JPH04206355A - Lead accumulator battery active material composite - Google Patents

Lead accumulator battery active material composite

Info

Publication number
JPH04206355A
JPH04206355A JP2333746A JP33374690A JPH04206355A JP H04206355 A JPH04206355 A JP H04206355A JP 2333746 A JP2333746 A JP 2333746A JP 33374690 A JP33374690 A JP 33374690A JP H04206355 A JPH04206355 A JP H04206355A
Authority
JP
Japan
Prior art keywords
active material
electrode plate
charge
ring
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2333746A
Other languages
Japanese (ja)
Inventor
Mamoru Mizumoto
水本 守
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2333746A priority Critical patent/JPH04206355A/en
Publication of JPH04206355A publication Critical patent/JPH04206355A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the mechanical strength of an electrode plate and prevent the fall of an active material from the electrode plate by slurrying at the time of charge and discharge by adding a specified amount of a specified ring polysaccaride into the active material raw material of a lead accumulator. CONSTITUTION:0.1 to 10wt.% of a ring polysaccharide represented by the formula I is added into an active material starting material. The molecular weight of the ring polysaccharide can be changed by regulating the polymerization degree, and a solution having a viscosity most suitable for the kneading of starting lead powder and the charge to a lattice can be obtained. In the kneading process, a liquid phase containing the ring polysaccharide forms a film around the starting lead powder particle, and this structure is changed to a structure in which the ring polysaccharide having a high molecular weight binds the lead powder particles when the liquid phase is extinguished through maturing process. When charge and discharge are repeated, the ring polysaccharide is gradually converted into a material similar to a non- crystalline carbon having a three-dimensional network structure. This change further strengthens the binding between the active material particles by the formation of the three-dimentional network structure. Thus, the mechanical strength of an electrode plate is improved, and the fall of the active material particle from the electrode plate at the time of repeating the charge and discharge can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉛蓄電池の活物質に関し、特に極板製造時及び
使用時における極板からの活物質の脱落を防止する活物
質組成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an active material for a lead-acid battery, and more particularly to an active material composition that prevents the active material from falling off from the electrode plate during manufacture and use.

(従来の技術〕 従来の鉛蓄電池の極板製造においては、極板製造時及び
電池組立時の活物質の極板からの脱落、あるいは使用時
の活物質の崩壊を防止するため、鉛粉の調製、練合、熟
成、化成等の各工程の各条件を厳密に制御して、活物質
粒子集合体の凝集構造及び集電体格子と活物質粒子集合
体の結合構造を形成せしめている。通常他の電池系にお
いては上記目的を達成するため、主として有機化合物よ
り成る各種の結着剤を活物質中に添加して、活物質粒子
間及び活物質粒子間の結合を形成せしめている。しかし
鉛蓄電池においては、電解質として硫酸を使用すること
、及び電池電圧が通常のアルカリ電解液型電池に比べて
高いこと、特に正極においては充電時に水素極基準で1
.7V程度の高い電位で作動するため、通常使用されて
いる結着剤は酸化劣化により変成し、電池特性に悪影響
を及ぼすため、活物質を練合、熟成、化成する工程を制
御して活物質粒子間及び格子活物質問に結合を形成させ
ている。しかし結合形成に界在する物質が主として塩基
性硫酸鉛、硫酸鉛等の無機化合物であり、結合部の可塑
性に関しては充分なものとは言い難い。このため電池製
造工程における活物質の極板からのはく離や充放電を繰
り返すと活物質が泥状化して極板より脱落する等の問題
があった。
(Prior art) In the production of conventional lead-acid battery plates, lead powder is used to prevent the active material from falling off the plate during plate manufacture and battery assembly, or to prevent the active material from collapsing during use. The conditions of each process such as preparation, kneading, ripening, and chemical formation are strictly controlled to form an agglomerated structure of the active material particle aggregate and a bonding structure of the current collector lattice and the active material particle aggregate. In order to achieve the above-mentioned purpose in other battery systems, various binders mainly consisting of organic compounds are usually added to the active material to form bonds between the active material particles and between the active material particles. However, in lead-acid batteries, sulfuric acid is used as the electrolyte, and the battery voltage is higher than that of normal alkaline electrolyte batteries.
.. Because it operates at a high potential of about 7V, the binders normally used are denatured by oxidative deterioration and have a negative effect on battery characteristics. Bonds are formed between particles and between lattice active materials. However, the substances present in the bond formation are mainly inorganic compounds such as basic lead sulfate and lead sulfate, and it cannot be said that the plasticity of the bond is sufficient. For this reason, there have been problems such as the active material peeling off from the electrode plate in the battery manufacturing process and the active material becoming muddy and falling off the electrode plate when charging and discharging are repeated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は極板の機械的強度の向上及び充放電時の
活物質の泥状化による極板からの脱落を防止するための
活物質組成物を提供することにある。
An object of the present invention is to provide an active material composition that improves the mechanical strength of an electrode plate and prevents the active material from falling off from the electrode plate due to becoming muddy during charging and discharging.

[課題を解決するための手段] 上記目的を達成するために、結着作用を持つ各種の有機
化合物を探索した。上述したように鉛蓄電池においては
電解液として硫酸を使用し、作動時には特に正極は水素
極基準で1.7v以上の電位にさらされるため、はとん
どすべての有機化合物は酸化劣化を受けると考えられる
。従って有機化合物を結着剤として添加した場合には、
その酸化劣化によってどのような化合物が生成し、これ
らの化合物が電池特性にどのような影響を与えるかを十
分に検討する必要がある。
[Means for Solving the Problems] In order to achieve the above object, various organic compounds having a binding effect were searched for. As mentioned above, lead-acid batteries use sulfuric acid as the electrolyte, and during operation, the positive electrode in particular is exposed to a potential of 1.7 V or more based on the hydrogen electrode, so almost all organic compounds are subject to oxidative deterioration. Conceivable. Therefore, when an organic compound is added as a binder,
It is necessary to thoroughly examine what kind of compounds are produced by the oxidative deterioration and how these compounds affect battery characteristics.

結着剤として知られている化合物の中に化学式(2)で
示される多価アルコールがある。
Among the compounds known as binders, there is a polyhydric alcohol represented by the chemical formula (2).

−(−C−・−・・−C−)T     ・・・・・・
・・・化学式(2)多価アルコールは一般に硫酸中酸化
雰囲気下で容易に脱水反応を起こし不飽和炭化水素を生
成する。
-(-C-・-・・-C-)T ・・・・・・
...The polyhydric alcohol of chemical formula (2) generally easily undergoes a dehydration reaction in an oxidizing atmosphere in sulfuric acid to produce unsaturated hydrocarbons.

しかし多価アルコールの骨格が直鎖状であれば、酸化に
よる脱水素反応の進行によってどのような縮合化合物が
生成するかは、酸化の条件等に依存し、オイル状あるい
はタール状の物質が生成する惧れがある。
However, if the skeleton of the polyhydric alcohol is linear, the type of condensation compound produced by the progress of the dehydrogenation reaction through oxidation depends on the oxidation conditions, etc., and oil-like or tar-like substances may be produced. There is a risk that this will happen.

上記の直鎖状多価アルコールに類似した構造を持つ有機
化合物として糖類がある。化学式(3)で示され名代表
的なIi! (単W類)であるグルコース’  (C6
H1206) は、 0HHH 化学式(4)で示される環状異性体を持ち、さらにこれ
が縮合した環状多W類も知られている。
Saccharides are organic compounds with structures similar to the above-mentioned linear polyhydric alcohols. The representative Ii! is represented by the chemical formula (3). (Single W class) Glucose' (C6
H1206) has a cyclic isomer represented by 0HHH chemical formula (4), and cyclic multi-Ws in which this is condensed are also known.

この環状多W類を結着剤として鉛粉等の原料粉末と混合
し、通常の工程に従って極板を製造することにより、機
械的強度及び充放電耐久性に優れた極板を作製すること
ができた。
By mixing this annular polyhydric compound as a binder with raw material powder such as lead powder and manufacturing an electrode plate according to a normal process, it is possible to produce an electrode plate with excellent mechanical strength and charge/discharge durability. did it.

〔作用〕[Effect]

環状多糖類は重合度を調16することにより、分子量を
変えることができ、原料鉛粉の練合及び格子への充填に
最適な粘度の溶液を得ることができる。望ましい分子量
に関しては原料鉛粉の性状あるいは練合条件、充填条件
に対応して適宜選定することができる。練合工程で環状
多糖類を含む液相が原料鉛粉粒子の周囲に皮膜を形成し
、この構造は熟成工程を経て液相が消失すると、高分子
量の環状多糖類が鉛粉粒子を結着する構造へ変化する。
The molecular weight of the cyclic polysaccharide can be changed by adjusting the degree of polymerization, and a solution with an optimal viscosity for kneading the raw lead powder and filling the grid can be obtained. The desired molecular weight can be appropriately selected depending on the properties of the raw material lead powder, kneading conditions, and filling conditions. During the kneading process, a liquid phase containing cyclic polysaccharides forms a film around the raw lead powder particles, and when the liquid phase disappears during the aging process, the high molecular weight cyclic polysaccharides bind the lead powder particles. The structure changes to

環状多I!類を結着剤として使用した場合、硫酸中酸化
雰囲気では容易に脱水縮合反応を起こす。
Cyclic multi I! When used as a binder, a dehydration condensation reaction easily occurs in an oxidizing atmosphere in sulfuric acid.

しかし上記多価アルコールの場合と異なるのは、環状多
糖類はすでに分子中に環状構造を持っており、脱水縮合
反応が進行すると環状構造が互いに連結した二次元網目
構造を形成し、非晶質炭素に類似した構造をとる。
However, unlike the polyhydric alcohols mentioned above, cyclic polysaccharides already have a cyclic structure in their molecules, and as the dehydration condensation reaction progresses, the cyclic structures form a two-dimensional network structure that is connected to each other, resulting in an amorphous state. It has a structure similar to carbon.

従って充放電を繰返すと環状多糖類は次第に三次元網目
構造を持つ非晶質炭素に類似した物質へ転化する。この
変化は三次元網目構造の形成により、活物質粒子間の結
着をさらに強化するとともに、導電性の炭素状網目構造
が集電作用を分担できるため、電池特性を損なうおそれ
がない。
Therefore, when charging and discharging are repeated, the cyclic polysaccharide gradually converts into a substance similar to amorphous carbon having a three-dimensional network structure. This change further strengthens the bond between the active material particles due to the formation of a three-dimensional network structure, and since the conductive carbon-like network structure can share the current collection function, there is no risk of impairing battery characteristics.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

鉛粉100重量部に対して、β−1,3−グルカン(重
合度400)5重量部混合して、水及び希硫酸と練合し
、以下通常の手順に従って正極を作製した。負極は従来
法に従って作製し、電池を組立てた、0.2CAカント
、2.4■充電、0.3CTJ!1.電1.7vカント
で充放電試験を行ったところ、300サイクル経過時点
で容量は初M値の84%であった。これに対して従来組
成の正極及び負極を組合せた電池を、同じ条件で試験し
たところ、300サイクル経過時点で容量は初期値の6
3%であった。
5 parts by weight of β-1,3-glucan (degree of polymerization 400) was mixed with 100 parts by weight of lead powder, and the mixture was kneaded with water and dilute sulfuric acid, and a positive electrode was produced according to the following normal procedure. The negative electrode was prepared according to the conventional method, and the battery was assembled, 0.2 CA cant, 2.4 ■ charge, 0.3 CTJ! 1. When a charge/discharge test was conducted at a current of 1.7 V, the capacity was 84% of the initial M value after 300 cycles. On the other hand, when a battery with a conventional composition of positive and negative electrodes was tested under the same conditions, after 300 cycles, the capacity was 60% of the initial value.
It was 3%.

本実施例によれば、β−1,3−グルカンの結着作用に
より活物質粒子間の結合を強め、サイクル使用時の寿命
を向上させることができた。
According to this example, the binding effect of β-1,3-glucan strengthened the bond between active material particles, and the life during cycle use could be improved.

〔発明の効果] 本発明によれば、鉛蓄電池の活物質原料中に環状多糖類
を添加したことにより、練合、熟成工程において環状多
糖類の結着作用により、鉛化合物粒子間の結合を強化で
きるので極板の機械的強度を向上させることができる。
[Effects of the Invention] According to the present invention, by adding a cyclic polysaccharide to the active material raw material of a lead-acid battery, the bonding between lead compound particles is prevented by the binding action of the cyclic polysaccharide during the kneading and aging steps. Since it can be strengthened, the mechanical strength of the electrode plate can be improved.

さらに化成を経て充放電条件下で環状多PIJは三次元
網目構造を持つ炭素状物質へ転化して、活物質粒子間の
結合を強化するため、充放電を繰返した時の活物質粒子
の極板からの脱落(泥状化)を抑制することができる。
Furthermore, through chemical formation, the annular poly-PIJ converts into a carbon-like material with a three-dimensional network structure under charge/discharge conditions and strengthens the bond between active material particles. Falling off from the board (sludge formation) can be suppressed.

さらにこの炭素状物質の三次元網目構造は集電を分担す
ることができ、電池容量を向上させることができる。
Furthermore, the three-dimensional network structure of this carbonaceous material can share in current collection and can improve battery capacity.

Claims (1)

【特許請求の範囲】  活物質原料中に化学式(1)で示される環状多糖類を
0.1ないし10wt%添加したことを特徴とする鉛蓄
電池活物質組成物。 ▲数式、化学式、表等があります▼・・・化学式(1)
[Scope of Claims] A lead-acid battery active material composition characterized in that 0.1 to 10 wt% of a cyclic polysaccharide represented by chemical formula (1) is added to an active material raw material. ▲There are mathematical formulas, chemical formulas, tables, etc.▼...Chemical formula (1)
JP2333746A 1990-11-30 1990-11-30 Lead accumulator battery active material composite Pending JPH04206355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2333746A JPH04206355A (en) 1990-11-30 1990-11-30 Lead accumulator battery active material composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2333746A JPH04206355A (en) 1990-11-30 1990-11-30 Lead accumulator battery active material composite

Publications (1)

Publication Number Publication Date
JPH04206355A true JPH04206355A (en) 1992-07-28

Family

ID=18269497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2333746A Pending JPH04206355A (en) 1990-11-30 1990-11-30 Lead accumulator battery active material composite

Country Status (1)

Country Link
JP (1) JPH04206355A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448017B1 (en) * 2002-09-18 2004-09-08 한국타이어 주식회사 An electrode composition for lead storage battery
JP2006049156A (en) * 2004-08-06 2006-02-16 Shin Kobe Electric Mach Co Ltd Manufacturing method of paste-like active material for positive electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448017B1 (en) * 2002-09-18 2004-09-08 한국타이어 주식회사 An electrode composition for lead storage battery
JP2006049156A (en) * 2004-08-06 2006-02-16 Shin Kobe Electric Mach Co Ltd Manufacturing method of paste-like active material for positive electrode

Similar Documents

Publication Publication Date Title
US5302476A (en) High performance positive electrode for a lead-acid battery
JP5194729B2 (en) Lead acid battery
CN102637861B (en) Carbon cream, carbon negative electrode of battery, preparation method thereof and super lead-acid battery
CN102306782A (en) Lithium iron phosphate battery anode and preparation method thereof
CN108365176A (en) A kind of preparation method and lithium ion battery of lithium ion battery negative electrode
JPH04206355A (en) Lead accumulator battery active material composite
JPH0243309B2 (en)
JP2000251896A (en) Lead-acid battery and its manufacture
JP2007165273A (en) Anode for lead acid storage battery, and the lead acid battery using the anode
JP2000048814A (en) Positive electrode plate for lead-acid battery
JP2000113885A (en) Negative electrode for lithium secondary battery
JP2001155723A (en) Sealed lead acid storage battery and method of fabricating it
JP2001210320A (en) Lead-acid storage battery and its manufacturing method
JP6775764B2 (en) Lead-acid battery
JPH09147872A (en) Negative electrode plate for lead-acid battery
JP2002100347A (en) Lead-acid battery
JPH05242887A (en) Manufacture of electrode plate for lead-acid battery
JP2000048812A (en) Positive electrode plate for lead-acid battery
JPS58197662A (en) Pasted positive electrode for lead storage battery
JPS59173956A (en) Manufacture of pasted lead plate
JPS6161228B2 (en)
JP2002042794A (en) Sealed lead-acid battery
JPH0982317A (en) Negative plate for lead-acid battery
JP2815439B2 (en) Sealed lead-acid battery
JPH09147873A (en) Negative electrode plate for lead-acid battery