JPH04203606A - Positioning control method for pneumatic cylinder - Google Patents

Positioning control method for pneumatic cylinder

Info

Publication number
JPH04203606A
JPH04203606A JP33783090A JP33783090A JPH04203606A JP H04203606 A JPH04203606 A JP H04203606A JP 33783090 A JP33783090 A JP 33783090A JP 33783090 A JP33783090 A JP 33783090A JP H04203606 A JPH04203606 A JP H04203606A
Authority
JP
Japan
Prior art keywords
pressure
positioning
frictional force
solenoid valve
pneumatic cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33783090A
Other languages
Japanese (ja)
Inventor
Nobutaka Kiku
信隆 菊
Takeshi Kariya
仮屋 威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP33783090A priority Critical patent/JPH04203606A/en
Publication of JPH04203606A publication Critical patent/JPH04203606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To enhance responsiveness and stability of a driving portion in positioning rodless type pneumatic cylinders by estimating frictional force of pneumatic cylinders, and switching intake and exhaust of a solenoid so as to apply an offset value equivalent to the estimated frictional force to a difference in pressure between the right and left cylinders. CONSTITUTION:During a positioning operation, a controller 16 reads in a detection signal output from a position sensor 7, to displace and convert it into X coordinates where a target value is used as an original, and calculates a speed and an acceleration. A pressure sensor 10 detects a pressure in a space defined by right and left cylinders, and calculates a difference in pressure therebetween, to correct the difference in pressure equivalent to Coulomb's frictional force in a sealing portion once for (n) times. Namely, intake and exhaust of a solenoid 12 is switched under a switching condition of inertia force, speed and displacement consisting of a load mass and acceleration so that the difference in pressure equivalent to the Coulomb's frictional force is corrected as an offset value.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はロッドレス型空気圧シリンダにて作動するロボ
ットの位置決め制御方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a positioning control system for a robot operated by a rodless pneumatic cylinder.

(従来技術) 本発明に係る従来波(ホjとじてロボットハントと二で
使用される駆動部をエヤーシリンダで作動する空気圧シ
リンダのパルス駆動位置決め方式で、エヤーシリ〉′ダ
内に発生するクーロン摩擦力FCに相当する差圧を一定
として電磁弁の切換条件を設定しエヤーシリンダの制御
を行うものである。
(Prior art) The conventional wave according to the present invention is a pulse drive positioning method of a pneumatic cylinder in which the drive unit used in the robot hunt is operated by an air cylinder, and the Coulomb friction generated in the air cylinder is The air cylinder is controlled by setting the switching conditions of the electromagnetic valve by keeping the differential pressure corresponding to the force FC constant.

(日本油空圧学会主催 平成2年春季油空圧講演会、講
演論文集 P、125〜128「適応制御を用いた空気
圧シリンダのパルス駆動位置決め」)(発明が解決しよ
うとする課題) しかし前記エヤーシリンダの制御方式は、空気圧シリン
ダの摩擦力はシール部の摩擦等に大きく変動するもので
あり、前記クーロン摩擦力FCに相当する差圧を一定と
しているために、摩擦力の変動が大きくなると制御方式
がむつかしくなり、位置決め精度の悪化、及び位置決め
時間が増大するという問題点がある。
(Spring Hydraulic and Pneumatics Conference, 1990, sponsored by Japan Society of Hydraulics and Pneumatics, Proceedings P, 125-128 "Pulse drive positioning of pneumatic cylinders using adaptive control") (Problem to be solved by the invention) However, the above The air cylinder control method is such that the frictional force of the pneumatic cylinder fluctuates greatly due to the friction of the sealing part, etc., and since the differential pressure corresponding to the Coulomb frictional force FC is kept constant, if the fluctuation of the frictional force becomes large, There are problems in that the control method becomes difficult, the positioning accuracy deteriorates, and the positioning time increases.

本発明は空気圧シリンダの駆動位置決め制御方式に於い
て、駆動部の応答性、安定性の良い制御方式を技術的課
題とするものである。
The technical object of the present invention is to provide a drive positioning control system for a pneumatic cylinder with good responsiveness and stability of the drive section.

[発明の構成] (課題を解決するだめの手段) 課題を解決するための技術的手段は次のようである。[Structure of the invention] (Failure to solve the problem) The technical means to solve the problem are as follows.

位置センサーを配置したスライダを有する磁気式コツド
レス空気圧シリンダの両端に空気管を設け、前記配管に
それぞれ圧力センサー及び電磁弁を設け、一方の配管は
サイレンサ、他方の配管に排気口を設け、前記圧力セン
サー、位置センサー及び電磁弁を制御する制御装置より
なる空気−圧シンリダ装置のスライダの位置決め方法に
於いて、任意の位置で位置決めする場合に、前記空気圧
シリンダの摩擦力を推定し、電磁弁の給排気を切換、駆
動力となる左右シリンダ空間の差圧に対し、前記摩擦力
に相当するオフセット値として負荷質量加速度からなる
慣性力と速度、変位からなる電磁弁の給排気を切り換え
る条件式の値を加えることによりスライダを作動させる
空気圧シリンダの位置決め制御方法である。
Air pipes are provided at both ends of a magnetic type cotless pneumatic cylinder having a slider with a position sensor arranged, a pressure sensor and a solenoid valve are provided in each of the pipes, one pipe is provided with a silencer, the other pipe is provided with an exhaust port, and the pressure In a method for positioning a slider of a pneumatic cylinder device comprising a sensor, a position sensor, and a control device for controlling a solenoid valve, when positioning at an arbitrary position, the frictional force of the pneumatic cylinder is estimated and the position of the solenoid valve is determined. The conditional expression for switching the supply and exhaust of a solenoid valve, which consists of the inertia force made up of the load mass acceleration, speed, and displacement as an offset value corresponding to the frictional force, is calculated based on the differential pressure between the left and right cylinder spaces, which is the driving force. This is a positioning control method for a pneumatic cylinder that operates a slider by adding a value.

(作用) 空気圧シリンダの摺動部の摩擦力は、シール部の摩擦に
より絶対的に変化してゆくものである。
(Function) The frictional force of the sliding portion of the pneumatic cylinder changes absolutely due to the friction of the sealing portion.

このために高精度な位置決めを行うために空気圧のシリ
ンダとシール部のクーロン摩擦力に相当する差圧Pcを
摩擦力の変動に応して補正することぶこより常に線形な
制御系を構成することができ、安定した位置決め性能を
発揮するものである。
For this purpose, in order to perform highly accurate positioning, a control system that is always linear is constructed by correcting the differential pressure Pc, which corresponds to the Coulomb friction force between the pneumatic cylinder and the seal, in accordance with the fluctuations in the friction force. This enables stable positioning performance.

(実施例) 以下実施例について説明する。(Example) Examples will be described below.

第1図に於いて、1は空気圧シリンダ(ロッドレス型)
で、2はシリンダ外部のシリンダ可動部で、3はスライ
ダーである。
In Figure 1, 1 is a pneumatic cylinder (rodless type)
2 is a cylinder movable part outside the cylinder, and 3 is a slider.

シリンダ内部にはピストン24があり、前記シリンダ可
動部2にはそれぞれ磁石が組み込まれ、それらの磁気結
合により前記ピストン24の移動に伴ってシリンダ可動
部2の移動るす構造である。
There is a piston 24 inside the cylinder, and magnets are incorporated in each of the cylinder movable parts 2, so that the cylinder movable part 2 moves as the piston 24 moves due to their magnetic coupling.

前記空気圧シリンダ1の両端はフレーム6に固定された
側板25に指示されている。シリンダ可動部2にはスラ
イダ3が固着されている。スライダ3はフレーム6に供
設されたガイドレール4上を摺動するガイドヘアリング
5により支持されている。
Both ends of the pneumatic cylinder 1 are directed to side plates 25 fixed to the frame 6. A slider 3 is fixed to the cylinder movable part 2. The slider 3 is supported by a guide hair ring 5 that slides on a guide rail 4 provided on a frame 6.

前記左右の側板25間に位置センサ用スケール8が架設
され、たこのスケール8に対して一定の距離を離して非
接触の位置センサ7をスライダ3に固定する。
A position sensor scale 8 is installed between the left and right side plates 25, and a non-contact position sensor 7 is fixed to the slider 3 at a certain distance from the octopus scale 8.

空気圧シリンダの両端には分岐管9を配管し、分岐管9
には圧力セン+l−’10及びチューブ11が接続され
、チューブ11の片側は電磁弁12に接続される、電磁
弁12の給気口には供給配管13が接続され、排気口1
4にはサイレンサ23が接続されている。
A branch pipe 9 is installed at both ends of the pneumatic cylinder.
is connected to a pressure sensor +l-' 10 and a tube 11, one side of the tube 11 is connected to a solenoid valve 12, a supply pipe 13 is connected to an air supply port of the solenoid valve 12, and an exhaust port 1
4 is connected to a silencer 23.

制御装置16には、圧力センサ信号線26、位置センサ
信号線27、電磁弁駆動電力線28が接続されている。
A pressure sensor signal line 26 , a position sensor signal line 27 , and a solenoid valve drive power line 28 are connected to the control device 16 .

第2図は制御装置16のブロック図で、17はCPU、
18はアップダウンカウンタ、19はA/D変換器、2
0は電磁弁駆動回路、21はメモリ、22はIlo、2
6は圧力センサ信号線、2−7は位置センサ信号線、2
8は電磁弁駆動電力線である。
FIG. 2 is a block diagram of the control device 16, in which 17 is a CPU;
18 is an up/down counter, 19 is an A/D converter, 2
0 is a solenoid valve drive circuit, 21 is a memory, 22 is Ilo, 2
6 is a pressure sensor signal line, 2-7 is a position sensor signal line, 2
8 is a solenoid valve driving power line.

前記装置に於いて、制御装置内部の電磁弁駆動回路20
により、電磁弁12に通電されると電磁弁12は排気状
態となり、電磁弁12に接続しているシリンダ室の圧力
が低下する。
In the device, a solenoid valve drive circuit 20 inside the control device
Therefore, when the solenoid valve 12 is energized, the solenoid valve 12 enters the exhaust state, and the pressure in the cylinder chamber connected to the solenoid valve 12 decreases.

通電を切った時電磁弁12は給気状態となり接続されて
いるシリンダ室の圧力は増加し供給圧↓こ達する。
When the power is turned off, the solenoid valve 12 enters the air supply state, and the pressure in the connected cylinder chamber increases to reach the supply pressure ↓.

シリンダ室の圧力は圧力センサ10、圧力センサ信号線
26、A/D変換器19により測定される。
The pressure in the cylinder chamber is measured by the pressure sensor 10, the pressure sensor signal line 26, and the A/D converter 19.

スライダ3の位置は位置センサ7、位置センサ信号綿2
7、アップダウンカウンタ18により測定される構造で
ある。
The position of slider 3 is position sensor 7, position sensor signal cotton 2
7. The structure is measured by an up/down counter 18.

第1図に示す空気圧シリンダの位置決め装置に於いて位
置決め制御方式の処理手順を第3図に示す。
FIG. 3 shows the processing procedure of the positioning control method in the pneumatic cylinder positioning device shown in FIG. 1.

位置決めは目標値を原点とするX軸の座標系で演算を行
う。
Positioning is performed using an X-axis coordinate system with the target value as the origin.

(1)位置決め処理中、現在値を読み込みX座標系への
変位、変換を行なった後、速度文、加速度Xを算出する
(1) During positioning processing, after reading the current value and performing displacement and conversion to the X coordinate system, the speed statement and acceleration X are calculated.

(2)次に圧力を読み込み差圧Pdを求める。(2) Next, read the pressure and find the differential pressure Pd.

(3)クーロン摩擦相当Pcをn回に1度の補正を行う
(3) Correct the Coulomb friction equivalent Pc once every n times.

(4)位置決め完了していない場合、 電磁弁切り換え条件に従って電磁弁の給排気の切り換え
を実行し、再び位置決め処理に戻る。
(4) If positioning is not completed, switch the solenoid valve supply/exhaust according to the solenoid valve switching conditions, and return to the positioning process again.

(5)位置決め完了の場合にはどちらの電磁弁も給気状
態として停止させる。
(5) When positioning is completed, both solenoid valves are brought into the air supply state and stopped.

なお、図中のeは位置決め許容範囲、kr、cは定数、
mはスライダ3、シリンダ可動部2の質量、Aはピスト
ン受圧面積である。
In addition, e in the figure is the positioning tolerance range, kr, c are constants,
m is the mass of the slider 3 and the cylinder movable part 2, and A is the piston pressure receiving area.

次に位置決め方式の原理について説明する。Next, the principle of the positioning method will be explained.

スライダ3、シリンダ可動部2の質量をmjkg]、ピ
ストン24の受圧面積A3cm2j、両シリンダ室の差
室をPd jPa〕、シリンダ1とピストン24のクー
ロン摩擦力をF CCN) 、スライダ3の位置(変位
)をX(m;、速度X〔mXs”〕、加速度X Cm/
s”3とする。
The mass of the slider 3 and the cylinder movable part 2 is mjkg], the pressure receiving area of the piston 24 is A3cm2j, the differential chamber between both cylinder chambers is PdjPa], the Coulomb friction force between the cylinder 1 and the piston 24 is F CCN), the position of the slider 3 ( displacement) as X (m;, velocity X [mXs”], acceleration X Cm/
s"3.

低速作動時、粘性摩擦は小さいので無視すると次の運動
方程式となる。
During low-speed operation, viscous friction is small, so if it is ignored, the equation of motion is as follows.

m”X=APd−Fc  sgn (x) ・・11)
クーロン摩擦力Fc(IN〕を初期値FeO”。
m”X=APd-Fc sgn (x)...11)
Set the Coulomb friction force Fc (IN) to the initial value FeO''.

N〕と変動分△F CCI N〕の和F c = F 
c o ’−。
N] and the variation △F CCI N] F c = F
c o'-.

△Fcと表し、クローン摩擦力Fc、Fco、△Fcに
相当する差圧をそれぞれPc、Pco、△Pc  [P
a)とすると、Fc=APc、Fco=APco、△F
c=A△Pcとなり、(1)は次のようになる。
△Fc and the differential pressures corresponding to the Crohn friction forces Fc, Fco, and △Fc are respectively Pc, Pco, and △Pc [P
a), then Fc=APc, Fco=APco, △F
c=AΔPc, and (1) becomes as follows.

mX=A (Pd−Fc  sgn (X)1・・・ 
(2) mX=A (Pd −(Pco+△Pc)sgn (f
))・・・ (2)゛ 第3図(4)の電磁弁切り換え条件より、シリンダ室の
圧力応答の遅れは小さい時近似的に次式が成り立つ。
mX=A (Pd-Fc sgn (X)1...
(2) mX=A (Pd − (Pco+△Pc)sgn (f
))... (2) According to the electromagnetic valve switching conditions in Figure 3 (4), the following equation approximately holds true when the delay in the pressure response of the cylinder chamber is small.

Pd=PcuSgn(文)=Kv(文+Cχ)となり(
2)゛に代入して、 mX=A (P c、 o s g n (X) −K
v (’R−i−CX)−(Pco卆△Pc)sgn 
(文))mX;Akv (X+CX) −A (PC0
−PCCI−△Pc)sgn (文) mX+AKv (X+CX) −−A△Pc  sgn
(文) 当差圧Pcoの補正を行うことにより、△Pc−〇とな
るので(2)式は次のようになる。
Pd=PcuSgn(text)=Kv(text+Cχ) (
2) Substitute into mX=A (P c, o s g n (X) −K
v ('R-i-CX)-(Pco卆△Pc)sgn
(sentence))mX;Akv (X+CX) -A (PC0
-PCCI-△Pc)sgn (text) mX+AKv (X+CX) --A△Pc sgn
(Text) By correcting the current differential pressure Pco, it becomes ΔPc-〇, so equation (2) becomes as follows.

mX+Akv(文+CX)=O−・−(3)従って、 ”X+ (Akv/m)x+ (AKv  c/m)X
−〇・・・ (4) Wn=FTπ■下フコ  ζ=、「■にフ下−一・ ・
 ・ (5) (4)、  (5)より、 Kv、Cをパラメータ士しで応答を改善することが可能
となることがわかるものである。
mX+Akv(text+CX)=O−・−(3) Therefore, “X+ (Akv/m)x+ (AKv c/m)X
-〇... (4) Wn=FTπ■Bottom box ζ=, "■niF bottom -1...
- (5) From (4) and (5), it can be seen that it is possible to improve the response by adjusting Kv and C as parameters.

第4図は他の実施例で位置センサ7をピストン24と一
体のロッド29を有するシンリダ1に内蔵した場合の装
置の外観図を示す、位置決め方式は前記同様の処理手順
で良い。この場合外部に位置センサ7、位置センサ用ス
ケール8を必要としないために小型化できるものである
FIG. 4 shows an external view of another embodiment of the device in which the position sensor 7 is built into the thin lid 1 having a rod 29 integrated with the piston 24. The positioning method may be the same procedure as described above. In this case, the size can be reduced because the position sensor 7 and the position sensor scale 8 are not required externally.

(発明の効果) 本発明は次の効果を有する。すなわち、摩擦力の推定に
は現代制;卸理論による適応制御、適応オブザーバを使
用することにより可能である。
(Effects of the Invention) The present invention has the following effects. In other words, it is possible to estimate the frictional force by using modern systems; adaptive control based on wholesale theory and an adaptive observer.

しかしこれらの手順では演算が複雑となり高機能な制御
装置が必要となる。
However, these procedures require complicated calculations and require a highly functional control device.

本発明では切り換え条件に用いるパラメタを利用し、実
測値から摩擦力を推定するため演算が容易となる。更に
、 (1)空気圧シリンダ単体でなく、ガイドレールなとの
摺動部を含んだ制御系に通用可能である。
In the present invention, the parameters used for the switching conditions are used to estimate the frictional force from the actually measured values, which facilitates calculation. Furthermore, (1) It is applicable not only to a single pneumatic cylinder but also to a control system that includes a sliding part such as a guide rail.

(2)切り換え条件の値を設定する時、正確に設定する
必要はなく装置の製作時の調整が容易である。
(2) When setting the value of the switching condition, it is not necessary to set it accurately, and adjustment is easy when manufacturing the device.

(3)摩擦力が一定であることが判明している時はスラ
イダに加えられた外力を推定できる。
(3) When it is known that the frictional force is constant, the external force applied to the slider can be estimated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は空気圧シリンダを組み込んだ位置決め装置及び
制御装置の外観図、第2図は制御装置内部のブロック図
、第3図は位置決め制御方式のフローチャート図、第4
図は他の実施例の外観説明図。 ■・・・空気圧シリンダ、3・・・スライダ、7・・・
位置センサ、10・・・圧力センサ、12・・・電磁弁
、13・・・給気口、14・・・排気口、16・・・制
御装置、24・・・ピストン。
Fig. 1 is an external view of the positioning device and control device incorporating a pneumatic cylinder, Fig. 2 is a block diagram inside the control device, Fig. 3 is a flowchart of the positioning control method, and Fig. 4
The figure is an explanatory diagram of the external appearance of another embodiment. ■...Pneumatic cylinder, 3...Slider, 7...
Position sensor, 10... Pressure sensor, 12... Solenoid valve, 13... Air supply port, 14... Exhaust port, 16... Control device, 24... Piston.

Claims (1)

【特許請求の範囲】[Claims] 位置センサーを配置したスライダを有するロッドレス空
気圧シリンダの両端に空気管を設け、前記配管にそれぞ
れ圧力センサー及び電磁弁を設け、一方の配管はサイレ
ンサ、他方の配管に排気口を設け、前記圧力センサー、
位置センサー及び電磁弁を制御する制御装置よりなる空
気圧シリンダ装置のスライダの位置決め方法に於いて任
意の位置で位置決めする場合に、前記空気圧シリンダの
摩擦力を推定し、電磁弁の給排気を切換、駆動力となる
左右シリンダ空間の差圧に対し、前記摩擦力に相当する
オフセット値として負荷質量、加速度からなる慣性力と
速度と変位からなる電磁弁の給排気を切換る条件式の値
を加えることによりスライダを作動させる空気圧シリン
ダの位置決め制御方式。
Air pipes are provided at both ends of a rodless pneumatic cylinder having a slider on which a position sensor is arranged, a pressure sensor and a solenoid valve are provided in each of the pipes, one pipe is provided with a silencer, the other pipe is provided with an exhaust port, the pressure sensor,
In a method for positioning a slider of a pneumatic cylinder device comprising a position sensor and a control device for controlling a solenoid valve, when positioning at an arbitrary position, estimating the frictional force of the pneumatic cylinder and switching the supply and exhaust of the solenoid valve, To the differential pressure between the left and right cylinder spaces, which is the driving force, add the value of the conditional expression that switches the supply and exhaust of the solenoid valve, which consists of the load mass, the inertia force made up of acceleration, and the speed and displacement, as an offset value corresponding to the frictional force. A positioning control system for pneumatic cylinders that actuate sliders.
JP33783090A 1990-11-30 1990-11-30 Positioning control method for pneumatic cylinder Pending JPH04203606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33783090A JPH04203606A (en) 1990-11-30 1990-11-30 Positioning control method for pneumatic cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33783090A JPH04203606A (en) 1990-11-30 1990-11-30 Positioning control method for pneumatic cylinder

Publications (1)

Publication Number Publication Date
JPH04203606A true JPH04203606A (en) 1992-07-24

Family

ID=18312370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33783090A Pending JPH04203606A (en) 1990-11-30 1990-11-30 Positioning control method for pneumatic cylinder

Country Status (1)

Country Link
JP (1) JPH04203606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295404A (en) * 2001-03-30 2002-10-09 Sumitomo Heavy Ind Ltd Gas pressure actuator and its control method
WO2023243286A1 (en) * 2022-06-13 2023-12-21 株式会社神戸製鋼所 Pressurization device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295404A (en) * 2001-03-30 2002-10-09 Sumitomo Heavy Ind Ltd Gas pressure actuator and its control method
WO2023243286A1 (en) * 2022-06-13 2023-12-21 株式会社神戸製鋼所 Pressurization device

Similar Documents

Publication Publication Date Title
Pandian et al. Pressure observer-controller design for pneumatic cylinder actuators
WO1996033550A1 (en) Method and apparatus for hybrid direct-indirect control of a switched reluctance motor
Mercorelli et al. An adaptive resonance regulator design for motion control of intake valves in camless engine systems
JPH1078163A (en) Valve spool positioning control device by internal loop and method therefor
Le et al. Sliding mode control of a pneumatic haptic teleoperation system with on/off solenoid valves
IE43870B1 (en) Adaptive control system using position feedback
Le et al. Comparison of a PWM and a hybrid force control for a pneumatic actuator using on/off solenoid valves
JPH04203606A (en) Positioning control method for pneumatic cylinder
JPH0317703A (en) Zeroing method using speed-dependent disturbance estimating observer
JPH09303307A (en) Control device of hydraulic cylinder
JPH0542242Y2 (en)
JP2598238Y2 (en) Open loop solenoid valve switching control device
Enyong et al. Position Tracking Control of Pneumatic System Based on Disturbance Observer
JPH09303310A (en) Control device of hydraulic cylinder
TWI823192B (en) Control method and control computing device of pneumatic actuator
JPH0249403B2 (en)
JP2001336504A (en) Method and apparatus for controlling gas pressure actuator
JP2583272B2 (en) Robot control device
JP2000010612A (en) Projection compensating method and motor controller with projection compensating function
SU1280206A1 (en) Hydraulic servomechanism
SU1130905A1 (en) Electromagnetic translational drive
JPH0695299B2 (en) Positioning servo system control method
CN115648196A (en) Pneumatic pressure supply system, driving method thereof and soft robot
JPH02229902A (en) Pneumatic driving unit
JPH06182682A (en) Speed control method for robot