * 2000-03-29 2001-10-04 Rohm Co., Ltd. Semiconductor device
JP2013507760A (en) * 2009-10-07 2013-03-04 バレオ・エチユード・エレクトロニク Power module for automobile
JP2013243341A (en) * 2012-04-27 2013-12-05 Canon Inc Electronic component and electronic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073843A1 (en) * 2000-03-29 2001-10-04 Rohm Co., Ltd. Semiconductor device
US6815829B2 (en) 2000-03-29 2004-11-09 Rohm Co., Ltd. Semiconductor device with compact package
KR100736000B1 (en) * 2000-03-29 2007-07-06 로무 가부시키가이샤 Semiconductor device
JP2013507760A (en) * 2009-10-07 2013-03-04 バレオ・エチユード・エレクトロニク Power module for automobile
JP2013243341A (en) * 2012-04-27 2013-12-05 Canon Inc Electronic component and electronic apparatus

Similar Documents

Publication Publication Date Title
US5776800A (en) Paddleless molded plastic semiconductor chip package
US5777386A (en) Semiconductor device and mount structure thereof
JPH08222690A (en) Semiconductor module for microprocessors
JPH07142647A (en) Semiconductor device
JP2611671B2 (en) Semiconductor device
KR20080023689A (en) Integrated circuit packaging structure and method of making the same
JPH04207060A (en) Semiconductor device
JPH04326557A (en) Cooling structure of semiconductor chip
JPS59219942A (en) Chip carrier
EP0690499A2 (en) Paddleless molded plastic semiconductor chip package
JPH02278856A (en) Semiconductor integrated circuit device
JP3295987B2 (en) Method for manufacturing semiconductor device
JPH09293755A (en) Semiconductor device and its manufacturing and mounting method
JPH05206320A (en) Multi-chip module
JPH07235633A (en) Multi-chip module
JPH09226280A (en) Card module
JPH0574985A (en) Semiconductor element mounting structure
JPS5810840A (en) Semiconductor device
JPH08222652A (en) Semiconductor device and production thereof
KR100195158B1 (en) Semiconductor lead frame
JP3036484B2 (en) Semiconductor device and manufacturing method thereof
JPH07231055A (en) Modular structure
JP2504465B2 (en) Semiconductor device
JPH0831986A (en) Semiconductor device having heatsink
JPH08139267A (en) Multichip module