JPH04203757A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH04203757A
JPH04203757A JP2328947A JP32894790A JPH04203757A JP H04203757 A JPH04203757 A JP H04203757A JP 2328947 A JP2328947 A JP 2328947A JP 32894790 A JP32894790 A JP 32894790A JP H04203757 A JPH04203757 A JP H04203757A
Authority
JP
Japan
Prior art keywords
cycle
capillary tube
cooling
solenoid valve
steady
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2328947A
Other languages
Japanese (ja)
Inventor
Takashi Kimura
孝 木村
Toyo Washimi
鷲見 東洋
Tokuhisa Nishizawa
西澤 徳尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Shimizu Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2328947A priority Critical patent/JPH04203757A/en
Publication of JPH04203757A publication Critical patent/JPH04203757A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator

Abstract

PURPOSE:To perform smooth transfer to steady operation in a short time by a method wherein the capillary tube of an indoor unit comprises a plurality of cycle routes, and during the starting of a cooling cycle, a solenoid valve opened for a specified time is installed in a capillary tube route for a refrigerant flow rise. CONSTITUTION:The refrigerant flow of a cooling cycle flows from a compressor 1 to a condenser 2 and returns through an accumulator 5 to the compressor 1 after the flow of it through a capillary tube 3 for steady operation to a vaporizer 4. A capillary tube 6 for a starting is connected through a solenoid valve 7 in parallel to the capillary tube 3. Only fan is run according to a fan operation command, cooling cycle operation is effected according to a cooling operation command, and a solenoid valve 7, simultaneously, is opened. After the solenoid valve 7 holds an opening state for a specified time, the valve is closed and brought into a cooling operation steady state. Since during the starting of a cooling cycle, a refrigerant flows in the capillary tubes 6 of a plurality of routes for a specified time, rise resistance is reduced and smooth transfer to a steady cycle is effected in a short time. After transfer to steady operation, a cycle is controlled by means of the capillary tube 3 for steady operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気調和機の冷凍サイクル機に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a refrigeration cycle machine for an air conditioner.

〔従来の技術〕[Conventional technology]

従来の装置は、室内ユニットのキャピラリチューブは、
一つのサイクル系路で構成されているので、冷凍サイク
ル起動時の冷媒流れの立上げから定常運転に至るまでの
時間は、10分前後を要していた。すなわち、キャピラ
リチューブ選定は。
In the conventional device, the capillary tube of the indoor unit is
Since it consists of one cycle path, it takes about 10 minutes from the start of the refrigerant flow at the start of the refrigeration cycle to steady operation. In other words, capillary tube selection.

定常運転状態域を想定しての、ものであり、立上がり時
にとって、圧力抵抗が大き過ぎ、スムーズな定常状態へ
の移行を妨げるサイズとなっていた。
This was designed with the assumption that it would be in a steady state operating state, and the pressure resistance was too large during start-up, which prevented a smooth transition to a steady state.

また、実開昭61−130864号公報に記載のように
、電気信号制御膨脹弁系路と並列に圧力開閉弁をもつバ
イパス流路を設けたものもあるが、立上り時の冷媒制御
のためではなく、前記と同様な問題があった。
In addition, as described in Japanese Utility Model Application Publication No. 130864/1986, there is a system in which a bypass flow path with a pressure on/off valve is provided in parallel with the electric signal controlled expansion valve system path, but this is not suitable for controlling the refrigerant during startup. There was the same problem as above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、冷凍サイクル起動時の、冷媒流れの立
上げから定常運転へのスムーズな短時間的移行について
は考慮されておらず、冷房負荷の小さい状況での、短時
間の冷房サイクル運転の発停繰返し時には、消費電力の
大きさの割には、冷力出力が小さく、効率の悪い冷房運
転となる問題があった。
The above conventional technology does not take into consideration the smooth short-term transition from the start-up of the refrigerant flow to steady operation at the time of starting the refrigeration cycle, and does not consider the short-term smooth transition from the start-up of the refrigerant flow to steady operation at the time of starting the refrigeration cycle. When the system repeatedly starts and stops, there is a problem in that the cooling power output is small compared to the amount of power consumed, resulting in inefficient cooling operation.

本発明の目的は、冷凍サイクル構成と、その制御により
、サイクル起動時の冷媒流れの立上げから定常運転への
移行を、スムーズに短時間で行なえるようにすることで
、特に冷房サイクル運転の発停繰返し時の運転効率を高
めることにある。
An object of the present invention is to provide a refrigeration cycle configuration and its control to smoothly transition from the start-up of refrigerant flow at cycle startup to steady operation in a short time. The purpose is to improve operational efficiency during repeated starts and stops.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、室内ユニットのキャピラリ
チューブを、複数のサイクル系路で構成し、冷房サイク
ル起動時には、一定時間だけ開くよう制御される電磁弁
を、冷媒流立上げ用キャピラリチューブ系路に設置した
ものである。
In order to achieve the above objective, the capillary tube of the indoor unit is configured with multiple cycle paths, and when the cooling cycle is started, a solenoid valve that is controlled to open for a certain period of time is connected to the capillary tube path for starting the refrigerant flow. It was installed in

〔作用〕[Effect]

冷媒流立上げ用キャピラリチューブは、冷房サイクル起
動時、電磁弁を介して起動から一定時間、冷媒が流れる
。それによって冷房サイクル起動時には、定常運転冷房
サイクル用キャピラリチューブ系路と並行して、複数の
系路を冷媒が流れるので、定常運転への移行をスムーズ
に短時間に行なうことができ、冷房負荷の小さい状況等
における、短時間の冷房サイクル運転の発停繰返し時で
の運転効率を高めることができる。
When the cooling cycle is started, the refrigerant flows through the capillary tube for starting the refrigerant flow for a certain period of time through the solenoid valve. As a result, when the cooling cycle is started, the refrigerant flows through multiple systems in parallel with the capillary tube system for the steady-state cooling cycle, making it possible to smoothly transition to steady-state operation in a short time, reducing the cooling load. It is possible to improve the operating efficiency when the cooling cycle operation is repeatedly started and stopped for a short period of time, such as in small situations.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図ないし第7図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 7.

冷房サイクルの冷媒流れは、圧縮機1から凝縮器2に入
り、定常運転用キャピラリチューブ3を経て、蒸発器4
に入り、アキュムレータ5を経て、圧縮機1に戻るサイ
クルとなる。キャピラリチューブ3に並行して、起動用
キャピラリチューブ6が、電磁弁7を経て接続されてい
る。構造的には、液管11に分岐管10が取付けられ、
分岐管10の一方にはディストリビュータ9が、他方に
は電磁弁7を介して、ディストリビュータ8が取付けら
れている。両キャピラリチューブ3,6は蒸発器4のパ
イプ12にそう人されている。ガス管15はへラダ14
に接続されている。
The refrigerant flow in the cooling cycle enters the condenser 2 from the compressor 1, passes through the capillary tube 3 for steady operation, and then flows into the evaporator 4.
The cycle is such that the air enters the air, passes through the accumulator 5, and returns to the compressor 1. A starting capillary tube 6 is connected in parallel to the capillary tube 3 via a solenoid valve 7. Structurally, a branch pipe 10 is attached to the liquid pipe 11,
A distributor 9 is attached to one side of the branch pipe 10, and a distributor 8 is attached to the other side via a solenoid valve 7. Both capillary tubes 3, 6 are connected to the pipe 12 of the evaporator 4. Gas pipe 15 is Helada 14
It is connected to the.

電磁弁7の制御配線16は電気品箱17内の制御基板に
接続され、電気的に開、閉をコントロールされる。第5
図に示すように、制御基板によりファンモータ18と電
磁弁7は通電を制御される。
The control wiring 16 of the solenoid valve 7 is connected to a control board in an electrical component box 17, and is electrically controlled to open and close. Fifth
As shown in the figure, the fan motor 18 and the solenoid valve 7 are energized and controlled by the control board.

ここでは制御基板の回路図示、説明は省略し。Here, the circuit diagram and explanation of the control board will be omitted.

第7図により作動のみ説明する。Only the operation will be explained with reference to FIG.

停止状態より、ファン運転指令でファンのみ運転となる
。冷房運転指令で冷房サイクル運転となり、同時に電磁
弁が開き、一定時間電磁弁は開状態が保持された後、閉
じて、冷房運転定常状態に入る。冷房運転停止指令でフ
ァンのみ運転となり。
From the stopped state, only the fan will operate with a fan operation command. A cooling cycle operation is initiated by the cooling operation command, and at the same time, the solenoid valve opens, and after the solenoid valve remains open for a certain period of time, it closes and enters the steady state of cooling operation. When the cooling operation is stopped, only the fan operates.

全停止指令にて、ファンも停止となる。The fan will also stop when the full stop command is issued.

以との動作により、冷房サイクル起動時には、一定時間
、冷媒は複数系路のキャピラリチューブを流れるので、
立上がり抵抗が、少なく、定常サイクルへの移行がスム
ーズに短時間で行なわれる。
Due to the above operation, when the cooling cycle starts, the refrigerant flows through the capillary tubes of multiple channels for a certain period of time, so
The start-up resistance is low, and the transition to a steady cycle is smooth and quick.

定常運転に移動後は通常の製品と同様の、定常運転用キ
ャピラリチューブにより、サイクル制御される。
After moving to steady operation, cycle control is performed using the same capillary tube for steady operation as in regular products.

本実施例によれば第6図に示したように、従来の冷房サ
イクル起動時の冷力立上がりよりも、スームズで短時間
の立上がりとなり、特に、冷房負荷の小さい状況等にお
ける、短時間の冷房サイクル運転の発停繰返し時での運
転効率を高めることができる。
According to this embodiment, as shown in FIG. 6, the start-up of the cooling power is smoother and shorter than the start-up of the cooling power at the start of the conventional cooling cycle, and the start-up of the cooling power is smoother and takes a shorter time, especially when the cooling load is small. It is possible to improve operational efficiency during repeated start and stop of cycle operation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、冷房サイクル起動時の冷力立上げをス
ムーズに短時間で行なうようにできるので、冷房負荷の
小さい状況等における、短時間の冷房サイクル運転の発
停繰返し時での運転効率を高めることができる。
According to the present invention, the cooling power can be ramped up smoothly and in a short time when the cooling cycle is started, thereby improving operating efficiency when repeatedly starting and stopping the cooling cycle operation for a short period of time, such as in situations where the cooling load is small. can be increased.

また、冷房サイクル運転の発停繰返し時の、積算入力と
積算冷力より算出される5EER値の向上を図ることが
できる。
Furthermore, it is possible to improve the 5EER value calculated from the integrated input and integrated cooling power when the cooling cycle operation is repeatedly started and stopped.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の冷凍サイクルの系統図、第
2図は、第1図のキャピラリチューブ部分の説明図、第
3図は本発明の室内ユニットの構造を示す平面図、第4
図は第3図の側面図、第5図は本発明の制御ブロック図
、第6図は起動時の運転冷力状態図、第7図は本発明の
制御説明図である。 1・・・圧縮機、2・・凝縮器、3・・・キャピラリチ
ューブ、4・・・蒸発器、5・・・アキュムレータ、6
・・冷媒m fL I Lf J’tl ”r ”r 
e ”y ’J f :t −2、7°−’に!#−,
。 代理人 弁理士 小川勝馬1工・・ 刈 葛 1[!1
FIG. 1 is a system diagram of a refrigeration cycle according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the capillary tube portion of FIG. 1, and FIG. 3 is a plan view showing the structure of the indoor unit of the present invention. 4
The drawings are a side view of FIG. 3, FIG. 5 is a control block diagram of the present invention, FIG. 6 is an operational cooling power state diagram at startup, and FIG. 7 is a control explanatory diagram of the present invention. 1... Compressor, 2... Condenser, 3... Capillary tube, 4... Evaporator, 5... Accumulator, 6
... Refrigerant m fL I Lf J'tl ”r ”r
e ”y 'J f :t -2,7°-'!#-,
. Agent Patent Attorney Katsuma Ogawa 1... Karikatsu 1 [! 1

Claims (1)

【特許請求の範囲】 1、圧縮機、熱交換器およびサイクル制御装置より成る
冷凍サイクルを備えた空気調和機において、 蒸発器となる前記熱交換器の冷媒膨張装置として、配置
されるキャピラリチューブを、サイクル定常運転用の系
路と、その他に、サイクル起動時用の系路を設け、起動
用の前記キャピラリチューブの系統には電磁弁を配設し
て、起動時、一定時間だけ、前記電磁弁を開くことによ
り、起動時、両系路の前記キャピラリチューブを冷媒が
流れるようにしたことを特徴とする空気調和機。
[Claims] 1. In an air conditioner equipped with a refrigeration cycle consisting of a compressor, a heat exchanger, and a cycle control device, a capillary tube arranged as a refrigerant expansion device of the heat exchanger serving as an evaporator is provided. In addition, a system for steady cycle operation and a system for cycle startup are provided, and a solenoid valve is provided in the capillary tube system for startup, so that the solenoid valve is closed for a certain period of time during startup. An air conditioner characterized in that a refrigerant is made to flow through the capillary tubes of both systems at startup by opening a valve.
JP2328947A 1990-11-30 1990-11-30 Air-conditioner Pending JPH04203757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2328947A JPH04203757A (en) 1990-11-30 1990-11-30 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2328947A JPH04203757A (en) 1990-11-30 1990-11-30 Air-conditioner

Publications (1)

Publication Number Publication Date
JPH04203757A true JPH04203757A (en) 1992-07-24

Family

ID=18215879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2328947A Pending JPH04203757A (en) 1990-11-30 1990-11-30 Air-conditioner

Country Status (1)

Country Link
JP (1) JPH04203757A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019704A1 (en) * 1994-12-21 1996-06-27 Multibrás S/A. Eletrodomésticos A refrigeration system for refrigeration appliances
EP1462740A2 (en) * 2003-03-24 2004-09-29 Sanyo Electric Co., Ltd. Refrigerator
WO2016026226A1 (en) * 2014-08-18 2016-02-25 青岛海尔洗衣机有限公司 Heat pump system, combo washer-dryer, and dryer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019704A1 (en) * 1994-12-21 1996-06-27 Multibrás S/A. Eletrodomésticos A refrigeration system for refrigeration appliances
EP1462740A2 (en) * 2003-03-24 2004-09-29 Sanyo Electric Co., Ltd. Refrigerator
EP1462740A3 (en) * 2003-03-24 2004-12-01 Sanyo Electric Co., Ltd. Refrigerator
US7143593B2 (en) 2003-03-24 2006-12-05 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
EP1726893A3 (en) * 2003-03-24 2007-03-21 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
EP1726892A3 (en) * 2003-03-24 2007-04-04 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
EP1757879A3 (en) * 2003-03-24 2007-05-23 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
WO2016026226A1 (en) * 2014-08-18 2016-02-25 青岛海尔洗衣机有限公司 Heat pump system, combo washer-dryer, and dryer
EP3184934A4 (en) * 2014-08-18 2018-04-18 Qingdao Haier Washing Machine Co. Ltd. Heat pump system, combo washer-dryer, and dryer

Similar Documents

Publication Publication Date Title
WO1999026028A1 (en) Refrigerating apparatus
CN105408143A (en) Vehicular air conditioning device, and constituent unit thereof
JPS61133770U (en)
CN111031759A (en) Machine room air conditioning device and control method
JP3306612B2 (en) How to control the number of operating heat source units
JP2000039218A (en) Hot water apparatus deformed from refrigerating machine using alternately actuating two refrigerant passages and two different type condensers
JPH04208332A (en) Air conditioner having cold water making circuit
JPH04203757A (en) Air-conditioner
GB2134237A (en) Air conditioning apparatus
JPH05157372A (en) Electric part box cooler for air conditioner
KR950012148B1 (en) Airconditioner
JPH09257333A (en) Air-conditioner
JPH11182948A (en) Air conditioner
JPH08189719A (en) Air conditioner
JPH11304272A (en) Compression type cooling device
JPH05768Y2 (en)
JP3134388B2 (en) Air conditioner
JPH11108492A (en) Air conditioner
JP2000220894A (en) Air conditioner and method for operating the same
CN1131394C (en) Air conditioning system
JPH01314868A (en) Heat pump type heater-cooler
JPH031744Y2 (en)
KR20020041241A (en) Controller and method for defrosting operation of air-conditioner used both cooler and heater using electronic valve
JPH07151353A (en) Preventive method for stopping circulation of refrigerant in natural refrigerant-circulation air-conditioning system
KR100274460B1 (en) Heat-cooling system structure and heat-cooling operation method of heat pump type air conditioner