JPH04208332A - Air conditioner having cold water making circuit - Google Patents

Air conditioner having cold water making circuit

Info

Publication number
JPH04208332A
JPH04208332A JP33899590A JP33899590A JPH04208332A JP H04208332 A JPH04208332 A JP H04208332A JP 33899590 A JP33899590 A JP 33899590A JP 33899590 A JP33899590 A JP 33899590A JP H04208332 A JPH04208332 A JP H04208332A
Authority
JP
Japan
Prior art keywords
cold water
cooling tower
temperature
air conditioner
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33899590A
Other languages
Japanese (ja)
Inventor
Yukio Suo
周防 幸夫
Hidemi Awata
泡田 秀美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP33899590A priority Critical patent/JPH04208332A/en
Publication of JPH04208332A publication Critical patent/JPH04208332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To perform an operation of high energy saving corresponding to a surrounding air condition by a method wherein a single operation or a parallel operation of a cooling tower or a freezer is carried out under a condition in which the cooling tower is preferentially controlled in response to a result of judgment of a surrounding air wet ball temperature. CONSTITUTION:A surrounding air wet ball temperature T4 is inputted and a moving mean value during that 30 minutes is calculated. Concurrently, a cold water temperature T4 is inputted, a moving means value during 30 minutes is calculated and a variation transmittance is estimated. Then, in the case that a mean value of the surrounding air wet ball temperature is 7 deg.C or lower and a mean value of the surrounding cold air is in a range of 10 deg.C to 12 deg.C and the cold water temperature is apt to be decreased, it becomes possible to utilize the surrounding cold air, resulting in that a freezer 101 is stopped and the operation is changed over to a system of the cooling tower 102. In turn, in the case that a mean value of the surrounding air wet ball temperature is 7 deg.C or higher and a mean value of the cold water temperature of a calculated value is apt to be increased, the operation of the cooling tower is stopped and the operation is changed over to that of the freezer 101. In the case that a mean value of the cold water temperature is to be decreased, the operation state up to now is kept.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えは電子計算機室や、合繊製造なとの様に
年間を通して冷房を必要とする室の冷房運転費用の低減
を図ることか出来る空気調和装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention aims to reduce the cooling operating costs of rooms that require cooling throughout the year, such as computer rooms and synthetic fiber manufacturing facilities. Regarding air conditioners that can be used.

(従来の技術) 合繊製造における延撚室のように冬季でも内部発熱か大
きく、かつ相対湿度を一定に保つため、外気冷房のみで
は目標温湿度制御か困難な室内等では、冬季でも冷凍機
を運転して冷房を行う必要かある。
(Conventional technology) Refrigerators are used even in winter in rooms where it is difficult to control the target temperature and humidity with outside air cooling alone, such as in rolling and twisting rooms in synthetic fiber manufacturing, where internal heat generation is large even in winter and relative humidity is kept constant. Do I need to run the car to cool it down?

このため省エネルギの観点から、冬季には冷凍機を運転
せず外気を利用して冷却塔により冷水を作り、これを冷
房に利用する方法か提案されている。
For this reason, from the perspective of energy conservation, a method has been proposed in which cold water is produced in a cooling tower using outside air without operating the refrigerator in winter, and this is used for air conditioning.

第3図及び第4図に示す特開昭61− 128042号公報の1冷水製造回路を有する空気調和
装置」は、従来から提案のあった空調システムにさらに
冷水コイルと冷水切換弁を付設し、外気か寒冷するとき
には冷却塔からの冷水を空気調和機内の冷水コイルに通
過させて冷水冷房を行なう装置の欠点を改良したちのて
、第3図に、その−例を表わす。
The air conditioner with one chilled water production circuit disclosed in Japanese Patent Application Laid-Open No. 61-128042 shown in Figs. 3 and 4 is a system that adds a chilled water coil and a chilled water switching valve to the previously proposed air conditioning system. Fig. 3 shows an example of an improved system which performs cold water cooling by passing cold water from a cooling tower through a cold water coil in an air conditioner when the outside air is cold.

図において、この空気調和システムは、冷凍機101.
201をそれぞれ含む二系統の冷熱源回路を備えている
。第1の系の冷却水側回路には冷却塔102、三方弁1
31、ポンプ157か含まれ、第2の系の冷却水側回路
には冷却塔202、三方弁232、ポンプ258、切換
弁224゜225か含まれている。開放型冷却塔I02
゜202の代りに密閉型冷却塔(第4図参照)を用いた
場合は、系内に膨張タンクを付設する。冷水側回路には
空気機15、膨張タンク16、ポンプ159.260、
切換弁123か含まれ、さらに付設されたバイパス回路
217,218にはそれぞれ切換弁221 +  22
2か含まれている。又、空調システム全体を制御するた
めに、温度センサー T 、、 T 2. T 2. 
T 、と圧力調節器41.42゜4.3.44か設けら
れている。符号WBは外気湿球温度を示す。
In the figure, this air conditioning system includes a refrigerator 101.
Two cold/heat source circuits each including 201 are provided. The cooling water side circuit of the first system includes a cooling tower 102 and a three-way valve 1.
31 and a pump 157, and the cooling water side circuit of the second system includes a cooling tower 202, a three-way valve 232, a pump 258, and switching valves 224 and 225. Open cooling tower I02
If a closed type cooling tower (see Figure 4) is used instead of the 202, an expansion tank is attached to the system. The cold water side circuit includes an air machine 15, an expansion tank 16, a pump 159.260,
The switching valve 123 is included, and the attached bypass circuits 217 and 218 include switching valves 221 + 22, respectively.
Contains 2 or more. Also, to control the entire air conditioning system, temperature sensors T,, T2. T2.
T, and a pressure regulator 41.42°4.3.44 are provided. The symbol WB indicates the outside air wet bulb temperature.

かかる構成に基つき、夏季には通常の冷房操作を行なう
。即ち、切換弁221 +  222を閉鎖してバイパ
ス回路217,218内の流れをスト・ツブし、切換弁
123,224.225を開いて2台の冷凍機10’l
、201を同時に運転して、第1の系の冷却水側回路と
第2の系の冷却水側回路をそれぞれ独立に作動させる。
Based on this configuration, normal cooling operation is performed during the summer. That is, the switching valves 221 + 222 are closed to stop the flow in the bypass circuits 217 and 218, and the switching valves 123, 224, and 225 are opened to shut off the flow in the two refrigerators 10'l.
, 201 are operated simultaneously, and the cooling water side circuit of the first system and the cooling water side circuit of the second system are operated independently.

夏季から冬季への移り目になると、切換弁123.22
4,225を閉鎖し、切換弁221゜222を開いてバ
イパス回路2]7.2]8を開通させることにより、第
1の系の冷水側回路を第2の系の冷却水側回路に直列に
接続させる。これにより冷却塔による冷水製造回路か出
来上る。
When the transition from summer to winter occurs, the switching valve 123.22
By closing switching valves 221 and 222 and opening bypass circuit 2]7.2]8, the cold water side circuit of the first system is connected in series with the cooling water side circuit of the second system. Connect to. This completes a cold water production circuit using a cooling tower.

そして、二の冷水製造回路では冷却塔を冷凍機に優先し
て運転するようにし、次の2種類の運転を行なう。即ち (I)フリークーリング 冷却塔20またけを運転し、冷凍機101゜201及び
冷却塔201は停止させる。冷房負荷か小さい場合の省
エネルギ運転となる。
In the second cold water production circuit, the cooling tower is operated with priority over the refrigerator, and the following two types of operation are performed. That is, (I) the free cooling cooling tower 20 is operated, and the refrigerator 101° 201 and the cooling tower 201 are stopped. Energy-saving operation when the cooling load is small.

(II)直列運転 冷却塔202、冷凍[101及び冷却塔102を運転し
、冷凍機201は停止させる。冷房負荷か中程度の場合
の省エイ、ルギ運転となる。
(II) Series operation Cooling tower 202, refrigeration [101] and cooling tower 102 are operated, and refrigerator 201 is stopped. When the cooling load is moderate, it is a light-saving, low-speed operation.

(発明か解決しようとする課題) しかし、二のような冷水製造方式には次のような問題点
かあった。第1に夏季から冬季に移行する際、・バルブ
123 +  221 +  2 & 2を切替えて冷
凍機を停止させ冷却塔による冷水製造方式を運転するか
例えは、曇りから急に晴れる様な突発的な温度変化かあ
った場合は冷凍機を運転しなけれはならなになりバルブ
切替時期の判定か難しい。
(Problem to be solved by the invention) However, the second method of producing cold water had the following problems. First, when transitioning from summer to winter, switch valves 123 + 221 + 2 & 2 to stop the refrigerator and operate the chilled water production system using a cooling tower. If there is a significant temperature change, the refrigerator must be operated, making it difficult to determine when to switch the valve.

第2に、バルブl 43 +  :221 + 224
の切替か繁雑であり、これを省力化するためには電動弁
とするかまたは、空気式自動弁とするなと設備費用に多
額をようするなとの問題点かあった。
Second, valve l 43 + :221 + 224
Switching is complicated, and in order to save labor, it is necessary to use an electric valve or an automatic pneumatic valve, which would require a large amount of equipment cost.

本発明は、上述した問題点に鑑みなされたもので、複雑
な制御を必要とせず、急激な温度変化に対しても変動を
受けない安定した冷房運転か継続でき、しかも外気温度
の状況に応して効率的な運転を可能とし冷房運転の省エ
ネルギ化を図ることか出来る空気調和装置を提供するこ
とを目的とする。
The present invention was devised in view of the above-mentioned problems. It does not require complicated control, allows stable cooling operation to continue without being affected by sudden temperature changes, and is responsive to outside temperature conditions. An object of the present invention is to provide an air conditioner that can operate efficiently and save energy in cooling operation.

(課題を解決するための手段) 上述の目的は、二系統の冷水製造回路を備えた空気調和
装置において、第一の系の冷凍機の冷水側回路と、第二
の系の外気を利用した冷却塔のみによる冷水側回路と、
これらの冷水製造回路で製造された冷水を貯水する緩衝
槽と、この緩衝槽と前記二系統の冷水側回路間との接続
を切替える切替装置とを設け、貯水された緩衝槽の冷水
を空調機の冷水コイルへ循環させる二とにより空気調和
を行うことを特徴とする冷水製造回路を有する空気調和
装置によって達成される。
(Means for Solving the Problem) The above purpose is to provide an air conditioner equipped with two chilled water production circuits, using the chilled water side circuit of the refrigerator in the first system and the outside air in the second system. A cold water side circuit using only a cooling tower,
A buffer tank that stores the cold water produced in these cold water production circuits and a switching device that switches the connection between this buffer tank and the two cold water side circuits are provided, and the cold water in the stored buffer tank is transferred to the air conditioner. This is achieved by an air conditioner having a cold water production circuit characterized by performing air conditioning by circulating cold water to the cold water coils.

又、切替装置を緩衝槽の冷水温度と、外気湿球温度を検
出し、冷却塔を冷凍機に優先に運転させると共にその運
転モードを外気湿球温度か低くなるにつれて (i)第一段階として第一の系の冷凍機の冷水側回路の
みで運転、 (ii)第二段階として第一の系と第二の系の外気を利
用した冷却塔による冷水側回路との並列運転、 (ii)第三段階として冷却塔による冷水側回路のみで
運転、 と順次切替えることにより、外気温湿度条件に応して効
率的な運転モードに切替え、効率的な省エネルキ化を図
ることか出来る。
In addition, the switching device detects the cold water temperature of the buffer tank and the outside air wet bulb temperature, causes the cooling tower to operate preferentially to the refrigerator, and changes the operation mode as the outside air wet bulb temperature becomes lower (i) as the first stage. Operation with only the cold water side circuit of the refrigerator of the first system, (ii) Parallel operation with the cold water side circuit by a cooling tower using outside air of the first system and the second system as a second stage, (ii) As the third step, by sequentially switching to operation using only the cold water side circuit using the cooling tower, it is possible to switch to an efficient operation mode according to the outside temperature and humidity conditions, and achieve efficient energy savings.

(作用) 上述したようにこの空気調和装置は、第一〇系の冷凍機
の冷水側回路と、第二の冷却塔のみによる冷水側回路の
二系統の冷水製造回路を備え、これを適宜切替えしかも
、この製造された冷水を空調対象室に設けた冷却コイル
に供給することにより熱交換を行なう冷水の循環回路に
緩衝槽を設けている。
(Function) As described above, this air conditioner is equipped with two cold water production circuits: the cold water side circuit of the 10th system refrigerator and the cold water side circuit using only the second cooling tower, and these can be switched as appropriate. Furthermore, a buffer tank is provided in the cold water circulation circuit that performs heat exchange by supplying the produced cold water to a cooling coil provided in the room to be air-conditioned.

これにより、冷却塔による外気エネルギを利用した運転
時において、突発的な、又は急激な外気の温度変化かあ
っても、緩衝槽に貯水された冷水によりその変動分か吸
収されるため、安定した温度制御をさせることか出来る
As a result, even if there is a sudden or sudden temperature change in the outside air during operation using outside air energy by the cooling tower, the fluctuation is absorbed by the cold water stored in the buffer tank, resulting in stable operation. It is possible to control the temperature.

又、冷却塔を優先的に制御するという条件の下で冷凍機
と、冷却塔の、それぞれ単独又は並列運転を行うことか
出来るのて、外気温湿度条件に応して省エネルキ効率の
高い運転をさせることか出来る。
In addition, under the condition that the cooling tower is controlled preferentially, the chiller and the cooling tower can be operated individually or in parallel, resulting in highly energy-saving and efficient operation depending on the outside temperature and humidity conditions. I can make you do it.

(実施例) 次に本発明の一実施例を第1図及び第2図に基つき詳述
する。
(Example) Next, an example of the present invention will be described in detail with reference to FIGS. 1 and 2.

第3図は本発明の空気調和システム図を示しており、冷
凍ta101及び冷却塔I02を含む第一の冷水製造回
路と、冷却塔202のみによる二系統の冷水製造回路を
備えている。第一の系は夏季の冷水製造回路を示し冷凍
機+01と冷水ポンプ111の冷水側回路と冷却塔10
2と冷却水ポンプ121の冷却水側回路を有し冷水を製
造し、緩衝槽400に蓄える。第二の系は冬季の冷水製
造回路を示し冷水ポンプ211と冷却塔202、冷水ポ
ンプ221を含み冷水を製造し、緩衝槽400に蓄える
FIG. 3 shows a diagram of an air conditioning system according to the present invention, which includes a first cold water production circuit including a refrigerator TA101 and a cooling tower I02, and a two-system cold water production circuit including only a cooling tower 202. The first system shows the cold water production circuit in summer, the cold water side circuit of the refrigerator +01 and the cold water pump 111, and the cooling tower 10.
2 and a cooling water side circuit of a cooling water pump 121 to produce cold water and store it in a buffer tank 400. The second system is a cold water production circuit in winter, and includes a cold water pump 211, a cooling tower 202, and a cold water pump 221, and produces cold water, which is stored in a buffer tank 400.

これらの冷水製造回路で製造された冷水は専用の冷水ピ
ット(戻り)401と冷水ピット(送り)402を有す
る大容量の緩衝槽400に貯水され、二系統の冷水側回
路を循環する。
The cold water produced by these cold water production circuits is stored in a large-capacity buffer tank 400 having a dedicated cold water pit (return) 401 and a cold water pit (feed) 402, and circulates through two cold water side circuits.

又、ポンプ111,121,221及び211は冷水を
切替える切替装置となるもので、第一の系で運転する時
は、ポンプ11L、]21を運転しポンプ21+及び2
21を停止させる。第二の系を運転する時は、この逆の
状態にする。そして空調用冷水回路は、緩衝槽400の
給水ピット402を出て冷水ポンプ311、空調機3C
I+を通り冷水ピット401へ戻り、二の間を循環する
ようになっている。
In addition, the pumps 111, 121, 221 and 211 serve as switching devices for switching cold water, and when operating in the first system, pumps 11L, ]21 are operated, and pumps 21+ and 2 are operated.
21 is stopped. When operating the second system, the conditions are reversed. The air conditioning cold water circuit then exits the water supply pit 402 of the buffer tank 400, connects to the cold water pump 311, and connects the air conditioner 3C.
It passes through I+ and returns to the cold water pit 401, where it circulates between the two.

記号T、T2T、T4は温度センサーでありW Bは外
気湿球温度を示す。
Symbols T, T2T, and T4 are temperature sensors, and W B indicates the outside air wet bulb temperature.

このような構成に基つき、夏季から冬季への中間期にな
るとコンピューター盤501に内蔵したコンピューター
にT4外外気法温度及びT、冷水ピット(戻り)温度を
取込み冷却塔による冷水製造を判定させる。二の例を第
4図に示す。
Based on this configuration, in the middle period from summer to winter, the computer built in the computer board 501 takes in the outside air temperature T4 and the chilled water pit (return) temperature to determine the production of chilled water by the cooling tower. The second example is shown in FIG.

即ち、外気湿球温度T4を取込み(Fl)その30分間
の移動平均値を計算する(F2)。変化量を時間を加味
した移動平均値とする二とて外気の変化や冷水負荷の変
動を予測する二とか可能となる。
That is, the outside air wet bulb temperature T4 is taken in (Fl) and its moving average value for 30 minutes is calculated (F2). By using the amount of change as a moving average value that takes time into account, it becomes possible to predict changes in the outside air and fluctuations in the chilled water load.

同時に、冷水温度T、を取込み(F3)、その30分移
動平均値を計算しくF4)変動推移を予測する。この3
0分の値は、対象とする空調室の容積、熱負荷等により
実験値により求める。
At the same time, take in the cold water temperature T (F3), calculate its 30-minute moving average value, and predict the fluctuation trend (F4). This 3
The value of 0 minutes is determined from experimental values based on the volume of the air conditioned room, heat load, etc.

次に、外気湿球温度の平均値か7°C又は7°Cより低
く(F’5)、かつ、冷水温度の平均値か10°C〜1
2°Cの範囲内てあり(F6)、冷水温度か下り傾向(
F7)の場合は、外気冷気を利用することか可能となる
ので冷凍機を停止し、冷却塔方式に運転を切替える(F
8)(F9)。
Next, the average value of the outside air wet bulb temperature is 7°C or lower than 7°C (F'5), and the average value of the cold water temperature is 10°C to 1
It is within the range of 2°C (F6), and the cold water temperature is decreasing (
In the case of F7), it is possible to use cold outside air, so the refrigerator is stopped and operation is switched to the cooling tower method (F7).
8) (F9).

又、前述した外気の湿球温度の平均値か7°Cより高く
、かつ、(F4)の計算値である冷水温度の平均値が上
昇傾向であれは冷却塔方式運転を停止し、冷凍機運転に
切替える(Fil)  (F12)。
Also, if the average wet bulb temperature of the outside air mentioned above is higher than 7°C and the average value of the chilled water temperature, which is the calculated value of (F4), is on the rise, stop cooling tower operation and turn off the chiller. Switch to operation (Fil) (F12).

又、(FIO)において冷水温度の平均値か下降傾向の
場合は、それまでの運転状態を維持する。
Moreover, if the average value of the cold water temperature or a downward trend is found in (FIO), the operating state up to that point is maintained.

同様に(F7)において冷水温度の平均値か上昇傾向の
場合もそれまでの運転状態を維持する。
Similarly, in (F7), if the average value of the chilled water temperature is on the rise, the operating state up to that point is maintained.

これらの自動運転は、シーケンサ−等を内蔵した制御盤
により行なわれる。
These automatic operations are performed by a control panel with a built-in sequencer and the like.

また第二の冷水製造回路では冬季の冷水温度か下かり過
ぎるのを防止するためT3冷水温度を検出し、目標温度
となるように冷却塔ファンを回転数制御盤502により
回転数制御し調節する。
In addition, in the second chilled water production circuit, in order to prevent the chilled water temperature from dropping too low in winter, the T3 chilled water temperature is detected, and the rotation speed of the cooling tower fan is controlled and adjusted by the rotation speed control panel 502 so that the temperature reaches the target temperature. .

この冷水製造回路では冷却塔を冷凍機に優先して運転す
るようにし、次の運転か可能である。
In this cold water production circuit, the cooling tower is operated with priority over the refrigerator, and the next operation is possible.

(1)並列運転 中間期の冷凍機負荷を軽減させるため冷凍機と冷却塔の
並列運転を行う。
(1) Parallel operation In order to reduce the load on the chiller during the intermediate period, the chiller and cooling tower will be operated in parallel.

冷凍機負荷を半減させるため省エネルギ運転となる。The refrigerator load is halved, resulting in energy-saving operation.

(2)単独運転 冷凍機又は、冷却塔のみの単独運転。(2) Single operation Independent operation of only the refrigerator or cooling tower.

(3)無人化運転 第二の冷水製造回路を専用の冷却塔にすることにより、
複雑な弁操作かな・(なり簡単な起動・停止回路を組込
むたけて無人化運転か可能となり省力化かできる。
(3) Unmanned operation By making the second chilled water production circuit a dedicated cooling tower,
Complex valve operations (or rather, by incorporating a simple start/stop circuit, unmanned operation becomes possible, which saves labor.

(発明の効果) 以上詳述した様に本発明によれは、外気湿球温度の判定
結果により冷却塔を優先的に制訊するという条件下で、
冷却塔、冷凍機の各単独運転又は、これらの並列運転を
行うことか出来るので、外気条件に応した省エネルギ効
果の高い運転をさせることか出来る。
(Effects of the Invention) As detailed above, according to the present invention, under the condition that the cooling tower is preferentially restricted based on the determination result of the outside air wet bulb temperature,
Since the cooling tower and the refrigerator can be operated individually or in parallel, it is possible to operate the cooling tower and the refrigerator with a high energy saving effect according to the outside air conditions.

又、冷水製造回路で製造された冷水を直接空調機へ送水
するのてな(中間に緩衝槽を設けたので、外気温度の短
期的な変動かあってもこれに影響されず安定した空調を
実現させることか出来る。
In addition, the chilled water produced in the chilled water production circuit is sent directly to the air conditioner (a buffer tank is installed in the middle, so even if there are short-term fluctuations in the outside temperature, stable air conditioning is achieved without being affected by it. It is possible to make it happen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る空気調和装置のシステム図、第2
図は、その制御フローチャート図、第3図及び第4図は
従来の空気調和装置のシステム図を示す。 101・・・冷凍機 ]02・・・冷却塔 111.121,211.221・・・ポンプ301・
・・空調機 400・・・緩衝槽 501・・・制御盤 ff12図 第3図 wS4図
Figure 1 is a system diagram of an air conditioner according to the present invention, Figure 2 is a system diagram of an air conditioner according to the present invention;
The figure shows a control flowchart thereof, and FIGS. 3 and 4 show system diagrams of a conventional air conditioner. 101... Refrigerator] 02... Cooling tower 111.121, 211.221... Pump 301.
... Air conditioner 400 ... Buffer tank 501 ... Control panel ff12 Figure 3 Figure wS4

Claims (2)

【特許請求の範囲】[Claims] (1)二系統の冷水製造回路を備えた空気調和装置にお
いて、第一の系の冷凍機の冷水側回路と、第二の系の外
気を利用した冷却塔のみによる冷水側回路と、これらの
冷水製造回路で製造された冷水を貯水する緩衝槽と、こ
の緩衝槽と前記二系統の冷水側回路間との接続を切替え
る切替装置とを設け、貯水された緩衝槽の冷水を空調機
の冷水コイルへ循環させることにより空気調和を行うこ
とを特徴とする冷水製造回路を有する空気調和装置。
(1) In an air conditioner equipped with two chilled water production circuits, the chilled water side circuit of the first system chiller, the second system chilled water side circuit using only the cooling tower using outside air, and A buffer tank that stores the cold water produced in the cold water production circuit and a switching device that switches the connection between the buffer tank and the two cold water side circuits are provided, and the cold water in the buffer tank is transferred to the cold water of the air conditioner. An air conditioner having a cold water production circuit characterized by performing air conditioning by circulating it through a coil.
(2)切替装置が緩衝槽の冷水温度と、外気湿球温度を
検出し、冷却塔を冷凍機に優先に運転させると共に、そ
の運転モードを外気温球温度が低くなるにつれて (i)第一段階として第一の系の冷凍機の冷水側回路の
みで運転、 (ii)第二段階として第一の系と第二の系の外気を利
用した冷却塔による冷水側回路 との並列運転、 (iii)第三段階として冷却塔による冷水側回路のみ
で運転、 と順次切替えて冷凍機運転電力を最小限とするようにし
た三段階切替方式を特徴とする請求項(1)記載の冷水
製造回路を有する空気調和装置。
(2) The switching device detects the cold water temperature of the buffer tank and the outside air wet bulb temperature, and allows the cooling tower to operate preferentially to the refrigerator, and changes the operating mode as the outside air bulb temperature becomes lower (i) (ii) As a second step, the first system and the second system are operated in parallel with the cold water circuit using a cooling tower using outside air. ( iii) The chilled water production circuit according to claim (1), characterized by a three-stage switching system in which operation is performed only on the chilled water side circuit using the cooling tower as the third stage, and the operating power of the refrigerator is minimized by sequentially switching. Air conditioner with.
JP33899590A 1990-11-30 1990-11-30 Air conditioner having cold water making circuit Pending JPH04208332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33899590A JPH04208332A (en) 1990-11-30 1990-11-30 Air conditioner having cold water making circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33899590A JPH04208332A (en) 1990-11-30 1990-11-30 Air conditioner having cold water making circuit

Publications (1)

Publication Number Publication Date
JPH04208332A true JPH04208332A (en) 1992-07-30

Family

ID=18323274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33899590A Pending JPH04208332A (en) 1990-11-30 1990-11-30 Air conditioner having cold water making circuit

Country Status (1)

Country Link
JP (1) JPH04208332A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148878A (en) * 2001-11-08 2003-05-21 Ebara Shinwa Ltd Closed type cooling tower for free cooling
JP2004132651A (en) * 2002-10-11 2004-04-30 Taikisha Ltd Free cooling utilized cold/heat source facility
JP2004340492A (en) * 2003-05-16 2004-12-02 Sanken Setsubi Kogyo Co Ltd Cooling system
JP2008215680A (en) * 2007-03-01 2008-09-18 Sanki Eng Co Ltd Cold medium refrigerating/freezing equipment
JP2008215679A (en) * 2007-03-01 2008-09-18 Sanki Eng Co Ltd Air conditioning equipment
JP2008281219A (en) * 2007-05-08 2008-11-20 Ntt Facilities Inc Air conditioning system and its operation method
JP2009276004A (en) * 2008-05-15 2009-11-26 Hitachi Building Systems Co Ltd Free cooling effectiveness-determining method for free cooling system
JP2010085010A (en) * 2008-09-30 2010-04-15 Hitachi Plant Technologies Ltd Air conditioning system
JP2014070864A (en) * 2012-10-01 2014-04-21 Kannetsu:Kk Cooling system
US8899714B2 (en) 2012-11-19 2014-12-02 Samsung Display Co., Ltd. Inkjet apparatus for depositing liquid crystal
JP6759481B1 (en) * 2020-04-13 2020-09-23 東京瓦斯株式会社 Cooling system
WO2024005080A1 (en) * 2022-07-01 2024-01-04 ダイキン工業株式会社 Energy storage system control method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148878A (en) * 2001-11-08 2003-05-21 Ebara Shinwa Ltd Closed type cooling tower for free cooling
JP2004132651A (en) * 2002-10-11 2004-04-30 Taikisha Ltd Free cooling utilized cold/heat source facility
JP2004340492A (en) * 2003-05-16 2004-12-02 Sanken Setsubi Kogyo Co Ltd Cooling system
JP2008215680A (en) * 2007-03-01 2008-09-18 Sanki Eng Co Ltd Cold medium refrigerating/freezing equipment
JP2008215679A (en) * 2007-03-01 2008-09-18 Sanki Eng Co Ltd Air conditioning equipment
JP4652371B2 (en) * 2007-05-08 2011-03-16 株式会社Nttファシリティーズ Air conditioning system and operation method thereof
JP2008281219A (en) * 2007-05-08 2008-11-20 Ntt Facilities Inc Air conditioning system and its operation method
JP2009276004A (en) * 2008-05-15 2009-11-26 Hitachi Building Systems Co Ltd Free cooling effectiveness-determining method for free cooling system
JP2010085010A (en) * 2008-09-30 2010-04-15 Hitachi Plant Technologies Ltd Air conditioning system
JP2014070864A (en) * 2012-10-01 2014-04-21 Kannetsu:Kk Cooling system
US8899714B2 (en) 2012-11-19 2014-12-02 Samsung Display Co., Ltd. Inkjet apparatus for depositing liquid crystal
JP6759481B1 (en) * 2020-04-13 2020-09-23 東京瓦斯株式会社 Cooling system
JP2021167704A (en) * 2020-04-13 2021-10-21 東京瓦斯株式会社 Cooling device
WO2024005080A1 (en) * 2022-07-01 2024-01-04 ダイキン工業株式会社 Energy storage system control method

Similar Documents

Publication Publication Date Title
CN105352032B (en) Air conditioner for humiture control group
US4389853A (en) Method and apparatus for controlling an air conditioning unit with multi-speed fan and economizer
KR20100036941A (en) Air-conditioning method and air-conditioning system
JPH04208332A (en) Air conditioner having cold water making circuit
CN103388944A (en) Air-conditioning system and control method thereof
JPS61128042A (en) Air conditioner having cold water producing circuit
US4941326A (en) Air conditioner having outdoor air introducing mechanism
CN111023414A (en) Air conditioning system and dehumidification control method
JPH06249471A (en) Cold water manufacturing system
JPH11248192A (en) Air conditioner
CN113692189B (en) Machine room air conditioner, control method and device thereof, and storage medium
CN110542162A (en) water chilling unit all-in-one machine combining evaporative refrigeration and mechanical refrigeration and switching method
JPH03271675A (en) Cold water manufacturing device
CN219607461U (en) Variable temperature cabinet fan rotating speed control mechanism
KR20210033182A (en) Energy enhanced air-conditioning system and control method thereof
JPH0828944A (en) Atmospheric latent heat recovery type air conditioner system
CN215570918U (en) Numerical control type intelligent energy-saving temperature and humidity control device for constant temperature and humidity workshop
CN218993568U (en) Direct expansion type cold and hot double-supply heat pump air conditioning system with heat recovery function
JPH06341723A (en) Air conditioner
CN216431996U (en) Air-cooled water chilling unit device with natural cooling function
KR100390437B1 (en) method for controlling driving in the refrigerator with 2 evaporators
CN219510925U (en) High heat density building medium temperature water supply and dehumidification system
CN219868238U (en) Wind-water linkage energy-saving system of common ventilation air conditioning system of subway station
JPS6126829Y2 (en)
JPH0989435A (en) Refrigerator