JPH0542242Y2 - - Google Patents

Info

Publication number
JPH0542242Y2
JPH0542242Y2 JP1983104298U JP10429883U JPH0542242Y2 JP H0542242 Y2 JPH0542242 Y2 JP H0542242Y2 JP 1983104298 U JP1983104298 U JP 1983104298U JP 10429883 U JP10429883 U JP 10429883U JP H0542242 Y2 JPH0542242 Y2 JP H0542242Y2
Authority
JP
Japan
Prior art keywords
error
load
cylinder
stop position
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1983104298U
Other languages
Japanese (ja)
Other versions
JPS6012702U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10429883U priority Critical patent/JPS6012702U/en
Publication of JPS6012702U publication Critical patent/JPS6012702U/en
Application granted granted Critical
Publication of JPH0542242Y2 publication Critical patent/JPH0542242Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、シリンダ制御装置の改良に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement of a cylinder control device.

[従来の技術] 本考案者らは、先に、実願昭57−77557号(実
開昭58−178502号公報)及び同57−77558号(実
開昭58−178503号公報)によつてシリンダ制御装
置を提案したが、作業媒体としての空気が圧縮性
に富み、系の重量や摩擦力さらには慣性力の影響
を受けるため、場合によつて、シリンダの停止精
度を高めるのが困難なだけでなく、高速での駆動
中に停止する場合にオーバーランするという問題
があつた。
[Prior Art] The inventors of the present invention previously disclosed the following in Utility Application No. 57-77557 (Utility Model Application No. 1987-178502) and Utility Model Application No. 57-77558 (Utility Model Application No. 58-178503). Although we have proposed a cylinder control device, in some cases it is difficult to improve cylinder stopping accuracy because air as a working medium is highly compressible and is affected by the weight of the system, frictional force, and inertial force. In addition, there was a problem of overrun when the motor stopped during high-speed driving.

[考案が解決しようとする課題] 上記に鑑み、本考案は、シリンダを目標停止位
置に精度良く停止することができると共に、高速
駆動中の停止においてもオーバーランを極力防止
でき、それによりシリンダのストローク時間を短
縮することができるシリンダ制御装置を提供しよ
うとするものである。
[Problems to be solved by the invention] In view of the above, the present invention is capable of stopping the cylinder at a target stop position with high accuracy, and also prevents overrun as much as possible even when stopping during high-speed driving, thereby reducing the cylinder's speed. It is an object of the present invention to provide a cylinder control device that can shorten stroke time.

[課題を解決するための手段] 上記目的を達成するため、本考案のシリンダ制
御装置は、複動形空気圧シリンダと、該複動形空
気圧シリンダの圧力室を通電量に比例した開口量
で空気源と大気とに切換えて連通させる電空比例
弁と、該電空比例弁への通電量を制御する電気制
御回路と、上記複動形空気圧シリンダの負荷の位
置を検出して上記電気制御回路にフイードバツク
する位置検出機構とを備え、上記電気制御回路
は、上記位置検出機構からフイードバツクされる
負荷の位置と目標停止位置との誤差が誤差設定値
より大きい場合には誤差に対応した大きさの連続
的信号を、誤差が上記設定値より小さい場合には
誤差に対応して大きさが順次減少する複数の断続
信号を、それぞれ上記電空比例弁に出力するもの
として構成している。
[Means for Solving the Problems] In order to achieve the above object, the cylinder control device of the present invention includes a double-acting pneumatic cylinder and a pressure chamber of the double-acting pneumatic cylinder that controls air with an opening amount proportional to the amount of current supplied. an electro-pneumatic proportional valve that switches between the air source and the atmosphere to communicate with each other; an electric control circuit that controls the amount of current supplied to the electro-pneumatic proportional valve; and an electric control circuit that detects the position of the load of the double-acting pneumatic cylinder. and a position detection mechanism that provides feedback to the target stop position, and when the error between the load position fed back from the position detection mechanism and the target stop position is greater than an error setting value, the electric control circuit detects a position corresponding to the error. The continuous signal is configured such that when the error is smaller than the set value, a plurality of intermittent signals whose magnitudes are sequentially decreased in accordance with the error are output to the electropneumatic proportional valve, respectively.

[作用] かかる本考案のシリンダ制御装置においては、
負荷の位置が目標停止位置から大きく離れてお
り、従つてその停止位置の誤差が予め定めた誤差
設定置より大きい駆動初期には、上記誤差に対応
した大きさの連続的信号が電気制御回路から電空
比例弁に送られ、それによつてシリンダが負荷を
目標停止位置に向けて速度を漸減させながら接近
させ、その接近に伴つて負荷の位置と目標停止位
置との誤差が上記設定値より小さくなつた駆動終
期においては、ループゲインを小さく抑えるた
め、上記誤差に対応して大きさが順次減少する複
数の信号を断続的なパルスとなし、それを電気制
御回路から電空比例弁に印加して、速度が漸減し
たシリンダの負荷が目標停止位置に近づくにした
がつてシリンダに大きな制動を働かせ、それによ
り負荷を目標停止位置に精度良く停止させるとと
もに、上記設定値を目標停止位置近くに設定可能
として、ストローク時間を短縮させる。
[Function] In the cylinder control device of the present invention,
At the beginning of driving, when the load position is far away from the target stop position and the error in the stop position is larger than the predetermined error setting position, a continuous signal with a magnitude corresponding to the error is sent from the electric control circuit. The signal is sent to the electro-pneumatic proportional valve, which causes the cylinder to approach the target stop position while gradually decreasing the speed, and as it approaches, the error between the load position and the target stop position becomes smaller than the set value above. In the final stage of driving, in order to keep the loop gain small, multiple signals whose magnitude decreases in sequence in response to the above error are made into intermittent pulses, which are applied from the electric control circuit to the electropneumatic proportional valve. As the load on the cylinder whose speed gradually decreases approaches the target stop position, greater braking is applied to the cylinder, thereby stopping the load accurately at the target stop position, and setting the above set value near the target stop position. Reduce stroke time if possible.

[考案の効果] このように、本考案のシリンダ制御装置によれ
ば、シリンダによつて駆動される負荷が目標停止
位置にある程度近づいた時点でシリンダに制動を
加えると共に、その制動を負荷が目標停止位置に
近づくにしたがつて順次大きくなるようにしたの
で、高速で駆動する負荷を目標停止位置に高精度
に停止させることができるばかりでなく、誤差設
定値を目標停止位置近くに設定できるので、空気
圧シリンダのストローク時間を短縮させることが
可能となる。
[Effect of the invention] As described above, according to the cylinder control device of the invention, braking is applied to the cylinder when the load driven by the cylinder approaches the target stop position to some extent, and the braking is applied to the cylinder when the load is driven by the target stop position. Since it is made to increase gradually as it approaches the stop position, it is not only possible to stop a load driven at high speed at the target stop position with high precision, but also to set the error setting value close to the target stop position. , it becomes possible to shorten the stroke time of the pneumatic cylinder.

[実施例] 以下、本考案の実施例を図面に基づいて詳細に
説明すると、第1図において、1は負荷、2はそ
れを駆動する複動形空気圧シリンダで、該空気圧
シリンダ2のヘツド側圧力室2a及びロツド側圧
力室2bをそれぞれ電空比例弁3,4を介して空
気源5に接続し、一対の圧力室2a,2bをそれ
ぞれの電空比例弁3,4への通電量に対応した開
口量で空気源5と大気とに切換連通させ、それに
より上記通電量に比例した量の空気を、空気源5
から圧力室2a,2bに供給すると共に、圧力室
2a,2bから大気に排気するようにしている。
上記操作により、例えばヘツド側圧力室2aをロ
ツド側圧力室2bより高圧とした場合には、第1
図においてピストン2c及びロツド2dが負荷1
と共に右動し、上記とは逆にロツド側圧力室2b
を高圧とした場合には、それらを左動することに
なる。
[Embodiment] Hereinafter, an embodiment of the present invention will be described in detail based on the drawings. In Fig. 1, 1 is a load, 2 is a double-acting pneumatic cylinder that drives the load, and the head side of the pneumatic cylinder 2 is The pressure chamber 2a and the rod-side pressure chamber 2b are connected to an air source 5 via electro-pneumatic proportional valves 3 and 4, respectively, and the pair of pressure chambers 2a and 2b are connected to the amount of current supplied to the respective electro-pneumatic proportional valves 3 and 4. The air source 5 is switched to communicate with the atmosphere with a corresponding opening amount, and an amount of air proportional to the above-mentioned amount of current is supplied to the air source 5.
The air is supplied to the pressure chambers 2a, 2b from the pressure chambers 2a, 2b, and exhausted from the pressure chambers 2a, 2b to the atmosphere.
For example, if the head side pressure chamber 2a is made to have a higher pressure than the rod side pressure chamber 2b by the above operation, the first
In the figure, the piston 2c and rod 2d are loaded with 1 load.
The pressure chamber 2b on the rod side moves to the right as well, contrary to the above.
If the pressure is set to high, they will be moved to the left.

上記電空比例弁3,4への通電量を制御する電
気制御回路6は、負荷1の現在位置をフイードバ
ツクしてそれと目標停止位置との差に基づいた制
御信号を出力するもので、負荷1の現在位置をア
ナログ信号として検出する直線運動形のポテンシ
ヨメータ7を備え、そのポテンシヨメータ7の出
力端子をA/D変換器を介してマイクロコンピユ
ータに接続している。上記マイクロコンピユータ
は、負荷の現在位置と目標停止位置との誤差Er
に基づき、その大きさに対応した制御電圧信号C
を、第2図に示すような関数を発生するプログラ
ムによつて決定すると共に、その制御電圧信号C
を、誤差Erが誤差設定値E0より大きい場合には、
連続的に出力し、誤差Erが誤差設定値E0より小
さい場合には、第3図A〜Cに示すように、断続
的な振幅変調パルスとして出力するものである。
而して、上記第2図に示す関数は、折れ線状の非
線形特性を備えたもので、誤差Erが次第に小さ
くなるに従つて、即ち負荷1が目標停止位置に近
づくに従つて、誤差Erの減少に対して大きな利
得で急激に減少する制御電圧信号Cが得られるだ
けでなく、上記のように、その制御電圧信号C
は、誤差Erが設定値E0より小さくなると、即ち
負荷1がさらに目標停止位置に近づくと高い一定
周波の振幅変調パルスとして断続的に得られ、そ
のため負荷1は後述するように目標停止位置に精
度良く停止することになる。
The electric control circuit 6 that controls the amount of current supplied to the electro-pneumatic proportional valves 3 and 4 feeds back the current position of the load 1 and outputs a control signal based on the difference between the current position and the target stop position. A linear motion type potentiometer 7 is provided to detect the current position of the sensor as an analog signal, and an output terminal of the potentiometer 7 is connected to a microcomputer via an A/D converter. The above microcomputer calculates the error Er between the current position of the load and the target stopping position.
Based on the control voltage signal C corresponding to the magnitude
is determined by a program that generates a function as shown in FIG. 2, and its control voltage signal C
, if the error Er is larger than the error setting value E 0 ,
It outputs continuously, and when the error Er is smaller than the error setting value E0 , it outputs as intermittent amplitude modulated pulses as shown in FIGS. 3A to 3C.
The function shown in Fig. 2 above has a polygonal nonlinear characteristic, and as the error Er gradually becomes smaller, that is, as the load 1 approaches the target stopping position, the error Er becomes smaller. Not only is a control voltage signal C that rapidly decreases with a large gain relative to the decrease obtained, but also, as described above, the control voltage signal C
is intermittently obtained as a high constant frequency amplitude modulation pulse when the error Er becomes smaller than the set value E 0 , that is, when the load 1 approaches the target stop position, and as a result, the load 1 reaches the target stop position as described later. It will stop with good precision.

なお、上記関数の特性は、第2図に示すものに
限定されるものではなく、また上記第3図A〜C
に示すパルスにおけるパルス繰返し周期t1及びパ
ルス幅t2は、例えばそれぞれ10ms及び5ms程度に
することができる。
Note that the characteristics of the above functions are not limited to those shown in FIG. 2, and are also similar to those shown in FIGS.
The pulse repetition period t 1 and pulse width t 2 of the pulse shown in can be set to, for example, about 10 ms and 5 ms, respectively.

また、上記マイクロコンピユータは、負荷の目
標停止位置の他に、停止時間、移動速度等の設定
データを入力可能に構成され、それらのデータは
プログラムによつても設定可能に構成することが
できる。さらに、上記マイクロコンピユータに
は、誤差表示器及びフロツピーデイスクドライブ
が接続されると共に、上記制御電圧信号Cをアナ
ログ電圧信号に変換するD/A変換器及びPID調
節器を介してサーボアンプ(電圧−電流変換器)
が接続され、該サーボアンプを上記電空比例弁
3,4のソレノイドに接続することにより、電空
比例弁3,4を上記制御電圧信号Cに応じた大き
さの制御電流により駆動するようにしている。
Further, the microcomputer is configured to be able to input setting data such as stop time, moving speed, etc. in addition to the target stop position of the load, and these data can also be configured to be settable by a program. Furthermore, an error indicator and a floppy disk drive are connected to the microcomputer, and a servo amplifier (voltage - current converter)
is connected, and by connecting the servo amplifier to the solenoids of the electro-pneumatic proportional valves 3 and 4, the electro-pneumatic proportional valves 3 and 4 are driven by a control current having a magnitude corresponding to the control voltage signal C. ing.

次に、上記構成のシリンダ制御装置の動作を説
明する。
Next, the operation of the cylinder control device having the above configuration will be explained.

第1図は、空気圧シリンダ2の一対の圧力室2
a,2bが共に大気に連通排気してピストン2
c、ロツド2d及び負荷1が静止した状態を示し
ている。
FIG. 1 shows a pair of pressure chambers 2 of a pneumatic cylinder 2.
Both a and 2b are communicated and exhausted to the atmosphere, and the piston 2
c shows a state in which the rod 2d and the load 1 are stationary.

この状態から負荷1を駆動するには、電気制御
回路6から電空比例弁3,4に通電して、空気源
5からの空気を圧力室2a,2bの一方に供給す
ると共に、他方の空気を大気に排気すればよい。
To drive the load 1 from this state, the electric control circuit 6 energizes the electropneumatic proportional valves 3 and 4 to supply air from the air source 5 to one of the pressure chambers 2a and 2b, and to should be exhausted to the atmosphere.

上記負荷1の駆動を電気制御回路6との関係に
おいて詳述すると、負荷1を現在位置からそれと
離れた目標停止位置まで駆動するには、まず、電
気制御回路6におけるマイクロコンーピユータに
目標停止位置が設定され、空気圧シリンダ2のピ
ストン2cが駆動されるが、その際に負荷1の現
在位置がポテンシヨメータ7で検出され、その検
出信号がA/D変換器を介して割り込み処理によ
りマイクロコンピユータに入力され、そこで目標
停止位置との誤差Erが演算されると共に、関数
発生プログラムに基づき、第2図の特性において
誤差Erに対応した制御電圧信号Cが当初連続的
に、その後誤差Erが設定値E0以下になると断続
的に出力される。その制御電圧信号CはD/A変
換器によりアナログ電圧信号に変換された後、
PID調節器を介してサーボアンプに入力され、サ
ーボアンプから電流信号として電空比例弁3,4
のソレノイドに送られる。これにより、圧力室2
a,2bと空気源5及び大気との間の開口量が制
御され、空気圧シリンダ2のピストン2c及びロ
ツド2dは負荷1と共に目標停止位置に向つて駆
動される。上記一連の動作は、所定時間毎、例え
ば5ms毎に繰返して行われ、それにより負荷は目
標停止位置に達することになる。
To explain the driving of the load 1 in detail in relation to the electric control circuit 6, in order to drive the load 1 from its current position to a target stop position distant from it, first, the microcomputer in the electric control circuit 6 has a target stop position. The stop position is set, and the piston 2c of the pneumatic cylinder 2 is driven. At this time, the current position of the load 1 is detected by the potentiometer 7, and the detection signal is sent via the A/D converter by interrupt processing. It is input to a microcomputer, where the error Er with respect to the target stop position is calculated, and based on the function generation program, the control voltage signal C corresponding to the error Er with the characteristics shown in Fig. 2 is initially continuously generated, and then the error Er is output intermittently when becomes less than the set value E 0 . After the control voltage signal C is converted into an analog voltage signal by a D/A converter,
It is input to the servo amplifier via the PID controller, and the electro-pneumatic proportional valves 3 and 4 are sent as a current signal from the servo amplifier.
is sent to the solenoid. As a result, pressure chamber 2
The opening amount between a, 2b and the air source 5 and atmosphere is controlled, and the piston 2c and rod 2d of the pneumatic cylinder 2 are driven together with the load 1 toward the target stop position. The series of operations described above is repeated at predetermined intervals, for example every 5 ms, so that the load reaches the target stop position.

上記制御装置においては、負荷1の現在位置と
目標停止位置との誤差Erが小さくなるに従つて、
誤差Erの変化に対して大きな利得で急激に減少
する制御電圧信号Cを、誤差Erが設定値E0より
大きい場合には連続的に、設定値E0より小さい
場合には断続的に出力し、その制御電圧信号Cに
基づいた電流を電空比例弁3,4に加えて、負荷
1の駆動を制御するようにしたので、負荷1の目
標停止位置への接近に伴つて、電空比例弁3,4
に加わる電流が次第に大きな利得で急激に減少す
ると共に、ある距離よりさらに近づくとそれまで
よりもさらに急激に減少するものとなる。従つ
て、負荷1が目標停止位置に近づくに伴つて、電
空比例弁3,4の開口量は高感度に急激に減少し
て、負荷1は目標停止位置に正確に停止すること
になる。
In the above control device, as the error Er between the current position of load 1 and the target stop position becomes smaller,
A control voltage signal C that rapidly decreases with a large gain in response to a change in the error Er is output continuously when the error Er is larger than the set value E 0 , and intermittently when it is smaller than the set value E 0 . , a current based on the control voltage signal C is applied to the electro-pneumatic proportional valves 3 and 4 to control the drive of the load 1, so that as the load 1 approaches the target stop position, the electro-pneumatic proportional valve Valve 3, 4
The current applied to the current decreases rapidly with gradually increasing gain, and as the distance approaches the target, the current decreases even more rapidly than before. Therefore, as the load 1 approaches the target stop position, the opening amounts of the electropneumatic proportional valves 3 and 4 rapidly decrease with high sensitivity, and the load 1 is accurately stopped at the target stop position.

上記実施例においては、一対の電空比例弁3,
4に代えて、第4図に示す一つの5ポート形電空
比例弁11を用いることができる。この電空比例
弁11は、左側のソレノイド12への通電により
入力ポート13と一方の出力ポート14、及び他
方の出力ポート15と排気ポート16が上記通電
量に比例した流量でそれぞれ連通し、右側のソレ
ノイド18への通電により入力ポート13と出力
ポート15、及び出力ポート14と排気ポート1
7が上記通電量に比例した流量でそれぞれ連通す
るものとして構成されている。而して、上記電空
比例弁11を用いた場合には、その構造上空気の
給排が一意的に定まるため、微妙な中立点調整を
容易に短時間で行うことができると共に、ドリフ
トの点で有利である。
In the above embodiment, a pair of electropneumatic proportional valves 3,
4, a five-port electropneumatic proportional valve 11 shown in FIG. 4 can be used. In this electro-pneumatic proportional valve 11, when the left solenoid 12 is energized, the input port 13 and one output port 14, and the other output port 15 and exhaust port 16 are communicated with each other at a flow rate proportional to the energization amount, and the right side solenoid 12 is energized. By energizing the solenoid 18, the input port 13 and the output port 15, and the output port 14 and the exhaust port 1
7 are configured to communicate with each other at a flow rate proportional to the amount of current supplied. When the electro-pneumatic proportional valve 11 is used, air supply and discharge are uniquely determined due to its structure, so delicate neutral point adjustments can be easily made in a short time, and drift can be reduced. It is advantageous in this respect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の実施例の構成図、第2図はそ
のマイクロコンピユータにプログラムされた関数
の特性図、第3図A〜Cはその関数に基づいてマ
イクロコンピユータから出力される信号の出力特
性図、第4図は電空比例弁の異種例を示す構成図
である。 1……負荷、2……空気圧シリンダ、2a,2
b……圧力室、3,4,11……電空比例弁、5
……空気源、6……電気制御回路。
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a characteristic diagram of a function programmed into the microcomputer, and Figs. 3 A to C are output signals output from the microcomputer based on the function. The characteristic diagram and FIG. 4 are configuration diagrams showing different types of electropneumatic proportional valves. 1...Load, 2...Pneumatic cylinder, 2a, 2
b...Pressure chamber, 3, 4, 11...Electro-pneumatic proportional valve, 5
...Air source, 6...Electric control circuit.

Claims (1)

【実用新案登録請求の範囲】 複動形空気圧シリンダと、該複動形空気圧シリ
ンダの圧力室を通電量に比例した開口量で空気源
と大気とに切換えて連通させる電空比例弁と、該
電空比例弁への通電量を制御する電気制御回路
と、上記複動形空気圧シリンダの負荷の位置を検
出して上記電気制御回路にフイードバツクする位
置検出機構とを備え、 上記電気制御回路は、上記位置検出機構からフ
イードバツクされる負荷の位置と目標停止位置と
の誤差が誤差設定値より大きい場合には誤差に対
応した大きさの連続的信号を、誤差が上記設定値
より小さい場合には誤差に対応して大きさが順次
減少する複数の断続信号を、それぞれ上記電空比
例弁に出力するものとして構成したシリンダ制御
装置。
[Claim for Utility Model Registration] A double-acting pneumatic cylinder, an electro-pneumatic proportional valve that switches the pressure chamber of the double-acting pneumatic cylinder into communication with an air source and the atmosphere with an opening amount proportional to the amount of energization; The electric control circuit includes an electric control circuit that controls the amount of current applied to the electro-pneumatic proportional valve, and a position detection mechanism that detects the position of the load of the double-acting pneumatic cylinder and provides feedback to the electric control circuit. If the error between the load position fed back from the position detection mechanism and the target stop position is larger than the error setting value, a continuous signal of a size corresponding to the error is output, and if the error is smaller than the above setting value, the error signal is output. A cylinder control device configured to output a plurality of intermittent signals whose magnitudes sequentially decrease in response to the above-mentioned electropneumatic proportional valves.
JP10429883U 1983-07-05 1983-07-05 cylinder control device Granted JPS6012702U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10429883U JPS6012702U (en) 1983-07-05 1983-07-05 cylinder control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10429883U JPS6012702U (en) 1983-07-05 1983-07-05 cylinder control device

Publications (2)

Publication Number Publication Date
JPS6012702U JPS6012702U (en) 1985-01-28
JPH0542242Y2 true JPH0542242Y2 (en) 1993-10-25

Family

ID=30244959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10429883U Granted JPS6012702U (en) 1983-07-05 1983-07-05 cylinder control device

Country Status (1)

Country Link
JP (1) JPS6012702U (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220902A (en) * 1985-07-22 1987-01-29 Yamatake Honeywell Co Ltd Valve positioner
JPS6262001A (en) * 1985-09-09 1987-03-18 Yamatake Honeywell Co Ltd Valve positioner
JPH06238531A (en) * 1993-02-12 1994-08-30 Natl House Ind Co Ltd Nut fastening device
JP2008151184A (en) * 2006-12-14 2008-07-03 Ckd Corp Speed control system for fluid pressure cylinder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135201A (en) * 1979-04-11 1980-10-21 Honeywell Inc Time proportion controller for ground surface working machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56173202U (en) * 1980-05-26 1981-12-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135201A (en) * 1979-04-11 1980-10-21 Honeywell Inc Time proportion controller for ground surface working machine

Also Published As

Publication number Publication date
JPS6012702U (en) 1985-01-28

Similar Documents

Publication Publication Date Title
US4625622A (en) Power transmission
US4907493A (en) Valve control system for hitch motor
EP0193947B1 (en) Power transmission
US4648580A (en) Direct-drive type electro-hydraulic servo valve
JPH0542242Y2 (en)
US5049799A (en) High performance controller for variable displacement hydraulic motors
US4786218A (en) Machine tool comprising a tool driven in the axial direction by a hydraulic lifting cylinder, in particular a gear shaper machine
JPH0342244Y2 (en)
JPH0346681B2 (en)
JPS5936153B2 (en) Solenoid valve drive device for hydraulic control
JPS6267304A (en) Digital valve closed-loop control device
JPS5947504A (en) Method and apparatus for controlling fluid pressure cylinder
JPH06146327A (en) Working machine control device for construction machine
JPH0249403B2 (en)
US6408737B1 (en) Control method for a hydraulic drive, and a control device corresponding thereto
US4924754A (en) Circuit arrangement for a hydraulic drive in a position control circuit
JPH0542295Y2 (en)
JPS58102805A (en) Closed loop speed control circuit for oil pressure actuator
JP2003148402A (en) Hydraulic control system
JPS62256417A (en) Dc magnet apparatus
JPS6321398Y2 (en)
JPH036715A (en) Switch controller for open loop solenoid valve
SU1160365A1 (en) Self-adjusting control system
JP2862776B2 (en) Flow control method and device
JPS60231003A (en) Servo mechanism of pneumatic motor