JPH04204353A - Absorptiometric analysis - Google Patents

Absorptiometric analysis

Info

Publication number
JPH04204353A
JPH04204353A JP33866290A JP33866290A JPH04204353A JP H04204353 A JPH04204353 A JP H04204353A JP 33866290 A JP33866290 A JP 33866290A JP 33866290 A JP33866290 A JP 33866290A JP H04204353 A JPH04204353 A JP H04204353A
Authority
JP
Japan
Prior art keywords
data
functional group
absorbance spectrum
specified
chromatogram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33866290A
Other languages
Japanese (ja)
Inventor
Shiro Tsuji
史郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP33866290A priority Critical patent/JPH04204353A/en
Publication of JPH04204353A publication Critical patent/JPH04204353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make recording with emphasis on specified functional group possible by multiplying every measurement data by absorbance spectrum data stored in advance of the functional group specified for each wave number for a measurement wave number range, and integrating the product. CONSTITUTION:Absorbance spectrum data F(nu) of the absorbance of a specified functional group is read from a RAM. The data number is assumed to be 1. The number N is the order number of the data allocated for each operation from the beginning of a spectrophotometer F and the absorbance spectrum data in a hard disk drive HDD is identified with this number. An absorbance spectrum data A(nu, N) specified by the number N is then read from the hard disk drive HDD and integration {I(t)} is calculated for F(nu)A(nu, N). The calculated result is stored in the RAM. Repeating that operation, the data of chromatogram I(t) is stored in the RAM. When the number N reaches the final value, the data process is finished. Then the data of the integrated value I(t) is read out and displayed on a CRT to visualize the chromatogram.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はクロマトグラフ流出流体を吸光分析してクロマ
トグラムを得る場合のように、経時的に変化する試料に
おける特定官能基の経時的変化を測定する場合に用いら
れるデータ処理方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a method for detecting changes over time in specific functional groups in a sample that changes over time, such as when a chromatogram is obtained by absorbance analysis of a chromatographic fluid. This invention relates to a data processing method used for measurement.

(従来の技術) ガスクロマトグラフ流出ガスをフーリエ変換型赤外分光
光度計を用いて吸光分析を行い、特定の官能基の経時的
変化によってクロマトグラムを作成する場合、従来は吸
光スペクトルにおいて特定の官能基の吸光スベク)・ル
か存在する所定の波数範囲の吸光スペクトルの波数積分
の経時的変化を記録する方法を用いていた。これを数式
で書くと、設定した波数範囲をし1からν2とし、時刻
tにおけるその間の吸光スペクトル波形をAt(ν)と
して  I′ (t)=  At(ν)dνなるI′ 
(L)を記録するものである。
(Prior art) When performing absorption analysis on gas chromatograph effluent gas using a Fourier transform infrared spectrophotometer and creating a chromatogram based on changes in specific functional groups over time, conventional techniques A method was used to record the change over time in the wavenumber integral of the absorption spectrum in a predetermined wavenumber range, where the absorption spectrum of the group exists. To write this as a mathematical formula, let the set wave number range be 1 to ν2, and let the absorption spectrum waveform in that range at time t be At(ν), then I' (t) = At(ν)dν, I'
(L) is recorded.

しかし上記した方法では次のような問題がある、一般に
有機物質は単一物質でも一分子内に幾つかの官能基を有
し、それらの官能基の吸光スペクトルが成る波数範囲で
重なっている場合がある。
However, the above method has the following problem.In general, even a single organic substance has several functional groups in one molecule, and the absorption spectra of these functional groups overlap in the wave number range. There is.

従って一つの官能基の吸光スペクトルの存在範囲での吸
光スペクトルの積分は必ずしも目的とする官能基の濃度
に比例せず、得られたクロマトグラムからは目的とする
官能基を有する成分の他、他の官能基を有する成分のピ
ークも現れて、分析結果についての判断を困難にしてい
た。
Therefore, the integration of the absorption spectrum within the range of the absorption spectrum of one functional group is not necessarily proportional to the concentration of the target functional group, and the obtained chromatogram shows that in addition to components having the target functional group, other A peak of a component having a functional group also appeared, making it difficult to judge the analytical results.

(発明が解決しようとする課題) 本発明は、試料の経時的変化を一つの官能基の増減の測
定によって追跡する場合における上述した問題を解消し
ようとするものである。
(Problems to be Solved by the Invention) The present invention seeks to solve the above-mentioned problems when tracking changes over time in a sample by measuring the increase or decrease of a single functional group.

(課題を解決するための手段) 測定しようとする官能基の吸光スペクトルのプロファイ
ルF(ν)のデータを予め記憶しておき、毎測定時毎に
、所定波数範囲の吸光スペクトル軸上に記録するように
した。ここでシl′、シ2′は測定波数範囲の下限およ
び上限の値である。
(Means for solving the problem) Data of the absorption spectrum profile F(ν) of the functional group to be measured is stored in advance, and recorded on the absorption spectrum axis in a predetermined wave number range at each measurement time. I did it like that. Here, SI' and SI2' are the lower and upper limits of the measurement wave number range.

(作用) 上記H)式でしは吸光測定における波数であり、F(ν
)は官能基に固有の吸光スペクトルで、A(ν)が経時
的に変化している試料の吸光スペクトルである。全測定
対象としている官能基の濃度をC(t)とし、設定した
積分範囲における他の官能基等による吸光スペクトルの
形をB(ν)とすると、 A(ν)−C(t)F(ν)十B(し)・(2)であり
、(1)式の被積分関数は F (ν)A (!/) =C(t> F−(y) +
 F (v)B(し)・・・・・(3) 第3区でA、Bは二つの官能基の吸光スペクトルを示す
。同図でCは上記口つの官能基を含む試料の吸光スペク
トルを示す、第3図りはCの吸光スペクトルにAの官能
基スペクトルを掛算したものを示す。
(Effect) Equation H) above is the wave number in absorption measurement, and F(ν
) is an absorption spectrum specific to a functional group, and is an absorption spectrum of a sample in which A(ν) changes over time. If the concentration of all the functional groups to be measured is C(t), and the shape of the absorption spectrum due to other functional groups in the set integration range is B(ν), then A(ν)-C(t)F( ν) 10 B(shi)・(2), and the integrand of equation (1) is F (ν) A (!/) = C(t> F−(y) +
F (v) B (shi) (3) In the third section, A and B indicate the absorption spectra of two functional groups. In the figure, C shows the absorption spectrum of the sample containing the above-mentioned functional group, and the third diagram shows the absorption spectrum of C multiplied by the functional group spectrum of A.

2程の官能基の吸収スペクトルが全面的に重なることは
なく、重なり部分があっても一部に過ぎ)dし を比較すると、U〉■或はIJ)Vである。従って前記
(3)式の右辺第2項は第1項に比し小さくなり、試料
中に指定した官能基がないときは、(3)式の右辺第1
項は0となって、クロマトグラム上で指定した官能基を
有する成分の有無がきわめて明確になる。
The absorption spectra of the two functional groups do not completely overlap, and even if there is an overlap, it is only a part). Therefore, the second term on the right side of equation (3) is smaller than the first term, and when there is no specified functional group in the sample, the first term on the right side of equation (3) is smaller than the first term.
The term becomes 0, and the presence or absence of a component having the designated functional group on the chromatogram becomes extremely clear.

(実施例〉 第1図は本発明方法の一実施例をフローチャートで示し
たもので、第2図は上記フローチャートで示される動作
が実行される装置の構成を示す。
(Embodiment) FIG. 1 is a flowchart showing an embodiment of the method of the present invention, and FIG. 2 shows the configuration of an apparatus in which the operations shown in the above flowchart are executed.

第2図でGCはガスクロマトグラフ、Fはフーリエ変換
型赤外分光光度計で、その試料セルにガスクロマトグラ
フからの流出ガスが流通せしめられる。フーリエ変換型
赤外分光光度計は一定の周期で動作しており、各動作毎
のインターフェログラムのデータがA/D変換変換器弁
してCPUに取り込まれ、CPUはこのインターフェロ
グラムデータをフーリエ変換して吸光度スペクトルデー
タとしてハードディスクドライブHDDに蓄積して行く
、測定終了後CPUは第1図にフローチャートで示され
るデータ処理動作を行ってクロマトグラムのデータを算
出し、CRTに表示し、或はプリンタPに出力してクロ
マトグラムを描かせるCPUが行うデータ処理の動作を
第1図のフローチャートによって説明する。第2図にお
けるRAMには予め各官能器の吸光度スペクトルのデー
タが格納してあり、データ処理に当たってはまずキーボ
ードKによりオペレータが一つの官能基を指定して、デ
ータ処理動作をスタートさせる。そうすると、まず指定
された官能基の吸光度スペクトルのデータF(ν)が読
み出される(イ)。このデータにおいてF(ν)の存在
領域として前記(1)式の積分の上下限波数ν2.ν1
も自動的に決まる。ステップ(ロ)でデータ番号Nを1
とする。このデータ番号はフーリエ変換型分光光度計F
の一動作毎に最初から付けられたデータの順位番号で、
HDD内の吸光度スペクトルデータはこの番号によって
識別され、番号が一番だけ異なる吸光度スペクトルのデ
ータはフーリエ変換型分光光度計の一動作周期分だけ異
なる時刻のGC流出ガスの吸光度スペクトルのデータで
ある。次にNで指定される順番の吸光度スペクトルデー
タA(ν、N)をHDDから読み出しくハ)、前記(1
)式のI(t)の積分演算を行う(ニ)。計算結果をR
AMに格納(ホ)し、Nが最終値になっているか否かチ
エツク(へ)し、最終値に達していなければNに1を加
えて動作は(ハ)に戻る。かくしてクロマトグラムI 
(t)のデータがRAMに格納される。Nが最終値に達
すればデータ処理動作は終了する。その’li RA 
M内のI (t)のデ−タは読み出してCR,Tに表示
するかプリンタPに出力してクロマトグラムを可視化す
ればよい。
In FIG. 2, GC is a gas chromatograph, and F is a Fourier transform infrared spectrophotometer, through which the outflow gas from the gas chromatograph is made to flow. The Fourier transform infrared spectrophotometer operates at a constant cycle, and the interferogram data for each operation is input to the CPU through the A/D converter valve, and the CPU reads this interferogram data. After the measurement is completed, the CPU performs the data processing operation shown in the flowchart in Figure 1 to calculate the chromatogram data and display it on the CRT. The operation of data processing performed by the CPU which outputs data to the printer P to draw a chromatogram will be explained with reference to the flowchart of FIG. The absorbance spectrum data of each functional organ is stored in advance in the RAM in FIG. 2, and in data processing, the operator first specifies one functional group using the keyboard K to start the data processing operation. Then, first, data F(v) of the absorbance spectrum of the designated functional group is read out (a). In this data, the upper and lower limit wave numbers ν2 of the integral of equation (1) are defined as the existence region of F(ν). ν1
is also determined automatically. In step (b), data number N is set to 1.
shall be. This data number is the Fourier transform spectrophotometer F.
This is the data ranking number assigned from the beginning for each movement.
The absorbance spectrum data in the HDD is identified by this number, and the absorbance spectrum data that differs only by the number is the absorbance spectrum data of the GC outflow gas at times that differ by one operating cycle of the Fourier transform spectrophotometer. Next, read out the absorbance spectrum data A(ν, N) in the order specified by N from the HDD.
) performs an integral calculation of I(t) in the equation (d). The calculation result is R
It is stored in AM (e), and it is checked whether N has reached the final value. If it has not reached the final value, 1 is added to N and the operation returns to (c). Thus chromatogram I
(t) data is stored in the RAM. When N reaches the final value, the data processing operation ends. Its'li RA
The data of I (t) in M may be read out and displayed on CR, T, or output to printer P to visualize the chromatogram.

上述実施例では一回のクロマトグラフによる分析完了ま
での各時刻毎の吸光度スペクトルのデータを一旦HDD
に取り込んだ後、データ処理を行っているが、一定周期
で繰り返される吸光度スペクトル測定動作毎に上述した
データ処理動作を行って、リアルタイムでクロマトグラ
ムを記録するようにすることも可能である。また上述実
施例では一つの官能基についてのみクロマトグラムを求
めているが、複数の官能基を指定して、夫々についてク
ロマトグラムを求めることにより試料の鑑別、同定等を
より一層明瞭にできる場合がある。
In the above example, the absorbance spectrum data at each time until the completion of one chromatographic analysis is temporarily stored on the HDD.
Although the data is processed after being imported into the system, it is also possible to record the chromatogram in real time by performing the above-described data processing operation every time the absorbance spectrum measurement operation is repeated at a fixed period. In addition, in the above example, a chromatogram is obtained for only one functional group, but in some cases, it is possible to specify multiple functional groups and obtain a chromatogram for each of them to make the discrimination and identification of the sample even clearer. be.

(発明の効果) 本発明によれば、試料の経時的変化を特定の官能基の濃
度変化によって追跡する場合に、指定された官能基の吸
光度スペクトルに他の官能基の吸光度スペクトルが重な
っているようなときでも指定した官能基の変化を強調し
て記録することかでき、試料変化の様子を適確に知るこ
とが可能となる。
(Effects of the Invention) According to the present invention, when tracking changes in a sample over time by changes in the concentration of a specific functional group, the absorbance spectrum of the specified functional group overlaps with the absorbance spectrum of other functional groups. Even in such cases, changes in specified functional groups can be emphasized and recorded, making it possible to accurately understand the state of changes in the sample.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の動作を示すフロー千ヤード
、第2図は同実施例を実行する装置の精成を示すブロッ
ク図、第3図は本発明方法を説明するグラフである。 GC・・・ガスクロマトグラフ、F・・・フーリエ変換
型赤外分光光度計、HDD・・・ハードディスクドライ
ブ、P・・・プリンタ、K・・・キーボード。 代理人  弁理士 縣  浩 介
FIG. 1 is a flowchart showing the operation of an embodiment of the present invention, FIG. 2 is a block diagram showing the refinement of an apparatus for carrying out the embodiment, and FIG. 3 is a graph explaining the method of the present invention. . GC...Gas chromatograph, F...Fourier transform infrared spectrophotometer, HDD...Hard disk drive, P...Printer, K...Keyboard. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims]  一定周期で試料の吸光度スペクトルを測定し、毎回の
吸光度スペクトルの測定データにおいて、測定波数範囲
について、波数毎に指定した官能基の予め記憶させてあ
る吸光度スペクトルのデータを上記測定データに掛算し
た結果を積分し、その積分結果を順次記録することを特
徴とする吸光分析方法。
The absorbance spectrum of the sample is measured at regular intervals, and the measured data for each absorbance spectrum is multiplied by the pre-stored absorbance spectrum data of the functional group specified for each wavenumber for the measured wavenumber range. An absorption analysis method characterized by integrating and sequentially recording the integration results.
JP33866290A 1990-11-30 1990-11-30 Absorptiometric analysis Pending JPH04204353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33866290A JPH04204353A (en) 1990-11-30 1990-11-30 Absorptiometric analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33866290A JPH04204353A (en) 1990-11-30 1990-11-30 Absorptiometric analysis

Publications (1)

Publication Number Publication Date
JPH04204353A true JPH04204353A (en) 1992-07-24

Family

ID=18320280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33866290A Pending JPH04204353A (en) 1990-11-30 1990-11-30 Absorptiometric analysis

Country Status (1)

Country Link
JP (1) JPH04204353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131224A (en) * 1998-10-23 2000-05-12 Jasco Corp Spectrum data processor
JP2008185599A (en) * 2008-04-28 2008-08-14 Jasco Corp Spectrum data processor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131224A (en) * 1998-10-23 2000-05-12 Jasco Corp Spectrum data processor
JP2008185599A (en) * 2008-04-28 2008-08-14 Jasco Corp Spectrum data processor
JP4705657B2 (en) * 2008-04-28 2011-06-22 日本分光株式会社 Spectral data processor

Similar Documents

Publication Publication Date Title
JP2550805B2 (en) Chromatograph absorption analyzer
US6934638B2 (en) Method and apparatus for analyzing multi-channel chromatogram
JPS60239669A (en) Data processing in chromatography
JP4507962B2 (en) Gas chromatograph
CN106770155A (en) A kind of content of material analysis method
JPH04204353A (en) Absorptiometric analysis
JP2006317198A (en) Data processor for analyzer
Massart et al. Operations research in analytical chemistry
JPH0954071A (en) Gas chromatograph
JP2020153864A (en) Chromatograph data processing device, data processing method and chromatography
JP2019174399A (en) Chromatograph data processing device, data processing method, and chromatograph
JP3270290B2 (en) Multi-channel chromatogram analysis method and data processing device
US4002052A (en) Method for the rapid analysis of a mixture of a number of substances by chromatography
JPS62172261A (en) Method for removing background shift from peak spectrum in chromatogram using multiwavelength detector
JPH0727703A (en) Quantitative analysis of multiple component substance
JP3097571B2 (en) Chromatographic data processing device
JPH0151780B2 (en)
JP3709966B2 (en) Near infrared spectroscopy system
EP4293353A1 (en) Analysis assistance device, analysis assistance method and analysis assistance program
JPH09297129A (en) Data processor for chromatography
JPH09101259A (en) Method for determining components using spectrophotometer
JP2650363B2 (en) Chromatography equipment
JPS6375659A (en) Quantitative analysis using gas chromatography mass spectrometer
JPS63212826A (en) Data processor for fourier transform infrared spectrophotometer
US20230204548A1 (en) Peak tracking device, peak tracking method and peak tracking program