JPH04204024A - Analyzing system for contact stress - Google Patents
Analyzing system for contact stressInfo
- Publication number
- JPH04204024A JPH04204024A JP2329326A JP32932690A JPH04204024A JP H04204024 A JPH04204024 A JP H04204024A JP 2329326 A JP2329326 A JP 2329326A JP 32932690 A JP32932690 A JP 32932690A JP H04204024 A JPH04204024 A JP H04204024A
- Authority
- JP
- Japan
- Prior art keywords
- contact
- finite
- elements
- contact surface
- zero
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 238000004141 dimensional analysis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、構造物の接触部分の応力、変形を電子計算機
を使って解析するシステム及び方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a system and method for analyzing stress and deformation of contact parts of structures using an electronic computer.
構造物の接触面における応力、変形を解析する手法は、
有限要素法による方法と境界要素法による方法とが代表
的である。これらの手法は、物体を要素と呼ばれる部分
領域に分割する。有限要素法では、物体の内部も含めて
部分領域に分割し、境界要素法では、物体の表面のみを
分割する。どちらの手法でも、表面は複数の領域に分割
される。The method for analyzing stress and deformation at the contact surfaces of structures is
Typical methods are the finite element method and the boundary element method. These methods divide the object into partial regions called elements. In the finite element method, the interior of the object is divided into partial regions, and in the boundary element method, only the surface of the object is divided. In both techniques, the surface is divided into multiple regions.
各部分領域の変位及び表面力は、部分領域の節点と呼ば
れる複数の代表点における値で内挿近似される。接触解
析では、対向する接触面の節点及び部分領域の間におけ
る変位と表面力の関係式を連立させて方程式を解くこと
になる。この表面変位と表面力関係式の連立のさせ方に
はいろいろな方法が開発されている。その代表的なもの
が、接触面間に仮想的な要素を挿入する方法である。こ
の仮想的な要素は、接触要素、接合要素などと呼ばれる
もので、接触面間の変位の連続性、表面力の平衡条件等
に等価な剛性をもっている。The displacement and surface force of each partial region are approximated by interpolation using values at a plurality of representative points called nodes of the partial region. In contact analysis, the equations are solved by combining the relational expressions of displacement and surface force between nodes and partial regions of opposing contact surfaces. Various methods have been developed to create a simultaneous relationship between surface displacement and surface force. A typical example is a method of inserting virtual elements between contact surfaces. This virtual element is called a contact element, a joining element, etc., and has a rigidity equivalent to the continuity of displacement between contact surfaces, the equilibrium condition of surface force, etc.
、(関東原籍、矢用元基、日本機械学会論文集(A編)
51巻、472号(1985年12月)、2747頁)
[発明が解決しようとする課題]
接触要素の剛性は、その要素を挿入する表面の接触状態
に依存することになる。すなわち、その表面が接触して
いるか離れているか、接触しているときにはそれが固着
状態か滑り状態がなどによって接触要素の剛性を変える
必要がある。したがって、構造物が負荷を受けて変形す
るに従って接触要素の剛性も変化していく。ここで問題
となるのは、相対滑りの大きな場合である。接触要素は
、その定義から分かるように、それを構成している節点
の一部は一方の面上にあり、残りの節点は他方の面上に
ある。このとき、接触要素が属している双方の面は相対
している必要がある。したがって、従来の解析手法にお
いては、相対滑りの大きな場合は接触要素の分割をしな
おす必要がある。, (Kanto original, Motoki Yayogi, Proceedings of the Japan Society of Mechanical Engineers (edition A)
Volume 51, No. 472 (December 1985), p. 2747)
[Problem to be Solved by the Invention] The stiffness of a contact element will depend on the contact state of the surface into which the element is inserted. That is, it is necessary to change the rigidity of the contact element depending on whether the surfaces are in contact or apart, and when in contact, whether it is stuck or sliding. Therefore, as the structure deforms under load, the stiffness of the contact element also changes. The problem here is when the relative slip is large. As can be seen from the definition of a contact element, some of its constituent nodes are on one face and the remaining nodes are on the other face. In this case, both surfaces to which the contact element belongs must be opposite. Therefore, in the conventional analysis method, if the relative slip is large, it is necessary to re-divide the contact elements.
この再分割は、変形に従って行う必要があり、煩雑であ
る。微)Jz変形の場合でも、相対する節点の位置関係
によってはすぐに再分割の必要が生じてしまい、要素分
割に制約が生じていた。本発明は、このような接触要素
分割の制約と再分割の煩雑さを取り除くことを目的とし
ている。This redivision needs to be performed according to the deformation and is complicated. Even in the case of slight) Jz deformation, the need for re-division immediately arises depending on the positional relationship of opposing nodes, resulting in restrictions on element division. The present invention aims to eliminate such restrictions on contact element division and the complexity of re-division.
[課題を解決するための手段]
上記目的を達成するために、本発明においては、接触面
を複数の有限領域に分割し、その有限領域上に点を設け
、一方の有限領域上の点とそれと相対する接触面上の一
番近い分割された有限領域との間の表面力と変位の関係
を表す三角形または五角錐または四角錐の仮想的な要素
を接触面間に挿入し、さらにその有限領域上の点とさき
ほどの点を含む有限領域との間にも表面力と変位の関係
を表す仮想的な要素を多重に挿入している。[Means for Solving the Problems] In order to achieve the above object, in the present invention, the contact surface is divided into a plurality of finite regions, points are provided on the finite regions, and points on one finite region are connected to each other. A virtual element of a triangle, pentagonal pyramid, or quadrangular pyramid is inserted between the contact surfaces to express the relationship between surface force and displacement between it and the nearest divided finite region on the opposing contact surface, and Multiple virtual elements representing the relationship between surface force and displacement are inserted between a point on the area and the finite area that includes the previous point.
[作用]
上記のように構成された接触要素において、−方の有限
領域上の点とそれと相対する接触面上の一番近い分割さ
れた有限領域との間の表面力と変位の関係を表す接触要
素においては、接触状態に対応する剛性を持たせる。す
なわち、接触要素の頂点における接触状態が固着の場合
には、その位置における変位の連続条件と表面力の平衡
条件に相当する剛性を接触要素に持たせる。滑りの状態
でクーロンの摩擦側に従う場合は、接触面に垂直な方向
の変位の連続条件と接触面に垂直な方向の表面力の平衡
条件及びクーロンの摩擦側に相当する剛性を持たせる。[Action] In the contact element configured as above, expresses the relationship between surface force and displacement between a point on the - side finite area and the nearest divided finite area on the opposing contact surface. The contact element has a rigidity corresponding to the contact state. That is, when the contact state at the apex of the contact element is fixed, the contact element is made to have a rigidity corresponding to the condition of continuous displacement and the equilibrium condition of the surface force at that position. If the sliding condition follows Coulomb's friction side, a continuous condition of displacement in the direction perpendicular to the contact surface, an equilibrium condition of surface force in the direction perpendicular to the contact surface, and rigidity corresponding to Coulomb's friction side are provided.
分離の状態にある場合は、表面力がゼロの条件に相当す
る剛性を持たせる。−方の有限領域上の点とそれと相対
する接触面上の一番近い分割された有限領域以外の領域
で形成される接触要素剛性はゼロとする。接触面の相対
変形によって、接触要素の頂点がら他方の面におろした
垂線の足が接触要素の底面の外にきたときは、その要素
の剛性はゼロとする。このとき、事前に挿入しである剛
性がゼロの他の接触要素のなかに、要素の頂点から底面
におろした垂線の足が底面の内側にくるものが生じる。When in a separated state, it has a rigidity that corresponds to the condition where the surface force is zero. The stiffness of the contact element formed by a point on the finite area on the - side and an area other than the closest divided finite area on the contact surface facing it is assumed to be zero. When the leg of the perpendicular drawn from the apex of the contact element to the other surface comes outside the bottom surface of the contact element due to relative deformation of the contact surface, the stiffness of that element is assumed to be zero. At this time, among the other contact elements that have been inserted in advance and have zero rigidity, there are some that have the feet of the perpendicular drawn from the apex of the element to the bottom surface inside the bottom surface.
そこで、その接触要素に接触状態に対応する剛性を持た
せる。このように、接触面の相対位置関係により剛性が
ゼロの要素とゼロでない要素をつぎつぎと切替えること
により、接触面が大きな相対滑りを起こす場合も要素の
再挿入なしに解析可能とする。Therefore, the contact element is provided with rigidity corresponding to the contact state. In this way, by switching between elements with zero stiffness and non-zero stiffness one after another depending on the relative positional relationship of the contact surfaces, it is possible to analyze without reinserting the elements even when the contact surfaces undergo a large relative slip.
[実施例1 以下、発明の実施例を図面を用いて説明する。[Example 1 Embodiments of the invention will be described below with reference to the drawings.
第1図は、実施例で用いた接触要素である。この接触要
素は、底面1,2,3.4が接触する一方の面8 (タ
ーゲツト面)上にあり、頂点5が相対する面7 (コン
タクタ面)にあるように定義された仮想的な五節点匹角
錐要素である。仮想的なものなので、接触要素の体積は
ゼロでもかまわない。この要素は、頂点5から底面1,
2,3.4におろした垂線の足6と頂点5との間の接触
条件を表しており、物理的意味をもつのは、垂線の足6
が面1,2,3.4内部にある場合である。第2図は、
この5節点接触要素に本発明を適用した場合で、接触要
素1,2,3,4.5の外に、領域1,2,3.4に隣
接する領域9,1,4.10及び2,11,12.13
を底辺として、頂点5を共有する接触要素を多重に作成
しである。第2図(a)の場合は、接触要素2,11.
l 2,3゜5及び9.l、4,10.5の剛性はゼロ
(こ設定、されている。第2図(b)は、頂点5が変形
によって領域9,1,4.10の上方に移動した場合で
、接触要素9,1,4.10が有効な要素に変わる。接
触要素1,2,3,4.5の剛性はゼロに変わる。この
ように、接触面の節点と相対していない近傍の有限領域
との間の接触要素を挿入しておくことにより、大きな相
対移動が生じた場合でも、要素の再分割無しに解析が可
能となる。FIG. 1 shows the contact elements used in the examples. This contact element is a virtual five-dimensional structure defined such that the base surfaces 1, 2, 3.4 are on one contact surface 8 (target surface) and the apex 5 is on the opposite surface 7 (contactor surface). It is a nodal pyramidal element. Since it is virtual, the volume of the contact element may be zero. This element runs from apex 5 to base 1,
It represents the contact condition between the foot 6 of the perpendicular line drawn in 2 and 3.4 and the vertex 5, and the physical meaning is that the foot 6 of the perpendicular line
This is the case when the planes are inside surfaces 1, 2, 3, and 4. Figure 2 shows
When the present invention is applied to this five-node contact element, in addition to contact elements 1, 2, 3, and 4.5, areas 9, 1, 4, 10, and 2 adjacent to areas 1, 2, and 3.4, ,11,12.13
With , as the base, contact elements sharing the vertex 5 are created multiple times. In the case of FIG. 2(a), contact elements 2, 11 .
l 2,3°5 and 9. The stiffness of the contact element 9, 1, 4.10 change to valid elements.The stiffness of contact elements 1, 2, 3, 4.5 changes to zero.In this way, the finite region of the contact surface that is not opposite to the node and the By inserting contact elements between them, even if a large relative movement occurs, analysis can be performed without re-dividing the elements.
第3図は、第2図の頂点の数を13. 14..15゜
16の四個に増やした実施例の水平方向からみた図であ
る。ここでの接触要素は、13 17 18゜13 1
8 19.14 17 18.14 +819.14
19 20,15 17 18゜15 18 .19
,15 19 20.16 1819.16 19 2
0の+側である。頂点の位置か右方に移動した場合の有
効な接触要素を示したのが、第3図(b)と第3図(c
)である。FIG. 3 shows the number of vertices in FIG. 2 as 13. 14. .. FIG. 3 is a horizontal view of an embodiment in which the number of holes is increased to four with a diameter of 15 degrees and 16 degrees. The contact elements here are 13 17 18°13 1
8 19.14 17 18.14 +819.14
19 20, 15 17 18°15 18. 19
,15 19 20.16 1819.16 19 2
It is on the + side of 0. Figures 3(b) and 3(c) show the effective contact elements when the apex position moves to the right.
).
第3図(b)においては頂点16が負荷ゼロになってお
り、第3図(C)では頂点15と16が負荷ゼロになっ
ている。In FIG. 3(b), the load at vertex 16 is zero, and in FIG. 3(c), the load at vertices 15 and 16 is zero.
第4図は、接触要素の頂点を接触面の両側にとり、接触
面の節点と相対している有限領域との間の接触要素のみ
を挿入した場合の実施例を、水平方向からみた図である
。ここでの接触要素は、1317 18、’14 17
18,14 1819.15 18 19,15 1
9 20,1619 20.17 14 13,18
1413.18 15 14,19 15 14,19
16 15.20 16 15の12個である。FIG. 4 is a horizontal view of an embodiment in which the vertices of the contact elements are placed on both sides of the contact surface, and only the contact elements are inserted between the nodes of the contact surface and the opposing finite regions. . The contact elements here are 1317 18, '14 17
18,14 1819.15 18 19,15 1
9 20,1619 20.17 14 13,18
1413.18 15 14,19 15 14,19
There are 12 pieces: 16 15.20 16 15.
頂点の位置が右方に移動した場合の有効な接触要素を示
したのが、第4図(b)と第4図(C)である。第4図
(b)では、接触要素171413.14 17 18
,18 15 14.+518 19 .19 16
15.および16192oの剛性がゼロに変わる。面に
並行な相対移動が第4図(c)の段階まで来ると、有効
な接触要素は、ゼロになる。第3図(b)と第4図(b
)とを比べると、第3図(b)の場合は節点20と面1
516の間の接触は考慮されていないのにだいし、第4
図(b)の場合は、接触面の節点と相対している有限領
域との間の接触要素のみを挿入したにもかかわらず、節
点20と面15 16の間の接触を表わ接触要素201
516が有効になっており、節点20と面1516の間
の接触は考慮されている。FIG. 4(b) and FIG. 4(C) show effective contact elements when the position of the vertex moves to the right. In FIG. 4(b), contact elements 171413.14 17 18
, 18 15 14. +518 19. 19 16
15. and the stiffness of 16192o changes to zero. When the relative movement parallel to the plane reaches the stage shown in FIG. 4(c), the effective contact element becomes zero. Figures 3(b) and 4(b)
), in the case of Fig. 3(b), node 20 and surface 1
Although the contact between 516 and 516 is not considered,
In the case of Figure (b), even though only the contact elements between the nodes of the contact surfaces and the opposing finite regions are inserted, the contact elements 201 represent the contact between the nodes 20 and the surfaces 15 and 16.
516 is enabled and contact between node 20 and surface 1516 is considered.
第5図は、第4図(c)のような相対移動量が非常に多
い場合に適用可能にした例で、第3図の接触面の節点に
相対していない近傍の有限領域との間の接触要素の挿入
、および第4図の接触要素の頂点を接触面の両側にとる
ことを両方行った場合である。この場合は、第4図の接
触要素に加えて、13 18 19,13 19 20
,1715 14.1? 16 15,14 192
0.18 16 15,15 17 18.19141
3の要素が加わっている。接触面が相対移動したときの
有効な接伝要素を示したのが、第5図(b)から第5図
(d)である。このように、接触面の節点と相対してい
ない近傍の有限領域との間の接触要素の挿入、および接
触要素の頂点を接触面の両側にとることを両方実施する
と、相対移動量が非常に多い場合でも、要素の再分割無
しに接触面の解析が行えることが分かる。Figure 5 shows an example that can be applied to cases where the amount of relative movement is very large as shown in Figure 4 (c). This is a case in which both the insertion of the contact element shown in Figure 4 and the apexes of the contact element shown in Figure 4 are placed on both sides of the contact surface. In this case, in addition to the contact elements in FIG. 4, 13 18 19, 13 19 20
,1715 14.1? 16 15, 14 192
0.18 16 15,15 17 18.19141
Three elements have been added. FIGS. 5(b) to 5(d) show effective contact elements when the contact surfaces move relative to each other. In this way, if you insert a contact element between a node of the contact surface and a finite area in the vicinity that is not facing it, and place the vertices of the contact element on both sides of the contact surface, the amount of relative movement will be very large. It can be seen that even if there are many cases, the contact surface can be analyzed without subdividing the elements.
第6図は、本発明の接触要素の頂点を接触面の両側にと
る方法を用いて、へ節点六面体の接触要素を作成する方
法を示したものである。すなわち、八個の五節点接触要
素からへ節点接触要素2122 23 24 25 2
6 27 28を合成する。このようにして作成した接
触要素は、第4図で示した適用例と同じ特性をもってい
る。すなわち、第7図に示すように、接触面の面に並行
な相対移動がどちらの向きであろうと、接触面の接触を
表す有効な接触要素が存在する。FIG. 6 shows a method of creating a hexahedral contact element with hexagonal nodes using the method of the present invention in which the vertices of the contact element are located on both sides of the contact surface. That is, from eight five-node contact elements to nodal contact elements 2122 23 24 25 2
Synthesize 6 27 28. The contact element produced in this way has the same properties as the application example shown in FIG. That is, as shown in FIG. 7, no matter which direction the relative movement of the contact surfaces parallel to the plane is, there is a valid contact element representing the contact of the contact surfaces.
以上の実施例では、第1図に示す五節点四角錐接触要素
を用いたが、第8図に示すような四節点三角錐接触要素
でもまったく同様に行うことができる。また、二次元解
析の場合は、第9図に示すような3節点三角形接触要素
を考えればよく、五節点三角錐接触要素の場合と同じ適
用例が考えられる。In the above embodiment, the five-node square pyramid contact element shown in FIG. 1 was used, but the same operation can be performed using a four-node triangular pyramid contact element as shown in FIG. Furthermore, in the case of two-dimensional analysis, a three-node triangular contact element as shown in FIG. 9 may be considered, and the same application example as the five-node triangular pyramidal contact element can be considered.
[発明の効果]
本発明によれば、接触面の面に並行な相対移動量が多い
場合でも、要素の再分割無しに接触面の解析が行える。[Effects of the Invention] According to the present invention, even when there is a large amount of relative movement parallel to the surface of the contact surface, the contact surface can be analyzed without re-dividing the elements.
第1図、第8図および第9図は、接触要素の説明図、第
2図から第7図は、本発明の実施例を示す説明図である
。
1.2,3,4.5・・・節点、6・・・垂線の足、7
゜8・・・物体表面、9,10,11,12,13,1
4゜15.16,17,18,19,20,21,22
゜23.24,25,26,27,28,29,30゜
31.32,33,34,35,36,37,38゜も
l 図
第 、?1vI(’ξ9
−弗31i0(a)
第 3r’i:J(bう
il 4 口 (aン
第5図忙)
第 5121(d)
第 62
第 712]
第 8121
第 981, 8 and 9 are explanatory diagrams of contact elements, and FIGS. 2 to 7 are explanatory diagrams showing embodiments of the present invention. 1.2,3,4.5... Node, 6... Leg of perpendicular line, 7
゜8...Object surface, 9, 10, 11, 12, 13, 1
4゜15.16,17,18,19,20,21,22
゜23. 24, 25, 26, 27, 28, 29, 30 ゜ 31. 32, 33, 34, 35, 36, 37, 38゜ l Figure No. , ? 1vI ('ξ9 -弗31i0(a) 3rdr'i:J(buil 4 口 (aan 5th figure busy) 5121(d) 62nd 712th) 8121st 98th
Claims (1)
報を入力する入力部分と、それらの情報から構造物相互
の接触部の変形、応力を算出する演算部と、演算結果を
出力する出力部からなる接触応力解析システムにおいて
、接触面を複数の有限領域に分割し、その有限領域上に
点を設け、一方の有限領域上の点とそれと相対する接触
面上の一番近い分割された有限領域との間の表面力と変
位の関係を表す三角形または正角錐または四角錐の仮想
的な要素を接触面間に挿入し、さらにその有限領域上の
点とさきほどの点を含む有限領域との間にも表面力と変
位の関係を表す仮想的な要素を多重に挿入することを特
徴とする接触応力解析システム。 2、請求項1において、一方の有限領域上の点とそれと
相対してない近傍の有限領域との間にも剛性ゼロの仮想
的な要素を多重に挿入し、接触面の相対位置関係により
要素の剛性をつぎつぎと切替えることにより、接触面が
大きな相対滑りを起こす場合も要素の再挿入なしに解析
可能とする接触応力解析システム。 3、複数の構造物の形状情報、荷重情報及び境界条件情
報を入力するステップと、これらの情報から構造物相互
の接触部の変形、応力を算出する演算ステップと、演算
結果を出力するステップからなる接触応力解析方法にお
いて、接触面を複数の有限領域に分割し、その有限領域
上に点を設け、一方の有限領域上の点とそれと相対する
接触面上の一番近い分割された有限領域との間の表面力
と変位の関係を表す三角形または三角錐または四角錐の
仮想的な要素を接触面間に挿入し、さらにその有限領域
が属している表面の他の有限領域との間には剛性がゼロ
の要素を挿入し、接触面の相対位置関係により剛性がゼ
ロの要素とゼロでない要素をつぎつぎと切替えることに
より、接触面が大きな相対滑りを起こす場合も要素の再
挿入なしに解析可能とする接触応力解析方法。[Scope of Claims] 1. An input section that inputs shape information, load information, and boundary condition information of a plurality of structures, and a calculation section that calculates deformation and stress of mutual contact parts of the structures from the information, In a contact stress analysis system consisting of an output unit that outputs calculation results, the contact surface is divided into multiple finite regions, points are set on the finite regions, and points on one finite region and the opposite contact surface are Insert a virtual triangular, regular pyramid, or quadrangular pyramid element between the contact surfaces that represents the relationship between surface force and displacement with the nearest divided finite region, and then A contact stress analysis system that is characterized by inserting multiple virtual elements that represent the relationship between surface force and displacement between finite regions that include points. 2. In claim 1, multiple virtual elements with zero rigidity are inserted between a point on one finite area and a neighboring finite area that is not facing it, and the elements are determined by the relative positional relationship of the contact surfaces. A contact stress analysis system that enables analysis without reinserting elements even when large relative slip occurs on the contact surface by switching the stiffness of the contact surface one after another. 3. A step of inputting shape information, load information, and boundary condition information of multiple structures, a calculation step of calculating deformation and stress of mutual contact parts of the structures from these information, and a step of outputting the calculation results. In the contact stress analysis method, the contact surface is divided into multiple finite regions, points are set on the finite regions, and points on one finite region and the nearest divided finite region on the contact surface opposite to it are Insert a virtual triangular, triangular pyramid, or quadrangular pyramidal element between the contact surfaces that represents the relationship between surface force and displacement between By inserting an element with zero stiffness and switching between elements with zero stiffness and non-zero stiffness one after another depending on the relative position of the contact surface, analysis can be performed without reinserting the element even when the contact surface has a large relative slip. A contact stress analysis method that makes it possible.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2329326A JPH04204024A (en) | 1990-11-30 | 1990-11-30 | Analyzing system for contact stress |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2329326A JPH04204024A (en) | 1990-11-30 | 1990-11-30 | Analyzing system for contact stress |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04204024A true JPH04204024A (en) | 1992-07-24 |
Family
ID=18220207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2329326A Pending JPH04204024A (en) | 1990-11-30 | 1990-11-30 | Analyzing system for contact stress |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04204024A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014006797A (en) * | 2012-06-26 | 2014-01-16 | Toyo Constr Co Ltd | Analysis method and design method of marine structure |
-
1990
- 1990-11-30 JP JP2329326A patent/JPH04204024A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014006797A (en) * | 2012-06-26 | 2014-01-16 | Toyo Constr Co Ltd | Analysis method and design method of marine structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Roy et al. | Representation and interpretation of geometric tolerances for polyhedral objects. II.: Size, orientation and position tolerances | |
White et al. | The algebraic geometry of stresses in frameworks | |
Kangwai et al. | Symmetry-adapted equilibrium matrices | |
Rajan et al. | Dynamics of a rigid body in frictional contact with rigid walls: motion in two dimensions | |
Nguyen et al. | Algorithms for automated deduction of topological information | |
Erickson et al. | Separation-sensitive collision detection for convex objects | |
Echter | Isogeometric analysis of shells | |
JPH11353501A (en) | Analysis model conversion method and analysis data integrated management system | |
JPH04204024A (en) | Analyzing system for contact stress | |
Whiteley | Infinitesimally rigid polyhedra. II. Modified spherical frameworks | |
Cefalo et al. | Real-time self-collision detection algorithms for tensegrity systems | |
JP2566061B2 (en) | How to convert area data to path data | |
Chaabane et al. | Topological approach to solve 2D truss structure using MGS language | |
JP2014109974A (en) | Structure analyzing device, method, and program | |
Lottati et al. | A second-order Godunov scheme on a spatial adapted triangular grid | |
Baker et al. | The design of structural” spider webs “ | |
Filimonov et al. | Constructing Equidistant Curve for Planar Composite Curve in CAD Systems | |
Richter-Gebert | Meditations on Ceva’s theorem | |
Duarte et al. | Generalized finite element methods for three dimensional structural mechanics problems | |
JP3134787B2 (en) | Impurity interpolation method during mesh deformation | |
Kaveh et al. | Canonical forms for symmetric and regular structures | |
Chyuan et al. | Computational study of variations in gap size for the electrostatic levitating force of MEMS device using dual BEM | |
Tóth | Quantitative Restrictions on Crossing Patterns | |
Emiris et al. | Voronoi diagram of orthogonal polyhedra in two and three dimensions | |
JP2010244487A (en) | Method for formation of lattice for use in numerical analysis |