JPH04206167A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH04206167A
JPH04206167A JP2328166A JP32816690A JPH04206167A JP H04206167 A JPH04206167 A JP H04206167A JP 2328166 A JP2328166 A JP 2328166A JP 32816690 A JP32816690 A JP 32816690A JP H04206167 A JPH04206167 A JP H04206167A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
negative electrode
electrolyte
nonaqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2328166A
Other languages
Japanese (ja)
Other versions
JP3154719B2 (en
Inventor
Norihito Kurisu
栗栖 憲仁
Kuniaki Inada
稲田 圀昭
Takahisa Osaki
隆久 大崎
Norio Takami
則雄 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP32816690A priority Critical patent/JP3154719B2/en
Publication of JPH04206167A publication Critical patent/JPH04206167A/en
Application granted granted Critical
Publication of JP3154719B2 publication Critical patent/JP3154719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a secondary battery having an excellent charge/discharge cycle life and a high capacity by using a material obtained by mixing a prescribed mix volume of acetonitrile with one kind among ethylene carbonate, propylene carbonate or butylene carbonate as nonaqueous solvent. CONSTITUTION:A carbonaceous material of a negative electrode 3 in a nonaqueous electrolyte secondary battery is made to bear Li thereon, and a chalcogen compound such as Mn oxide is contained in a positive electrode 1 as an active material, and hexafluoride lithium phosphate is used as nonaqueous electrolyte after about 0.5-1.5 mole/l of it is dissolved into nonaqueous solution as electrolyte. The nonaqeous solution is formed by mixing acetonitrile of about 10-60volume% with one kind among ethylene carbonate, propylene carbonate and butylene carbonate. At this time, diameter of an Li ion solvation complex in the nonaqueous electrolyte can be reduced. Thereby, the complex can infiltrate easily between layers of a carbonic material of the negative electrode 3 so that storage/emission volume of Li ion can be increased at the negative electrode. Moreover, since there is no reactivity between the nonaqueous solution and the carbonic material, a structure of the carbonic material can be kept in an excellent condition so that the secondary battery having high capacity can be made.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は非水電解液二次電池に関し、特に非水電解液を
改良した非水電解液二次電池に係る。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Application Field) The present invention relates to a nonaqueous electrolyte secondary battery, and particularly to a nonaqueous electrolyte secondary battery with an improved nonaqueous electrolyte.

(従来の技術) 近年、各種の電子機器の小型化、軽量化に伴い、その電
源として高エネルギー密度の二次電池の要求が高まって
いる。このため、リチウム等の軽金属を負極活物質とす
る非水電解液二次電池か高エネルギー密度の二次電池と
して注目されている。
(Prior Art) In recent years, with the miniaturization and weight reduction of various electronic devices, the demand for high energy density secondary batteries as their power sources has increased. For this reason, it is attracting attention as a nonaqueous electrolyte secondary battery or a high energy density secondary battery that uses a light metal such as lithium as a negative electrode active material.

前記非水電解液二次電池としては、負極にリチウムを用
い、電解液としてプロピレンカーボネ−) (PC) 
、1.2−ジメトキシエタン(DME)、γ−ブチロラ
クトン(γ−BL)テトラヒドロフラン(THF)など
の非水溶媒中にLiCjl)04、L iB F 4 
、L I A s F 6 、L IP F b等の電
解質を溶解したものを用い、正極活物質として主にTI
 S2 、MOS2 、V20s 、V6013等のリ
チウムとの間でトポケミカル反応するカルコゲン化合物
を用いたものか各種研究されている。
The non-aqueous electrolyte secondary battery uses lithium for the negative electrode and propylene carbonate (PC) as the electrolyte.
, 1,2-dimethoxyethane (DME), γ-butyrolactone (γ-BL) in a non-aqueous solvent such as tetrahydrofuran (THF), LiCjl) 04, LiB F 4
, L I As F 6 , L I P F b, etc. are used, and TI is mainly used as the positive electrode active material.
Various studies have been conducted on methods using chalcogen compounds that undergo topochemical reactions with lithium, such as S2, MOS2, V20s, and V6013.

しかしながら、上述した非水電解液二次電池は現在、未
だ実用化されていない。この主な理由は、充放電効率が
低く、しかも充放電回数(サイクル)寿命が短いためで
ある。この原因は、負極リチウムと電解液との反応によ
るリチウムの劣化によるところか大きいと考えられてい
る。即ち、放電時にリチウムイオンとして電解液中に溶
解したリチウムは充電時に析出する際に溶媒と反応し、
その表面か一部不活性化される。このため、充放電を繰
返していくと、デンドライト状(樹枝状)のリチウムが
発生したり、小球状に析出したりしてリチウムか集電体
より脱離するなどの現象を生じる。
However, the above-mentioned non-aqueous electrolyte secondary battery has not yet been put into practical use. The main reason for this is that the charging/discharging efficiency is low and the number of charging/discharging cycles (cycles) life is short. This is thought to be largely due to deterioration of lithium due to the reaction between the negative electrode lithium and the electrolyte. In other words, lithium dissolved in the electrolyte as lithium ions during discharging reacts with the solvent when precipitated during charging,
Part of its surface is inactivated. Therefore, when charging and discharging are repeated, phenomena such as dendrite-like (dendritic) lithium are generated, lithium is precipitated into small spheres, and lithium is detached from the current collector.

上述したリチウムの劣化は、電解質と非水溶媒との組み
合わせにも大きな影響を受けるため、その最適な組合わ
せが検討されている。例えば、非水溶媒として種々の混
合溶媒か検討されている中で、エチレンカーボネートと
2−メチルテトラヒドロフランの混合溶媒はリチウムに
対して安定な溶媒であることか知られている。かかる混
合溶媒の場合では、電解質としてのL i A S F
 bを1.5モル/g溶解した非水電解液で高いリチウ
ムの充放電効率が得られることが報告されている(El
ectr。
The above-mentioned deterioration of lithium is also greatly affected by the combination of electrolyte and nonaqueous solvent, so the optimal combination is being studied. For example, among various mixed solvents being considered as non-aqueous solvents, a mixed solvent of ethylene carbonate and 2-methyltetrahydrofuran is known to be a stable solvent for lithium. In the case of such a mixed solvent, L i A S F as the electrolyte
It has been reported that high lithium charge/discharge efficiency can be obtained with a non-aqueous electrolyte in which 1.5 mol/g of lithium b is dissolved (El
ectr.

−chei、Acta、30.1715(1985))
 、  しかしながら、L、1AsF、は毒性の点で問
題がある。このため、LiAsFbと同程度にモル導電
率か高い六フッ化リン酸リチウム(L iP F 6)
や硼フッ化リチウム(L iB F 4)を用いること
が検討されている。しかしながら、L I P F 6
やL I B F <は化学的安定性か劣る等の問題が
あるため、これらの電解質を溶解した非水電解液では十
分なリチウムの充放電効率が得難く、がっ貯蔵特性も劣
るという問題がある。
-chei, Acta, 30.1715 (1985))
However, L,1AsF, has problems in terms of toxicity. For this reason, lithium hexafluorophosphate (L iP F 6) has a molar conductivity comparable to that of LiAsFb.
The use of lithium borofluoride (L iB F 4 ) is being considered. However, L I P F 6
and L I B F < have problems such as poor chemical stability, so it is difficult to obtain sufficient lithium charge/discharge efficiency with non-aqueous electrolytes in which these electrolytes are dissolved, and the storage characteristics are also poor. There is.

このようなことから、リチウムイオンを吸蔵・放出する
ことができる炭素質物にリチウムを担持させたものを負
極として用いた非水電解液二次電池が提案されている。
For this reason, a non-aqueous electrolyte secondary battery has been proposed in which a carbonaceous material capable of intercalating and deintercalating lithium ions carries lithium thereon as a negative electrode.

かかる二次電池によれば、リチウムと電解液との反応性
を改善したり、デンドライト析出等による負極劣化を解
消できる。
According to such a secondary battery, it is possible to improve the reactivity between lithium and the electrolytic solution, and to eliminate negative electrode deterioration due to dendrite precipitation and the like.

シカシナ力ら、前記炭素質物にリチウムを担持させた負
極を用いてもリチウムイオンの吸蔵・放出量か小さいた
め負極比容量(m A h / g )か小さくなる。
Even if a negative electrode in which lithium is supported on the carbonaceous material is used, the amount of intercalation and desorption of lithium ions is small, so the negative electrode specific capacity (mAh/g) is small.

このため、十分な電池容量と充放電サイクル寿命とを同
時に得ることが困難であった。
For this reason, it has been difficult to simultaneously obtain sufficient battery capacity and charge/discharge cycle life.

(発明か解決しようとする課題) 本発明は従来の問題点を解決するためになされたもので
、充放電サイクル寿命に優れ、かつ高容量の非水溶媒二
次電池を提供しようとするものである。
(Invention or Problem to be Solved) The present invention was made to solve the problems of the conventional art, and aims to provide a non-aqueous solvent secondary battery with excellent charge/discharge cycle life and high capacity. be.

[発明の構成コ (課題を解決するための手段) 本発明は、炭素質物にリチウムを担持させた負極と、カ
ルコゲン化合物を活物質とする正極と、六フッ化リン酸
リチウム(L i P F b )を電解質として非水
溶媒に溶解した非水電解液とを具備する非水電解液二次
電池において、前記非水溶媒が、エチレンカーボネート
と、プロピレンカーボネート及びブチレンカーボネート
の少なくとも1種と、アセトニトリルとの混合物からな
り、がっ前記アセトニトリルの配合量を10〜60体積
%としたことを特徴とする非水電解液二次電池である。
[Configuration of the Invention (Means for Solving the Problems) The present invention comprises a negative electrode in which lithium is supported on a carbonaceous material, a positive electrode in which a chalcogen compound is used as an active material, and lithium hexafluorophosphate (L i P F b) A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte dissolved in a non-aqueous solvent as an electrolyte, wherein the non-aqueous solvent contains ethylene carbonate, at least one of propylene carbonate and butylene carbonate, and acetonitrile. This is a non-aqueous electrolyte secondary battery comprising a mixture of acetonitrile and acetonitrile in an amount of 10 to 60% by volume.

前記負極は、例えば以下のように作製することができる
The negative electrode can be manufactured, for example, as follows.

まず、1種又は2種以上の有機化合物を非酸化性雰囲気
中、1000〜3000’C12〜3時間で焼成・熱分
解し炭素化することにより炭素質物を得る。
First, a carbonaceous material is obtained by carbonizing one or more organic compounds by firing and thermally decomposing them at 1000 to 3000'C for 12 to 3 hours in a non-oxidizing atmosphere.

コノ工程において、前記有機化合物の他にコークスナど
を用いて炭素質物を得てもよい。
In the cono step, a carbonaceous material may be obtained using coke or the like in addition to the organic compound described above.

次いで、前記炭素質物を所定粒径(例えば、平均粒径2
0〜50μm)に粉砕して粉末とし、この粉末と結着材
とを所定量比(例えば、重量比て8o〜90:20〜1
0)で混練する。この混線物をペレット又はシートに圧
縮・成形することにより、前記炭素質物を比較的多孔質
な担持体とする。つづいて、所定濃度のリチウムイオン
を含有する電解液中に前記炭素質物を陽極とし、金属リ
チウムを陰極として浸漬して電解処理する。この電解処
理により、前記炭素質物にリチウムを担持させた負極が
得られる。なお、前記電解処理以外の化学的、物理的、
電気化学的な方法により前記炭素質物にリチウムを担持
させてもよい。また、必要に応じて前記炭素質物にナト
リウム、アルミニウム等のアルカリ金属を更に担持させ
てもよい。
Next, the carbonaceous material has a predetermined particle size (for example, an average particle size of 2
0 to 50 μm) to form a powder, and the powder and the binder are mixed in a predetermined ratio (e.g., 80 to 90:20 to 1 by weight).
0). By compressing and molding this mixed material into pellets or sheets, the carbonaceous material is made into a relatively porous carrier. Subsequently, the carbonaceous material is immersed in an electrolytic solution containing lithium ions at a predetermined concentration as an anode and metal lithium is used as a cathode for electrolytic treatment. Through this electrolytic treatment, a negative electrode in which lithium is supported on the carbonaceous material is obtained. In addition, chemical, physical, and
Lithium may be supported on the carbonaceous material by an electrochemical method. Further, if necessary, the carbonaceous material may further support an alkali metal such as sodium or aluminum.

なお、このようなリチウム等の活物質は、前記炭素質物
に対してばかりでなく、正極に担持させてもよい。
Note that the active material such as lithium may be supported not only on the carbonaceous material but also on the positive electrode.

前述した炭素質物の原料となる有機化合物としては、例
えば、エポキシ樹脂;フェノール樹脂:ポリアクリロニ
トリル、ポリ (α−ハロゲン化アクリロニトリル)等
のアクリル樹脂;ポリ塩化ビニリデン、ポリ塩素化塩化
ビニル等の/’%ロゲン化ビエビニル樹脂;ポリアミド
樹脂リアセチレン、ポリ(p−フェニレン)等の共役系
樹脂;ナフタレン、フェナントレン、アントラセン、ト
リフェニレン、ピレン、クリセン、ナフタレン、ピセン
、ペリレン、ペンタフェン、ペンタセン等の単素環炭化
水素化合物が互いに2個以上縮合してなる縮合多環炭化
水素化合物、又は、これら化合物のカルボン酸、カルボ
ン酸無水物、カルボン酸イミドのような誘導体、これら
各化合物の混合物を主成分とする各種のピッチ、インド
ール、イソインドール、キノリン、イソキノリン、キノ
キサリン、フタラジン、カルバゾール、アクリジン、フ
ェナジン、ツェナトリジン等の複素環化合物が互いに少
なくとも2個以上結合するか、或いは1個以上の単素環
炭化水素化合物と1個以上の複素環化合物が結合してな
る縮合複素環化合物、これら化合物のカルボン酸、カル
ポジ酸無水物、カルポジ酸イミドのような誘導体2ヘン
センの1.2.4゜5−テトラカルボン酸、その二無水
物又はそのジイミド、なとを挙げることができる。
Examples of the organic compounds that are raw materials for the carbonaceous materials mentioned above include epoxy resins; phenol resins: acrylic resins such as polyacrylonitrile and poly(α-halogenated acrylonitrile); polyvinylidene chloride, polychlorinated vinyl chloride, etc. % rogenated bivinyl resin; Conjugated resin such as polyamide resin lyacetylene, poly(p-phenylene); Monocyclic carbonization such as naphthalene, phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthalene, picene, perylene, pentaphene, pentacene, etc. Various types of condensed polycyclic hydrocarbon compounds formed by condensing two or more hydrogen compounds, derivatives of these compounds such as carboxylic acids, carboxylic acid anhydrides, and carboxylic acid imides, and mixtures of these compounds as main components. At least two or more heterocyclic compounds such as pitch, indole, isoindole, quinoline, isoquinoline, quinoxaline, phthalazine, carbazole, acridine, phenazine, zenatridine, etc. are bonded to each other, or with one or more monocyclic hydrocarbon compounds. Fused heterocyclic compounds formed by bonding one or more heterocyclic compounds, derivatives of these compounds such as carboxylic acids, carposiic anhydrides, carposiimides, 2 Hensen's 1.2.4°5-tetracarboxylic acids, Examples include its dianhydride or its diimide.

前記正極の活物質として用いられるカルコケリ化合物と
しては、例えば二酸化マンガンやリチウムマンガン複合
酸化物などのマンガン酸化物、非晶質五酸化バナジウム
、二酸化チタン、二硫化モリブデン、セレン化モリブデ
ン、リチウムコバルト複合酸化物、リチウムコバルトニ
ッケル複合酸化物等を挙げることかできる。
Examples of the chalcochemistry compound used as the active material of the positive electrode include manganese oxides such as manganese dioxide and lithium manganese composite oxide, amorphous vanadium pentoxide, titanium dioxide, molybdenum disulfide, molybdenum selenide, and lithium cobalt composite oxide. and lithium cobalt nickel composite oxide.

前記非水電解液中の六フッ化リン酸リチウムの溶解量は
、0.5〜1.5モル/jllとすることが望ましい。
The amount of lithium hexafluorophosphate dissolved in the nonaqueous electrolyte is preferably 0.5 to 1.5 mol/jll.

この理由は、前記範囲を逸脱すると導電率の低下及びリ
チウムの充放電効率の低下を招く恐れがある。
The reason for this is that if it is out of the above range, there is a risk of a decrease in electrical conductivity and a decrease in lithium charging/discharging efficiency.

前記非水電解液の非水溶媒におけるアセトニトリルの配
合量を限定した理由は、その量を10体積%未病にする
と電解液中のリチウムイオンの移動性等が低下し、一方
、その量が60体積%を越えると負極劣化等を招く。更
に、前記アセトニトリルの配g lは、20〜50体積
%とすることがより好ましい。
The reason for limiting the amount of acetonitrile in the non-aqueous solvent of the non-aqueous electrolyte is that if the amount is 10% by volume, the mobility of lithium ions in the electrolyte will decrease. Exceeding this volume % will lead to deterioration of the negative electrode, etc. Furthermore, it is more preferable that the proportion of acetonitrile is 20 to 50% by volume.

また、前記非水電解液の非水溶媒におけるエチレンカー
ボネートの配合量、及びプロピレンカーボネート或いは
ブチレンカーボネートの配合量は、それぞれ20〜70
体積%とすることか望ましい。
The amount of ethylene carbonate and the amount of propylene carbonate or butylene carbonate in the nonaqueous solvent of the nonaqueous electrolyte are each 20 to 70%.
It is preferable to use volume %.

上述した組成の非水電解液は、水分等の不純物を除去し
て高純度化するために、電池容器内に収容する前に予め
不溶性吸着材に接触させて処理するか、又は通電処理す
るか、或いはこれらの両方の処理を施すことが望ましい
The non-aqueous electrolyte having the above-mentioned composition may be treated by contacting it with an insoluble adsorbent or energized before being placed in the battery container in order to remove impurities such as moisture and achieve high purity. , or both of these treatments are desirable.

前記不溶性吸着材による処理としては、例えば前記非水
電解液中に活性アルミナや無機物のモレキュラーシーブ
等からなる該電解液と反応しない不溶性吸着材を加えて
攪拌した後、不溶性吸着材を濾過等により分離する方法
、或いは前記不溶性吸着剤を充填したカラムに前記非水
電解液を流通させる方法を採用し得る。
As for the treatment with the insoluble adsorbent, for example, an insoluble adsorbent that does not react with the electrolytic solution, such as activated alumina or an inorganic molecular sieve, is added to the non-aqueous electrolytic solution and stirred, and then the insoluble adsorbent is removed by filtration or the like. A method of separation or a method of flowing the non-aqueous electrolyte through a column filled with the insoluble adsorbent can be adopted.

前記通電処理としては、例えば前記非水電解液中にリチ
ウムからなる電極を陽極として浸漬し、かつリチウム又
はリチウム以外の金属からなる電極を陰極として浸漬し
た後、これら陽極及び陰極の間に定電流又は定電圧で連
続波もしくはパルスを印加して陰極上にリチウムを析出
又は析出と溶解とを繰り返す方法を採用し得る。
The energization treatment may be performed, for example, by immersing an electrode made of lithium as an anode in the non-aqueous electrolyte and immersing an electrode made of lithium or a metal other than lithium as a cathode, and then applying a constant current between the anode and the cathode. Alternatively, a method may be adopted in which lithium is deposited on the cathode by applying continuous waves or pulses at a constant voltage, or the deposition and dissolution are repeated.

(作用) 本発明によれば、炭素質物にリチウムを担持させた負極
と、カルコケリ化合物を活物質とする正極と、六フッ化
リン酸リチウムを電解質として非水溶媒に溶解した非水
電解液とを具備する非水電解液二次電池において、前記
非水溶媒が、エチレンカーボネートと、プロピレンカー
ボネート及びブチレンカーボネートの少なくとも1種と
、アセトニトリルとの混合物からなり、かつ前記アセト
ニトリルの配合量を10〜60体積%としたことによっ
て、前記非水電解液中のリチウムイオンの溶媒和錯体の
径を小さくできる。このため、前記錯体か負極の炭素質
物の層間等に侵入し易くなり、該負極におけるリチウム
イオンの吸蔵・放出量を多くすることができる。しかも
前記非水溶媒と前記炭素質物との間には反応性がないた
め該炭素質物の構造を良好に維持できる。その結果、高
容量化を実現できる。
(Function) According to the present invention, a negative electrode in which lithium is supported on a carbonaceous material, a positive electrode in which a chalcochemistry compound is used as an active material, and a non-aqueous electrolyte in which lithium hexafluorophosphate is dissolved in a non-aqueous solvent as an electrolyte. In the nonaqueous electrolyte secondary battery, the nonaqueous solvent is made of a mixture of ethylene carbonate, at least one of propylene carbonate and butylene carbonate, and acetonitrile, and the amount of acetonitrile is 10 to 60%. By setting it as volume %, the diameter of the solvated complex of lithium ions in the non-aqueous electrolyte can be reduced. Therefore, the complex easily penetrates into the interlayers of the carbonaceous material of the negative electrode, and the amount of lithium ions absorbed and released in the negative electrode can be increased. Furthermore, since there is no reactivity between the non-aqueous solvent and the carbonaceous material, the structure of the carbonaceous material can be maintained well. As a result, high capacity can be achieved.

また、充放電サイクル寿命の高い二次電池を得るための
非水電解液における非水溶媒の条件としては、■リチウ
ムとの電子移動反応性が低いこと、■リチウム塩からな
る電解質(L i P F b )のイオン解離性か高
いこと、■リチウムイオンの移動性に影響する粘度が低
いこと、■電解質(LiPF’6)を安定的に溶解でき
ることが挙げられる。前記エチレンカーボネート、プロ
ピレンカーボネート及びブチレンカーボネートは、リチ
ウムとの反応性が低く、しかも高誘電率でイオン解離性
が高く、かつ前記電解質を安定的に溶解できるという利
点があるものの粘度か高いという欠点がある。このよう
なことから、前記エチレンカーボネートとプロピレンカ
ーボネート及びブチレンカーボネートの少なくとも1種
とに、低粘度のアセトニトリルを10〜60体積%の割
合で配合することにより、前記エチレンカーボネート等
の利点を損なうことなく低粘度化して前記■〜■の条件
を十分に満足でき、充放電サイクル寿命を向上できる。
In addition, the conditions for the non-aqueous solvent in the non-aqueous electrolyte to obtain a secondary battery with a long charge-discharge cycle life are: ■ Low electron transfer reactivity with lithium; ■ Electrolyte consisting of lithium salt (L i P (2) low viscosity that affects the mobility of lithium ions; and (2) ability to stably dissolve the electrolyte (LiPF'6). The ethylene carbonate, propylene carbonate, and butylene carbonate have the advantage of having low reactivity with lithium, high dielectric constant, high ionic dissociation, and being able to stably dissolve the electrolyte, but have the disadvantage of high viscosity. be. For this reason, by blending low-viscosity acetonitrile with the ethylene carbonate and at least one of propylene carbonate and butylene carbonate at a ratio of 10 to 60% by volume, the advantages of the ethylene carbonate, etc. are not lost. The viscosity can be lowered to fully satisfy the conditions (1) to (3) above, and the charge/discharge cycle life can be improved.

更に、前記アセトニトリルは酸化電位が高く4.8Vま
で充電しても分解されない。また、電解質としての六フ
ッ化リン酸リチウム(L iP F 6)も酸化電位が
高<  4.8Vまで充電しても分解されない。このた
め、電池電圧3.0〜4.5vの間で充放電を繰り返し
ても前記非水電解液は変質することなく優れた安定性を
有する。
Furthermore, the acetonitrile has a high oxidation potential and is not decomposed even when charged to 4.8V. In addition, lithium hexafluorophosphate (L iP F 6 ) as an electrolyte is not decomposed even when charged to a high oxidation potential of <4.8V. Therefore, even if the battery is repeatedly charged and discharged at a battery voltage of 3.0 to 4.5V, the non-aqueous electrolyte does not change in quality and has excellent stability.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

実施例1 まず、二酸化マンガン60gと炭酸リチウム12.7g
とを乳鉢にて充分に混合、粉砕した(モル比率でMn:
Li−2:1)。つづいて、これを空気中、850℃で
5時間加熱処理して冷却した後、再度空気中、850℃
で3時間加熱処理を行なった。
Example 1 First, 60 g of manganese dioxide and 12.7 g of lithium carbonate
were thoroughly mixed and ground in a mortar (molar ratio of Mn:
Li-2:1). Next, this was heated in air at 850°C for 5 hours, cooled, and then heated again in air at 850°C.
Heat treatment was performed for 3 hours.

得られた生成物をX線回折によって調べたところ、Li
Mn2O4相か生成していることか確認された。ひきつ
づき、得られた生成物(正極活物質)90重量部と、導
電材としてのアセチレンブラック10重量部と、結着材
としてのポリテトラフルオロエチレン5重量部とを混練
して正極合剤を調製した。この合剤を圧力約2トン/ 
c m 2の条件で加圧成形し、更に200℃の真空中
で乾燥して直径15.7m mの正極を作製した。
When the obtained product was examined by X-ray diffraction, Li
It was confirmed that a Mn2O4 phase was generated. Subsequently, 90 parts by weight of the obtained product (positive electrode active material), 10 parts by weight of acetylene black as a conductive material, and 5 parts by weight of polytetrafluoroethylene as a binder were kneaded to prepare a positive electrode mixture. did. Press this mixture to about 2 tons/
It was press-molded under conditions of cm 2 and further dried in a vacuum at 200° C. to produce a positive electrode with a diameter of 15.7 mm.

一方、フェノール樹脂の粉末を窒素ガス中において17
00℃で2時間焼成した。得られた炭素質物を粉砕し、
この粉末95重量部と結着材としてのポリエチレン粉末
5重量部とを混練し、この混練物200mgを加圧成形
して厚さ 0.8m mのベレット状の担持体とした。
On the other hand, phenol resin powder was heated to 17% in nitrogen gas.
It was baked at 00°C for 2 hours. The obtained carbonaceous material is crushed,
95 parts by weight of this powder and 5 parts by weight of polyethylene powder as a binder were kneaded, and 200 mg of this kneaded product was pressure-molded to form a pellet-shaped carrier with a thickness of 0.8 mm.

つづいて、リチウムイオンを含有する電解液中に前記担
持体を陽極とし、リチウムを陰極として浸漬し、電解液
温度20℃、電流密度0.5m A / c rn 2
の条件下で電解処理を施した0この電解処理により前記
担持体にリチウムが30m A h担持された負極を作
製した。
Subsequently, the support was immersed in an electrolytic solution containing lithium ions, with the support as an anode and lithium as a cathode, at an electrolytic solution temperature of 20° C. and a current density of 0.5 m A/c rn 2.
An electrolytic treatment was performed under the following conditions. Through this electrolytic treatment, a negative electrode in which 30 mAh of lithium was supported on the support was produced.

また、エチレンカーボネートとプロピレンカーボネート
とアセトニトリルとの混合物(体積比、エチレンカーボ
ネート:プロピレンカーボネート:アセトニトリル−3
0: 30 : 40)からなる非水溶媒に、六フッ化
リン酸リチウム(L i P F 6 )を濃度1モル
/gで溶解した。つづいて、この溶液中にリチウム板か
らなる陽極と陰極とをそれぞれ配置し、電流密度1mA
/cm2の電流を10時間以上流して通電処理を施した
非水電解液を調製した。
In addition, a mixture of ethylene carbonate, propylene carbonate, and acetonitrile (volume ratio, ethylene carbonate:propylene carbonate:acetonitrile-3
Lithium hexafluorophosphate (L i P F 6 ) was dissolved in a non-aqueous solvent consisting of 0:30:40) at a concentration of 1 mol/g. Next, an anode and a cathode each made of a lithium plate were placed in this solution, and the current density was 1 mA.
A non-aqueous electrolyte was prepared by applying a current of /cm2 for 10 hours or more.

次いで、前記正極、負極及び非水電解液を用いて第1図
に示すようなボタン形の非水電解液二次電池を組立てた
。即ち、正極1上には前記非水電解液を含浸したポリプ
ロピレン不織布からなるセパレータ2が載置されている
。前記セパレータ2上には負極3が載置されている。前
記正極1、セパレータ2、及び負極3は、ステンレス製
の正極缶4及び負極缶5で構成される電池容器内に、該
正極1と該正極缶4とか互いに体面するように内蔵され
ている。前記正極缶4と前記負極缶5との間には絶縁バ
ッキング6か介在されている。前記正極1と前記正極缶
4との間には、該正極1底面に圧着された集電体7か介
在されている。
Next, a button-shaped nonaqueous electrolyte secondary battery as shown in FIG. 1 was assembled using the positive electrode, negative electrode, and nonaqueous electrolyte. That is, a separator 2 made of a polypropylene nonwoven fabric impregnated with the non-aqueous electrolyte is placed on the positive electrode 1 . A negative electrode 3 is placed on the separator 2. The positive electrode 1, separator 2, and negative electrode 3 are housed in a battery container composed of a positive electrode can 4 and a negative electrode can 5 made of stainless steel, so that the positive electrode 1 and the positive electrode can 4 face each other. An insulating backing 6 is interposed between the positive electrode can 4 and the negative electrode can 5. A current collector 7 crimped onto the bottom surface of the positive electrode 1 is interposed between the positive electrode 1 and the positive electrode can 4 .

実施例2 エチレンカーボネートとブチレンカポネートとアセトニ
トリルとの混合物(体積比、エチレンカーボネート:ブ
チレン力ボネート:アセトニトリル−30: 30 :
 40)を非水電解液の非水溶媒として用いた以外、実
施例1と同様にして非水電解液二次電池を組立てた。
Example 2 A mixture of ethylene carbonate, butylene caponate, and acetonitrile (volume ratio, ethylene carbonate:butylene carbonate:acetonitrile-30:30:
A non-aqueous electrolyte secondary battery was assembled in the same manner as in Example 1, except that 40) was used as the non-aqueous solvent of the non-aqueous electrolyte.

比較例1 エチレンカーボネートとプロピレンカポネートとの混合
物(体積比、エチレンカーボネート:プロピレン力ボネ
ート−50:50)を非水電解液の非水溶媒として用い
た以外、実施例1と同様にして非水電解液二次電池を組
立てた。
Comparative Example 1 A non-aqueous electrolyte was prepared in the same manner as in Example 1, except that a mixture of ethylene carbonate and propylene caponate (volume ratio, ethylene carbonate: propylene carbonate - 50:50) was used as the non-aqueous solvent of the non-aqueous electrolyte. An electrolyte secondary battery was assembled.

比較例2 エチレンカーボネートとブチレンカポネートとの混合物
(体積比、エチレンカーボネート、ブチレンカポネート
−50+ 50)を非水電解液の非水溶媒として用いた
以外、実施例1と同様にして非水電解液二次電池を組立
てた。
Comparative Example 2 Non-aqueous electrolysis was performed in the same manner as in Example 1, except that a mixture of ethylene carbonate and butylene caponate (volume ratio: ethylene carbonate, butylene caponate -50+50) was used as the non-aqueous solvent of the non-aqueous electrolyte. I assembled a liquid secondary battery.

比較例3 リチウム箔からなる負極を用いた以外、実施例1と同様
にして非水電解液二次電池を組立てた。
Comparative Example 3 A non-aqueous electrolyte secondary battery was assembled in the same manner as in Example 1, except that a negative electrode made of lithium foil was used.

実施例1,2及び比較例1〜3の非水電解液二次電池に
ついて、電流IIIIA/CI2で電池電圧を3、OV
から4,5vにする充電と電流1rAA/co+2で電
池電圧を4,5Vから3.OVにする放電とを繰り返し
、各充放電サイクル数における放電容量を測定した。そ
の結果を第2図に示す。更に、前記放電容量から各充放
電サイクル数における放電容量維持率を求めた。その結
果を第3図に示す。
Regarding the non-aqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3, the battery voltage was set to 3 OV at a current IIIA/CI2.
Charging from 4.5V to 4.5V and increasing the battery voltage from 4.5V to 3.0V with a current of 1rAA/co+2. Discharging to OV was repeated, and the discharge capacity at each number of charge/discharge cycles was measured. The results are shown in FIG. Furthermore, the discharge capacity retention rate at each number of charge/discharge cycles was determined from the discharge capacity. The results are shown in FIG.

第2図及び第3図から明らかなように実施例1゜2の電
池は比較例1,2の電池に比べて放電容量か大きく、放
電容量維持率も優れていることかわかる。また、比較例
3の電池は、初期放電容量が大きいものの負極が劣化す
るため放電容量維持率の低下が大きくなる。
As is clear from FIGS. 2 and 3, the battery of Example 1-2 has a larger discharge capacity and superior discharge capacity retention rate than the batteries of Comparative Examples 1 and 2. Further, although the battery of Comparative Example 3 has a large initial discharge capacity, the negative electrode deteriorates, so the discharge capacity retention rate decreases significantly.

なお、実施例1,2の電池は、いずれもボタン形である
か、円筒形、扁平形、角形等の電池でも同様な効果を得
ることができる。
It should be noted that the batteries of Examples 1 and 2 can both be button-shaped, or the same effect can be obtained even if the batteries are cylindrical, flat, prismatic, or the like.

[発明の効果] 以上詳述した如く、本発明によれば充放電サイクル寿命
に優れ、かつ高容量の非水溶媒二次電池を提供すること
かできる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to provide a non-aqueous solvent secondary battery with excellent charge/discharge cycle life and high capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の非水溶媒二次電池を示す断面図、第
2図は実施例1,2及び比較例1〜3の非水溶媒二次電
池における充放電サイクル数に対する放電容量の変化を
示す特性図、第3図は実施例1.2及び比較例1〜3の
非水溶媒二次電池における充放電サイクル数に対する放
電容量維持率の変化を示す特性図である。 ■・・・正極、2・・・セパレータ、3・・・負極、4
・・・正極缶、5・・・負極缶。 出願人代理人 弁理士 鈴江武彦 jll 因
Figure 1 is a cross-sectional view showing the non-aqueous solvent secondary battery of Example 1, and Figure 2 shows the discharge capacity versus the number of charge/discharge cycles in the non-aqueous solvent secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 3. FIG. 3 is a characteristic diagram showing changes in the discharge capacity retention rate with respect to the number of charge/discharge cycles in the non-aqueous solvent secondary batteries of Example 1.2 and Comparative Examples 1 to 3. ■...Positive electrode, 2...Separator, 3...Negative electrode, 4
...Positive electrode can, 5...Negative electrode can. Applicant's agent Patent attorney Takehiko Suzue Jll

Claims (1)

【特許請求の範囲】[Claims]  炭素質物にリチウムを担持させた負極と、カルコゲン
化合物を活物質とする正極と、六フッ化リン酸リチウム
(LiPF_6)を電解質として非水溶媒に溶解した非
水電解液とを具備する非水電解液二次電池において、前
記非水溶媒が、エチレンカーボネートと、プロピレンカ
ーボネート及びブチレンカーボネートの少なくとも1種
と、アセトニトリルとの混合物からなり、かつ前記アセ
トニトリルの配合量を10〜60体積%としたことを特
徴とする非水電解液二次電池。
A nonaqueous electrolyte comprising a negative electrode in which lithium is supported on a carbonaceous material, a positive electrode in which a chalcogen compound is used as an active material, and a nonaqueous electrolyte in which lithium hexafluorophosphate (LiPF_6) is dissolved in a nonaqueous solvent as an electrolyte. In the liquid secondary battery, the non-aqueous solvent is made of a mixture of ethylene carbonate, at least one of propylene carbonate and butylene carbonate, and acetonitrile, and the amount of acetonitrile is 10 to 60% by volume. Characteristic non-aqueous electrolyte secondary battery.
JP32816690A 1990-11-28 1990-11-28 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3154719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32816690A JP3154719B2 (en) 1990-11-28 1990-11-28 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32816690A JP3154719B2 (en) 1990-11-28 1990-11-28 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04206167A true JPH04206167A (en) 1992-07-28
JP3154719B2 JP3154719B2 (en) 2001-04-09

Family

ID=18207225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32816690A Expired - Fee Related JP3154719B2 (en) 1990-11-28 1990-11-28 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3154719B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267075A (en) * 1991-02-21 1992-09-22 Yuasa Corp Lithium secondary battery
JP2000058009A (en) * 1998-08-11 2000-02-25 Toshiba Battery Co Ltd Flat-shaped nonaqueous electrolyte battery
CN1311585C (en) * 2003-08-20 2007-04-18 三星Sdi株式会社 Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
JP2007305549A (en) * 2006-04-12 2007-11-22 Matsushita Electric Ind Co Ltd Cathode active substance, its manufacturing method and nonaqueous electrolyte secondary battery
WO2009047976A1 (en) * 2007-10-12 2009-04-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
US7846588B2 (en) 2004-06-30 2010-12-07 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US20120081837A1 (en) * 2010-10-04 2012-04-05 Kishor Purushottam Gadkaree Electrolyte System
JP2012109048A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Regeneration method of nonaqueous electrolyte secondary battery
JP2018060692A (en) * 2016-10-05 2018-04-12 旭化成株式会社 Nonaqueous secondary battery
JP2018060693A (en) * 2016-10-05 2018-04-12 旭化成株式会社 Nonaqueous secondary battery
CN110383564A (en) * 2017-03-17 2019-10-25 旭化成株式会社 Non-aqueous electrolyte, non-aqueous secondary battery, battery pack and hybrid power system
US11532839B2 (en) 2017-03-17 2022-12-20 Asahi Kasei Kabushiki Kaisha Non-aqueous secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103190027B (en) 2010-10-29 2015-11-25 旭化成电子材料株式会社 Non-aqueous electrolyte and non-aqueous secondary battery
CN103891028B (en) 2011-10-28 2016-04-13 旭化成株式会社 Non-aqueous secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267075A (en) * 1991-02-21 1992-09-22 Yuasa Corp Lithium secondary battery
JP2000058009A (en) * 1998-08-11 2000-02-25 Toshiba Battery Co Ltd Flat-shaped nonaqueous electrolyte battery
CN1311585C (en) * 2003-08-20 2007-04-18 三星Sdi株式会社 Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
US7718322B2 (en) 2003-08-20 2010-05-18 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
JP2010118355A (en) * 2003-08-20 2010-05-27 Samsung Sdi Co Ltd Electrolytic solution for lithium secondary battery and lithium secondary battery containing the same
US7846588B2 (en) 2004-06-30 2010-12-07 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2007305549A (en) * 2006-04-12 2007-11-22 Matsushita Electric Ind Co Ltd Cathode active substance, its manufacturing method and nonaqueous electrolyte secondary battery
WO2009047976A1 (en) * 2007-10-12 2009-04-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
US8753769B2 (en) 2007-10-12 2014-06-17 Toyota Jidosha Kabushiki Kaisha Method for manufacturing secondary battery
CN103155067A (en) * 2010-10-04 2013-06-12 康宁股份有限公司 Electrolyte system and electrolytic cell
US8576541B2 (en) 2010-10-04 2013-11-05 Corning Incorporated Electrolyte system
US20120081837A1 (en) * 2010-10-04 2012-04-05 Kishor Purushottam Gadkaree Electrolyte System
CN103155067B (en) * 2010-10-04 2016-08-31 康宁股份有限公司 Electrolyte system and electrolytic cell
JP2012109048A (en) * 2010-11-15 2012-06-07 Toyota Motor Corp Regeneration method of nonaqueous electrolyte secondary battery
JP2018060692A (en) * 2016-10-05 2018-04-12 旭化成株式会社 Nonaqueous secondary battery
JP2018060693A (en) * 2016-10-05 2018-04-12 旭化成株式会社 Nonaqueous secondary battery
CN110383564A (en) * 2017-03-17 2019-10-25 旭化成株式会社 Non-aqueous electrolyte, non-aqueous secondary battery, battery pack and hybrid power system
CN110383564B (en) * 2017-03-17 2022-09-20 旭化成株式会社 Nonaqueous electrolyte solution, nonaqueous secondary battery, battery pack, and hybrid system
US11515567B2 (en) 2017-03-17 2022-11-29 Asahi Kasei Kabushiki Kaisha Non-aqueous electrolyte solution, non-aqueous secondary battery, cell pack, and hybrid power system
US11532839B2 (en) 2017-03-17 2022-12-20 Asahi Kasei Kabushiki Kaisha Non-aqueous secondary battery

Also Published As

Publication number Publication date
JP3154719B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
US4945014A (en) Secondary battery
WO2001022519A1 (en) Secondary cell
JP3154719B2 (en) Non-aqueous electrolyte secondary battery
JPH05286763A (en) Electrode material
JP3291756B2 (en) Non-aqueous solvent secondary battery and its electrode material
JP3164458B2 (en) Manufacturing method of electrode material
US6342319B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode
JPH0544143B2 (en)
JP4784718B2 (en) Electrolyte and battery
JPS63193463A (en) Nonaqueous solvent secondary battery
JPH0580791B2 (en)
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPS63114056A (en) Nonaqueous solvent secondary battery
JPH04296471A (en) Non-aqueous electrolyte secondary battery
JP3291758B2 (en) Non-aqueous solvent secondary battery and its electrode material
JP3472126B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing non-aqueous electrolyte secondary battery
JP2003045487A (en) Battery
JP3870309B2 (en) Carbon material for electrode, method for producing the same, and negative electrode for non-aqueous electrolyte secondary battery using the same
JP3519462B2 (en) Lithium secondary battery
JPH05290888A (en) Nonaqueous solvent secondary battery
JPH09245798A (en) Lithium secondary battery
JP3159725B2 (en) Electrodes for secondary batteries
JP2957202B2 (en) Rechargeable battery
JP2002280082A (en) Charging method for secondary battery
JPH02215043A (en) Nonaqueous solvent secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees