JPH04204000A - Radiation shielded container - Google Patents

Radiation shielded container

Info

Publication number
JPH04204000A
JPH04204000A JP33630790A JP33630790A JPH04204000A JP H04204000 A JPH04204000 A JP H04204000A JP 33630790 A JP33630790 A JP 33630790A JP 33630790 A JP33630790 A JP 33630790A JP H04204000 A JPH04204000 A JP H04204000A
Authority
JP
Japan
Prior art keywords
shielding material
lead
container
lead shielding
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33630790A
Other languages
Japanese (ja)
Inventor
Masasuke Fujisawa
匡介 藤沢
Hiroaki Yanai
廣明 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33630790A priority Critical patent/JPH04204000A/en
Publication of JPH04204000A publication Critical patent/JPH04204000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To enable efficient and easy production of a radiation shielded container by making boundary shape among an inner cylinder, an outer cylinder and a lead shielding material of corrugated shape and also by making thickness of the lead shielding material at recessed part and that at protruding parts, almost equal to each other. CONSTITUTION:Boundary surfaces 8 and 9 among an inner cylinder 3, an outer cylinder 4 and a lead shielding material 4 are of corrugated shape formed by ring grooves 6 and 7 and, at the same time, the thickness of the lead shielding material at recessed parts 10 and that at protruding parts 11 are almost the same. A heater is housed in a radiation shielded container 1 in order to investigate heat transfer characteristic at a cylindrical part 2, and on the other hand, heat removal characteristic is investigated for the same radiation shielded container (conventional container) except for smooth boundary surfaces instead of corrugated ones. As the investigation results, it is assured that the radiation shielded container 1 of this type has almost 20% higher heat transfer characteristic and better heat removal function, compared to the conventional container.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、放射線遮蔽容器に関し、詳細には、核燃料輸
送容器等の如く放射性物質を収納すると共に外部への放
射線もれを防止する放射線遮蔽機能を有する放射線遮蔽
容器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a radiation shielding container, and more particularly, to a radiation shielding container for storing radioactive materials and preventing radiation leakage to the outside, such as a nuclear fuel transportation container. The present invention relates to a functional radiation shielding container.

(従来の技術) 従来の放射線遮蔽容器は、第5図に示す如(、筒状容器
の筒部が鋼製内筒と、鋼製外筒と、該内筒及び外筒の間
に充填されてなる筒状鉛遮蔽材とで構成されている。尚
、上記内筒は炭素鋼製又はステンレス鋼製、外筒はステ
ンレス鋼製である場合が多い。鉛遮蔽材は、内筒と外筒
との間に溶融鉛を注入し冷却凝固させる方法(鋳造法)
により充填される。内筒及び外筒と鉛遮蔽材との境界面
形状は凹凸を存さない平滑な面である。
(Prior Art) A conventional radiation shielding container has a cylindrical container as shown in FIG. The inner cylinder is often made of carbon steel or stainless steel, and the outer cylinder is made of stainless steel.The lead shielding material consists of a cylindrical lead shielding material made of a A method of injecting molten lead between the metal and solidifying it by cooling (casting method)
Filled with. The shape of the interface between the inner cylinder, the outer cylinder, and the lead shielding material is a smooth surface with no unevenness.

放射線遮蔽容器の収納物である放射性物質は多くの場合
発熱性を存しているので、放射線遮蔽容器は放熱(除熱
)性能の良いことが必要である。
Since the radioactive substances contained in the radiation shielding container are often exothermic, the radiation shielding container needs to have good heat radiation (heat removal) performance.

しかし、内筒及び外筒と鉛遮蔽材との境界部が存在する
こと、又、内外筒の鋼と遮蔽材の鉛とは本来的に密着性
が悪く、しかも溶融鉛の凝固の際に鉛が収縮するため内
筒及び外筒と鉛遮蔽材との境界部には間隙が生じ残存す
ることに起因して、除熱性能が低いという問題点があっ
た。
However, there are boundaries between the inner and outer cylinders and the lead shielding material, and the adhesion between the steel of the inner and outer cylinders and the lead of the shielding material is inherently poor, and furthermore, when the molten lead solidifies, the lead shielding material Due to the shrinkage of the lead shielding material, gaps are created and remain at the boundaries between the inner and outer cylinders and the lead shielding material, resulting in a problem of low heat removal performance.

そこで、除熱性能の向上対策として、上記内外筒の鋼と
遮蔽材の鉛との密着性を改善するための処理が行われて
いる。かかる処理として代表的なものとしてホモゲン処
理がある。該処理は、予め内外筒の鋼を200〜300
°Cに加熱し、内筒の外面及び外筒の内面にホモゲン液
(Sb、 Znの塩化物水溶液)を塗布するか、又はハ
ンダを塗布し、次いで該塗布面に鉛を溶接肉盛りした後
、内外筒間に鉛を鋳造するものである。
Therefore, as a measure to improve heat removal performance, treatments are being carried out to improve the adhesion between the steel of the inner and outer cylinders and the lead of the shielding material. A typical example of such treatment is homogen treatment. In this process, the steel of the inner and outer cylinders is heated to 200-300% in advance.
After heating to °C and applying homogen solution (Sb, Zn chloride aqueous solution) to the outer surface of the inner cylinder and the inner surface of the outer cylinder, or applying solder, and then welding and overlaying the applied surface with lead. , lead is cast between the inner and outer cylinders.

又、特願平1−47757号公報には、内筒の外面に鉛
を厚めに鋳造し、次いてその鉛層を機械加工した後、外
筒を嵌合する方法が開示されている。
Further, Japanese Patent Application No. 1-47757 discloses a method in which lead is cast thickly on the outer surface of an inner cylinder, the lead layer is then machined, and then an outer cylinder is fitted.

(発明が解決しようとする課題) ところが、前記従来のホモゲン処理においては、処理工
程が多くて煩雑であると共に処理時間が長くて非効率的
であり、又、処理に熟練を要するという問題点がある。
(Problems to be Solved by the Invention) However, the conventional homogen treatment described above has the problems that it is complicated due to the large number of treatment steps, is inefficient due to the long treatment time, and requires skill for the treatment. be.

かかるホモゲン処理の場合に比して、特願平1−477
57号公報記載の外筒嵌合法の場合は、作業時間は短か
くなるが、内筒及び外筒と鉛遮蔽材との境界部には依然
として間隙が存在するために密着性が劣り、その結果除
熱性能が低くて充分なものとは言えない。
Compared to the case of such homogen treatment, Japanese Patent Application No. 1-477
In the case of the outer cylinder fitting method described in Publication No. 57, the working time is shortened, but there are still gaps at the boundaries between the inner cylinder and outer cylinder and the lead shielding material, resulting in poor adhesion. The heat removal performance is low and cannot be said to be sufficient.

本発明は、このような事情に着目してなされたものであ
って、その目的は上記従来技術の存する問題点を解消し
、ホモゲン処理の場合の如き工程煩雑化を招くことなく
比較的効率的に且つ容易に製造し得ると共に、除熱性能
を向上し得るようになる放射線遮蔽容器を提供しようと
するものである。
The present invention has been made in view of these circumstances, and its purpose is to solve the problems of the above-mentioned prior art, and to achieve relatively efficient processing without complicating the process as in the case of homogenization. An object of the present invention is to provide a radiation shielding container that can be manufactured easily and has improved heat removal performance.

(課題を解決するための手段) 上記目的を達成するために、本発明に係る放射線遮蔽容
器は、次のような構成としている。
(Means for Solving the Problems) In order to achieve the above object, the radiation shielding container according to the present invention has the following configuration.

即ち、請求項1に記載の放射線遮蔽容器は、筒状容器の
筒部が鋼製内筒と、鋼製外筒と、該内筒及び外筒の間に
充填されてなる筒状鉛遮蔽材とで構成された放射線遮蔽
容器において、前記内筒及び外筒と鉛遮蔽材との境界面
形状が凹凸状であると共に、該凹部での鉛遮蔽材厚さと
凸部での鉛遮蔽材厚さとが略同等であることを特徴とす
る放射線遮蔽容器である。
That is, the radiation shielding container according to claim 1 is a cylindrical lead shielding material in which the cylindrical portion of the cylindrical container includes an inner cylinder made of steel, an outer cylinder made of steel, and a space between the inner cylinder and the outer cylinder is filled. In the radiation shielding container, the interface between the inner cylinder and the outer cylinder and the lead shielding material is uneven, and the thickness of the lead shielding material at the concave portion and the thickness of the lead shielding material at the convex portion are This is a radiation-shielding container characterized by having substantially the same values.

請求項2に記載の放射線遮蔽容器は、前記内筒及び外筒
と鉛遮蔽材との境界部の隙間にヘリウムガス等の良熱伝
導性の気体を封入している請求項1に記載の放射線遮蔽
容器である。
The radiation shielding container according to claim 2 is the radiation shielding container according to claim 1, wherein a gas having good thermal conductivity such as helium gas is sealed in a gap at the boundary between the inner tube, the outer tube, and the lead shielding material. It is a shielded container.

(作 用) 本発明に係る放射線遮蔽容器は、前記の如く、筒状容器
の筒部が鋼製内筒と、鋼製外筒と、該内筒及び外筒の間
に充填されてなる筒状鉛遮蔽材とで構成された放射線遮
蔽容器において、前記内筒及び外筒と鉛遮蔽材との境界
面形状を凹凸状にすると共に、該凹部での鉛遮蔽材厚さ
と凸部での鉛遮蔽材厚さとを略同等にするようにしてい
る。
(Function) As described above, the radiation shielding container according to the present invention is a cylinder in which the cylindrical portion of the cylindrical container is formed by an inner cylinder made of steel, an outer cylinder made of steel, and a space between the inner cylinder and the outer cylinder. In a radiation shielding container configured with a shaped lead shielding material, the interface between the inner and outer cylinders and the lead shielding material is made uneven, and the thickness of the lead shielding material at the recessed portion and the lead thickness at the convex portion are made uneven. The thickness of the shielding material is made to be approximately the same.

このように境界面形状を凹凸状にしているので、境界面
形状が凹凸を有さない平滑な面である場合に比し、境界
面の実表面積が大きくなり、そのため内筒及び外筒と鉛
遮蔽材との境界部での伝熱面積が増大する。伝熱面積が
増大すると伝熱性が当然に高まる。故に、伝熱性を高め
て除熱性能を向上し得るようになり、たとえ境界部に間
隙が存在しても、充分な除熱性能を確保し得るようにな
る。
Since the boundary surface shape is made uneven in this way, the actual surface area of the boundary surface is larger than when the boundary surface shape is a smooth surface with no irregularities, and therefore the inner cylinder and outer cylinder are connected to the lead. The heat transfer area at the boundary with the shielding material increases. As the heat transfer area increases, the heat transfer performance naturally increases. Therefore, it becomes possible to improve heat transfer performance and improve heat removal performance, and even if a gap exists at the boundary, sufficient heat removal performance can be ensured.

又、上記凹部での鉛遮蔽材厚さと凸部での鉛遮蔽材厚さ
とを略同等になるようにしているので、鉛遮蔽材の厚さ
は位置による大幅な差がなくて略均−になり、そのため
鉛遮蔽材の遮蔽性は位置による差がな(て均一になると
共に、熱の伝わり方も均一になる。尚、凹部と凸部とで
鉛遮蔽材厚さに違いかあると、鉛遮蔽材の厚さが不均一
になって薄い部分が存在し、その部分が一種の欠陥とな
って鉛の遮蔽性が低下して問題が生じることになる。
In addition, since the thickness of the lead shielding material in the recessed portion and the thickness of the lead shielding material in the convex portion are made to be approximately the same, the thickness of the lead shielding material does not vary greatly depending on the position and is approximately uniform. Therefore, the shielding performance of the lead shielding material becomes uniform with no difference depending on the position, and the way the heat is conducted is also uniform.In addition, if there is a difference in the thickness of the lead shielding material between the concave part and the convex part, The thickness of the lead shielding material is non-uniform and there are thin parts, which become a type of defect and lead to a problem in which the lead shielding properties are reduced.

境界面形状を凹凸状にするには、内筒の外面及び外筒の
内面に複数の環状溝を設け、該内筒及び外筒の間に筒状
鉛遮蔽材を充填すればよい。上記環状溝は例えば機械加
工で容易に設けられ、又、鉛遮蔽材の充填は例えば従来
の場合と同様の鋳造法、即ち内外筒の間に溶融鉛を注入
し冷却凝固させる方法により行い得る。
In order to make the boundary surface uneven, a plurality of annular grooves may be provided on the outer surface of the inner tube and the inner surface of the outer tube, and a cylindrical lead shielding material may be filled between the inner tube and the outer tube. The annular groove can be easily formed, for example, by machining, and the lead shielding material can be filled, for example, by the same casting method as in the conventional case, that is, by pouring molten lead between the inner and outer cylinders and cooling and solidifying it.

従って、本発明に係る放射線遮蔽容器によれば、前記従
来技術の存する問題点を解消し、ホモゲン処理の場合の
如き工程煩雑化を招くことなく比較的効率的に且つ容易
に製造し得ると共に、除熱性能を向上し得るようになる
Therefore, the radiation shielding container according to the present invention solves the problems of the prior art, and can be manufactured relatively efficiently and easily without complicating the process as in the case of homogenization. Heat removal performance can be improved.

前記内筒及び外筒と鉛遮蔽材との境界部の隙間にヘリウ
ムガス等の良熱伝導性の気体を封入するようにすると、
隙間に空気等の熱伝導性の悪い気体が封じ込められてい
る場合に比して、境界部での伝熱性を高めて除熱性能を
向上し得るようになる。
When a gas with good thermal conductivity such as helium gas is filled in the gap between the boundary between the inner cylinder and the outer cylinder and the lead shielding material,
Compared to the case where a gas with poor thermal conductivity such as air is confined in the gap, heat conductivity at the boundary can be increased and heat removal performance can be improved.

(実施例) 本発明の実施例に係る放射線遮蔽容器の概要を第1図に
示し、該容器の筒部の拡大図を第2図に示す。該放射線
遮蔽容器(1)の筒部(2)は、外面に複数の環状溝(
6)を存する炭素鋼製の内筒(3)と、内面に複数の環
状溝(7)を有するステンレス鋼製の外筒(5)と、該
内筒(3)及び外筒(5)の間に鋳造法により充填され
てなる筒状鉛遮蔽材(4)とで構成されている。第2図
から判る如く、上記内筒(3)及び外筒(5)と鉛遮蔽
材(4)との境界面(8)、 (9)の形状は、前記環
状溝(6)、 (7)により形成された凹凸状であると
共に、該凹部(lO)ての鉛P!蔽材厚さと凸部(11
)での鉛遮蔽材厚さとが略同等である。境界部(8)、
 (9)での実面積即ち伝熱面積は、凹凸を有さない平
滑な面のもの(従来方式の容器)に比して50%程度大
きい。
(Example) FIG. 1 shows an outline of a radiation shielding container according to an example of the present invention, and FIG. 2 shows an enlarged view of the cylindrical portion of the container. The cylindrical portion (2) of the radiation shielding container (1) has a plurality of annular grooves (
6), an outer cylinder (5) made of stainless steel having a plurality of annular grooves (7) on the inner surface, and an inner cylinder (3) and an outer cylinder (5). It is composed of a cylindrical lead shielding material (4) filled in between by a casting method. As can be seen from FIG. 2, the shapes of the boundary surfaces (8) and (9) between the inner cylinder (3) and outer cylinder (5) and the lead shielding material (4) are the same as the annular grooves (6) and (7). ), and the lead P! in the recess (lO). Shielding material thickness and convex portion (11
) is approximately the same as the lead shielding material thickness. Boundary part (8),
The actual area, that is, the heat transfer area in (9), is about 50% larger than that of a container with a smooth surface without irregularities (conventional type container).

上記放射線i!!蔽容器(1)内にヒータ(図示してい
ない)を収納し、筒部(2)での伝熱性を測定して除熱
性能を調へた。又、境界面が凹凸状でなく平滑であり、
かかる点を除き同様の放射線遮蔽容器(従来方式の容器
)についても、同様に除熱性能を調へた。その結果、上
記放射線遮蔽容器(1)は従来方式の容器に比して20
%程度伝熱性か高く、除熱性能に優れていることか確認
された。
The above radiation i! ! A heater (not shown) was housed in the shielding container (1), and the heat transfer performance in the cylindrical portion (2) was measured to determine the heat removal performance. In addition, the boundary surface is not uneven but smooth,
The heat removal performance of a radiation-shielding container (conventional type container) that was similar except for this point was also investigated. As a result, the radiation shielding container (1) has a radiation shielding capacity of 20% compared to conventional containers.
It was confirmed that the heat conductivity was about 1.9% higher and the heat removal performance was excellent.

尚、凹凸状の境界面形状は第2図に示した環状溝(6)
、 (7)により形成したものに限定されず、例えば第
3°図に示す如く断面波型のものや、第4図に示す如き
断面形状のものにすることかできる。
The uneven boundary surface shape is an annular groove (6) shown in Fig. 2.
, (7), but may have a corrugated cross-section as shown in FIG. 3, or a cross-sectional shape as shown in FIG. 4, for example.

第4図に示す凹凸状のものは、第2図に示したものより
も、伝熱面積が大きく、除熱性能を更に向上し得る利点
がある。
The uneven structure shown in FIG. 4 has a larger heat transfer area than that shown in FIG. 2, and has the advantage of further improving heat removal performance.

(発明の効果) 本発明に係る放射線遮蔽容器は、前述の如き構成を有し
作用を成すものであって、鉛のi!蔽性の低下を招くこ
となく、筒部の内筒及び外筒と鉛遮蔽材との境界面での
伝熱面積を増大させ得るので、伝熱性を高めて除熱性能
を向上し得るようになるという効果を奏するものである
。しかも、ホモゲン処理の場合の如き工程煩雑化を招く
ことなく、比較的効率的に且つ容易に製造し得るもので
ある。
(Effects of the Invention) The radiation shielding container according to the present invention has the above-described structure and functions, and has lead i! It is possible to increase the heat transfer area at the interface between the inner and outer cylinders of the cylindrical part and the lead shielding material without causing a decrease in shielding performance, so that heat transfer performance can be increased and heat removal performance can be improved. This has the effect of becoming. Moreover, it can be produced relatively efficiently and easily without complicating the process as in the case of homogen treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係る放射線遮蔽容器の概要
を示す断面図、第2図は、本発明の実施例に係る放射線
遮蔽容器の筒部断面の拡大図、第3図は、本発明に係る
放射線遮蔽容器の筒部の断面図、第4図は、本発明に係
る放射線遮蔽容器の筒部の断面図、第5図は、従来の放
射線遮蔽容器の概要を示す断面図である。 1−一放射線遮蔽容器  2−m=筒部3−−−内筒 
      4−−一筒状鉛遮蔽材5−−−外筒   
    6−−−環状溝7−−−環状溝      8
−−一境界面9−−−境界面      10−−一凹
部11−−−凸部 特許出願人 株式会社 神戸製鋼所 代 理 人  弁理士 金欠 章− 1jllllJl b ソ
FIG. 1 is a sectional view showing an outline of a radiation shielding container according to an embodiment of the present invention, FIG. 2 is an enlarged view of a cross section of a cylindrical portion of a radiation shielding container according to an embodiment of the present invention, and FIG. FIG. 4 is a sectional view of the cylindrical portion of the radiation shielding container according to the present invention. FIG. 5 is a sectional view showing an outline of a conventional radiation shielding container. be. 1-1 Radiation shielding container 2-m=Cylinder part 3---Inner cylinder
4 --- Cylindrical lead shielding material 5 --- Outer cylinder
6---Annular groove 7---Annular groove 8
---Boundary surface 9---Boundary surface 10--Concave portion 11---Convex portion Patent applicant Kobe Steel Co., Ltd. Agent Patent attorney Akira Kaneshiro- 1jllllJl b So

Claims (2)

【特許請求の範囲】[Claims] (1)筒状容器の筒部が鋼製内筒と、鋼製外筒と、該内
筒及び外筒の間に充填されてなる筒状鉛遮蔽材とで構成
された放射線遮蔽容器において、前記内筒及び外筒と鉛
遮蔽材との境界面形状が凹凸状であると共に、該凹部で
の鉛遮蔽材厚さと凸部での鉛遮蔽材厚さとが略同等であ
ることを特徴とする放射線遮蔽容器。
(1) In a radiation shielding container in which the cylindrical portion of the cylindrical container is composed of a steel inner tube, a steel outer tube, and a cylindrical lead shielding material filled between the inner tube and the outer tube, The interface between the inner cylinder and the outer cylinder and the lead shielding material is uneven, and the thickness of the lead shielding material at the concave portion is approximately equal to the thickness of the lead shielding material at the convex portion. Radiation shielding container.
(2)前記内筒及び外筒と鉛遮蔽材との境界部の隙間に
ヘリウムガス等の良熱伝導性の気体を封入している請求
項1に記載の放射線遮蔽容器。
(2) The radiation shielding container according to claim 1, wherein a gas having good thermal conductivity such as helium gas is sealed in a gap at the boundary between the inner tube, the outer tube, and the lead shielding material.
JP33630790A 1990-11-29 1990-11-29 Radiation shielded container Pending JPH04204000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33630790A JPH04204000A (en) 1990-11-29 1990-11-29 Radiation shielded container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33630790A JPH04204000A (en) 1990-11-29 1990-11-29 Radiation shielded container

Publications (1)

Publication Number Publication Date
JPH04204000A true JPH04204000A (en) 1992-07-24

Family

ID=18297762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33630790A Pending JPH04204000A (en) 1990-11-29 1990-11-29 Radiation shielded container

Country Status (1)

Country Link
JP (1) JPH04204000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915386A (en) * 1995-06-29 1997-01-17 Kimura Chem Plants Co Ltd Producing method for radioactive materials container vessel
EP0843318A1 (en) * 1996-11-19 1998-05-20 Transnucléaire Spline arrangement for externally cooling containers for radioactive material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915386A (en) * 1995-06-29 1997-01-17 Kimura Chem Plants Co Ltd Producing method for radioactive materials container vessel
EP0843318A1 (en) * 1996-11-19 1998-05-20 Transnucléaire Spline arrangement for externally cooling containers for radioactive material
FR2756090A1 (en) * 1996-11-19 1998-05-22 Transnucleaire GRID DEVICE FOR EXTERNAL COOLING OF CONTAINERS FOR RADIOACTIVE MATERIALS

Similar Documents

Publication Publication Date Title
US4599505A (en) Flexible trailing shield for welding reactive metals
JPH04204000A (en) Radiation shielded container
US2707136A (en) Insert ring for pistons
US3320084A (en) Vapor diffusion process and protection means
ES194990U (en) Perfected collector for the continuous metal collar, especially for the cast of steel cast. (Machine-translation by Google Translate, not legally binding)
CN214053602U (en) Crystallizer water jacket
JPS61190007A (en) Production of hot extruded clad metallic pipe by powder metallurgical method
JPH0675093A (en) Radiation shielding vessel and its fabrication
JPH0353003Y2 (en)
US2871555A (en) Method of jacketing fissionable materials
JP2020029805A (en) Cylinder liner, manufacturing method for block, and manufacturing method for cylinder liner
CN207681797U (en) It is stainless steel welded to delay oxidizing gas welding protection device
JPS6325018Y2 (en)
JPH0350323A (en) Sleeve for two cycle engine
JP4105479B2 (en) Stainless steel vitrified container
JPH0357302B2 (en)
JPS60129467A (en) Producing method of cylinder
JP2966044B2 (en) Manufacturing method of cylinder with lining
SU531694A1 (en) The method of cold welding gray iron
JPH0481216A (en) Method for hot-extruding hard-to-work material
JP2686944B2 (en) Ceramic heat pipe manufacturing method
JPS63109112A (en) Method for treating surface hardening of piston ring
JPS6350441Y2 (en)
JPS6213268A (en) Build-up welding method for roll
JPS5510332A (en) Electron beam welding construction of plate