JPH04203382A - Oil cooled type screw compressor - Google Patents

Oil cooled type screw compressor

Info

Publication number
JPH04203382A
JPH04203382A JP32933690A JP32933690A JPH04203382A JP H04203382 A JPH04203382 A JP H04203382A JP 32933690 A JP32933690 A JP 32933690A JP 32933690 A JP32933690 A JP 32933690A JP H04203382 A JPH04203382 A JP H04203382A
Authority
JP
Japan
Prior art keywords
oil
rotor
female rotor
solenoid valve
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32933690A
Other languages
Japanese (ja)
Inventor
Junji Maeda
前田 淳二
Kenji Nakagawa
憲治 仲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32933690A priority Critical patent/JPH04203382A/en
Publication of JPH04203382A publication Critical patent/JPH04203382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To reduce a high frequency noise and vibration of a rotor by a method wherein a discharged oil recovering pipe for a bearing at a discharging side is separated at a female rotor and a male rotor, a solenoid valve and an orifice for metering an amount of recovered oil are arranged in parallel at the recovery pipe at the female rotor side and they are connected to a suction port. CONSTITUTION:Discharged oil at a female rotor passes through a recovery pipe 16 under a differential pressure between an inside part of a D cover 12 and an inside part of a suction port 17 and the discharged oil is recovered into the suction port 17. A solenoid valve 14 and an orifice 15 for adjusting an amount of recovered oil are arranged in parallel to the recovering pipe 16. Under a full load operation, the solenoid valve 14 is opened and the discharged oil at the female rotor is recovered from both the solenoid valve 14 and the orifice 15. Under an unloading operation, the solenoid valve 14 is closed in response to an electrical signal of a pressure switch 27. Due to this fact, the discharged oil at the female rotor is recovered into a suction port 17 only through the orifice 15 and thus an amount of recovered oil can be adjusted to be low in its volume.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は雄ロータと雌ロータから成る油冷式スクリュー
圧縮機又はスクリュー冷凍機の雌ロータの振動低減装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vibration reduction device for a female rotor of an oil-cooled screw compressor or a screw refrigerator that includes a male rotor and a female rotor.

〔従来の技術〕[Conventional technology]

従来の装置を第4図及び第5図に従って説明する。 A conventional device will be explained with reference to FIGS. 4 and 5.

第4図に示す様に、雄ロータ1と雌ロータ2とが適当な
バックラッシュをもって噛合い、ケーシング3とDケー
シング4内に収納されている。ケーシング3内には雄ロ
ータ1と雌ロータ2のそれぞれの吸入側のラジアル荷重
を支持する軸受5゜6が嵌入されている。又、Dケーシ
ング4には雄ロータ1と雌ロータ2のそれぞれの吐出側
でのラジアル荷重を支持する軸受7,9及びスラスト荷
重を支持する軸受8,10が嵌入されている。ケーシン
グ3には雄ロータ1の吸入側の軸封のためにメカシール
14が装着されている。雄ロータ1と雌ロータ2の噛合
面には潤滑とシール及び冷却のため又、軸受には潤滑の
ために油が給油される。
As shown in FIG. 4, a male rotor 1 and a female rotor 2 mesh with each other with appropriate backlash and are housed in a casing 3 and a D casing 4. Fitted into the casing 3 are bearings 5.6 that support the radial loads on the suction sides of the male rotor 1 and female rotor 2, respectively. Also, fitted into the D casing 4 are bearings 7 and 9 that support the radial load on the discharge side of the male rotor 1 and the female rotor 2, and bearings 8 and 10 that support the thrust load. A mechanical seal 14 is attached to the casing 3 for shaft sealing on the suction side of the male rotor 1. Oil is supplied to the meshing surfaces of the male rotor 1 and the female rotor 2 for lubrication, sealing, and cooling, and to the bearings for lubrication.

Vプーリ15を介して雄ロータ1を回転駆動し雌ロータ
2は雄ロータ1によって従動駆動される。
The male rotor 1 is rotationally driven via the V-pulley 15, and the female rotor 2 is driven by the male rotor 1.

吸入空気は、アンローダバルブ16を通って吸入ポート
13へ吸込まれ、ロータ間で圧縮された後にケーシング
3に設けた吐出ボート26から吐出される。吐出された
高圧の空気と油は、オイルセパレータ18で油分を分離
された後、調圧弁19、逆止弁20を通ってアフタクー
ラ2工で冷却されて吐出され、消費空気として使用され
る。
The intake air is drawn into the intake port 13 through the unloader valve 16, compressed between the rotors, and then discharged from the discharge boat 26 provided in the casing 3. The discharged high-pressure air and oil are separated in oil by an oil separator 18, pass through a pressure regulating valve 19 and a check valve 20, are cooled by two aftercoolers, are discharged, and are used as consumed air.

オイルセパレータ18で分離された油はオイルクーラ2
4で冷却され、オイルフィルタ25を通って、ロータの
噛合部と各軸受へ、オイルセパレータ18と圧縮機本体
内との差圧により給油される。吐出側の軸受への給油は
Dケーシング4に設けた給油孔17を通して各軸受7〜
10へ給油される。
The oil separated by the oil separator 18 is transferred to the oil cooler 2.
The compressor is cooled at step 4, passes through an oil filter 25, and is supplied with oil to the rotor's meshing portion and each bearing due to the differential pressure between the oil separator 18 and the compressor body. The bearings on the discharge side are supplied with oil through the oil supply hole 17 provided in the D casing 4.
10 is refueled.

軸受を通った油はDカバー11内に排油された後、Dカ
バー11内と吸入ポート13内との差内により1回収配
管12を通って吸入ポート13内へ回収される。
After the oil that has passed through the bearing is drained into the D cover 11, it is collected into the suction port 13 through the first recovery pipe 12 within the difference between the inside of the D cover 11 and the suction port 13.

消費空気量が減少するとオイルセパレータ18内の圧力
が上昇する。消費空気量が圧縮機の吐出空気量の約半分
になった時の吐出圧力を圧力スイッチ22で検出し、こ
の圧力スイッチ22の電気信号により、アンローダバル
ブ16を閉塞し、吸入空気を遮断するとともに放気電磁
弁23を開放して、オイルセパレータ18内の圧縮空気
を大気開放して圧縮機の負荷を軽減して、アンロード運
転とする。
As the amount of consumed air decreases, the pressure within the oil separator 18 increases. The pressure switch 22 detects the discharge pressure when the amount of consumed air becomes about half of the amount of air discharged from the compressor, and the electric signal from this pressure switch 22 closes the unloader valve 16 to cut off the intake air. The air discharge solenoid valve 23 is opened to release the compressed air in the oil separator 18 to the atmosphere to reduce the load on the compressor and perform an unload operation.

アンロード運転時には、吸入圧力は負圧となり、吐出圧
力は、全負荷運転時の圧カフkgf/cJ−gに対し、
約2kgt/aiT−gの低い圧力に保持される。
During unload operation, the suction pressure becomes negative pressure, and the discharge pressure differs from the pressure cuff kgf/cJ-g during full load operation.
It is maintained at a low pressure of about 2 kgt/aiT-g.

第5図に雄ロータ1と雌ロータ2の歯面が噛合った状態
での軸心に対し直角な断面図を示す。図中で雄ロータ1
は矢印で示す方向に回転し、雌ロータ2は雄ロータ1の
歯面の前進面と接触して駆動され矢印で示す方向に回転
する。
FIG. 5 shows a sectional view perpendicular to the axis of the male rotor 1 and the female rotor 2 in a state where their tooth surfaces are in mesh with each other. Male rotor 1 in the diagram
The female rotor 2 rotates in the direction shown by the arrow, and the female rotor 2 is driven by contacting the advancing surface of the tooth surface of the male rotor 1 and rotates in the direction shown by the arrow.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では次の様な問題点がある。第5図におい
て、雌ロータ2に作用する回転トルクは、吐出圧力と吸
入圧力とによって決まるガストルク(図中の実線で示す
様に作用方向は雌ロータ2の回転方向と逆方向に作用し
雌ロータ2を雄ロータ1の前進面に押しつける側に鋤<
)、及び、被駆動側である雌ロータ2が回転を伝達され
ることにより生じる雌ロータ2の慣性によるトルクと雌
ロ一夕2の回転むらによる回転方向の進み遅れにより生
じるトルク又、ガストルクの変動によって生じるトルク
(これらを総じて慣性トルクという)がある、この慣性
トルクは図中の破線で示す様に雌ロータ2の回転方向と
同じ向きに作用し、雌ロータ2を雄ロータ1の前進面か
ら引き離し、後進面側へ作用する。ガストルクと慣性ト
ルクはともに、雌ロータの回転角によって変化する。運
転中、常に、ガストルクが慣性トルクよりも大きければ
雌ロータ2は、常に、雄ロータ1の前進面側と接触した
理想的な回転伝達がなされるが逆に、ガストルクが慣性
トルクよりも小さいと雌ロータ2は駆動面とは反対側の
後進面と接触することになる。
The above conventional technology has the following problems. In Fig. 5, the rotational torque acting on the female rotor 2 is the gas torque determined by the discharge pressure and the suction pressure (as shown by the solid line in the figure, the acting direction is opposite to the rotational direction of the female rotor 2, A plow is placed on the side that presses the male rotor 2 against the forward movement surface of the male rotor 1.
), and torque due to the inertia of the female rotor 2 that is generated when rotation is transmitted to the female rotor 2 on the driven side, and torque that is generated due to advancement and delay in the rotation direction due to uneven rotation of the female rotor 2, and gas torque. There is a torque (collectively referred to as inertial torque) caused by the fluctuation. This inertial torque acts in the same direction as the rotational direction of the female rotor 2, as shown by the broken line in the figure, and moves the female rotor 2 toward the forward movement surface of the male rotor 1. It pulls away from the surface and acts on the backward movement side. Both the gas torque and the inertia torque change depending on the rotation angle of the female rotor. During operation, if the gas torque is always larger than the inertial torque, the female rotor 2 will always be in contact with the forward surface side of the male rotor 1, and an ideal rotational transmission will be performed.On the other hand, if the gas torque is smaller than the inertial torque, The female rotor 2 comes into contact with the reversing surface on the opposite side to the driving surface.

アンロード時には、吐出圧力が約2kgf/aJ−gと
低くなるためガストルクが減少し雌ロータ2の回転角に
よってガストルクが慣性トルクより大きくなったり小さ
くなったりする。又、アンロード時には、吐出圧力が低
くなるためオイルセパレータ18内と圧縮機本体内との
差圧で流れる吐出側の軸受8〜10への給油量が減少す
る。このため、軸受内での油のかき回しによる動摩擦ト
ルク(これは、ガストルクと同じ方向に作用し慣性トル
クを打ち消す方向に働く)が減少する。このため、アン
ロード時に、雌ロータ2は常に、雄ロータ1の前進面と
接触するのではなく、一回転する間に雄ロータ1の前進
面と後進面に交互に接触する。
During unloading, the gas torque decreases because the discharge pressure is as low as about 2 kgf/aJ-g, and depending on the rotation angle of the female rotor 2, the gas torque becomes larger or smaller than the inertial torque. Furthermore, during unloading, the discharge pressure decreases, so the amount of oil supplied to the bearings 8 to 10 on the discharge side, which flows due to the differential pressure between the oil separator 18 and the compressor body, decreases. Therefore, the dynamic friction torque (which acts in the same direction as the gas torque and cancels out the inertial torque) due to stirring of the oil within the bearing is reduced. Therefore, during unloading, the female rotor 2 does not always come into contact with the forward moving surface of the male rotor 1, but alternately contacts the forward moving surface and the backward moving surface of the male rotor 1 during one rotation.

いわゆる歯面分離撮動が起り易くなるにのため、ロータ
同士の歯打ちによる耳ざわりな高周波騒音と過大な振動
が生じる。又歯打ちによってロータ表面が異常摩耗する
ため、この摩耗部からの空気の液漏により、圧縮機の性
能が著しく低下する。
Because so-called tooth surface separation imaging is more likely to occur, harsh high-frequency noise and excessive vibrations are generated due to the teeth of the rotors hitting each other. Furthermore, since the rotor surface is abnormally worn due to tooth striking, the performance of the compressor is significantly reduced due to air leakage from this worn portion.

本発明の目的は、雌ロータ2の歯面分離をなくすること
にある。
An object of the present invention is to eliminate tooth flank separation of the female rotor 2.

〔課題を解決するための手段〕[Means to solve the problem]

吐出側の軸受の排油の回収配管を雌ロータ側と雌ロータ
側とを分離して、雌ロータ側の回収配管に電磁弁と回収
油量を絞るためのオリフィスとを並列に配管して吸入ポ
ートへ接続する。雄ロータ側の回収配管は雌ロータ側と
は別の配管で吸入ポートへ接続する。
Separate the recovery piping for the discharge side bearing waste oil between the female rotor side and the female rotor side, and connect a solenoid valve and an orifice to throttle the amount of recovered oil in parallel to the recovery piping on the female rotor side for suction. Connect to port. The recovery piping on the male rotor side is connected to the suction port through a separate piping from that on the female rotor side.

6一 アンロード時に、圧力スイッチの電気信号により電磁弁
を閉じ、全負荷時には開く様にする。これにより、雌ロ
ータ側の排油は、全負荷時は電磁弁とオリフィスの両方
を通って吸入ボー1〜へ回収されるが、アンロード時は
、オリフィスからのみ回収し、回収油量を絞って、軸受
内に油が溜る様にしたものである。
6. When unloading, the solenoid valve is closed by the electric signal from the pressure switch, and opened when the load is full. As a result, when the female rotor is fully loaded, the drained oil passes through both the solenoid valve and the orifice and is collected into the suction bow 1~, but when unloaded, it is collected only from the orifice, reducing the amount of oil collected. This allows oil to accumulate inside the bearing.

〔作用〕[Effect]

アンロード時に雌ロータの吐出側軸受の回収油量を締っ
て減らすことにより、軸受部の油の溜まり髪満杯状態に
することができる。この状態では軸受による油のかき回
しによって生じる動摩擦抵抗が、全負荷時の満杯でない
状態に比べて遥かに過大となる。この動摩擦抵抗は、雌
ロータの回転方向に対し逆方向(アンロード時に雌ロー
タに働く慣性トルクと反対方向)に作用するための雌ロ
ータの慣性トルクを緩和し、ガストルクが慣性トルクよ
りも大きい状態を維持することができる。
By tightening and reducing the amount of oil collected in the discharge side bearing of the female rotor during unloading, it is possible to make the bearing section full of oil. In this state, the dynamic frictional resistance caused by the stirring of oil by the bearing is far greater than in the full load state. This dynamic frictional resistance relieves the inertia torque of the female rotor, which acts in the opposite direction to the rotational direction of the female rotor (in the opposite direction to the inertia torque acting on the female rotor during unloading), and the gas torque is larger than the inertia torque. can be maintained.

これによって雌ロータは雄ロータの前進面から離れにく
くなり、ロータの歯面分離を解消することができる。
This makes it difficult for the female rotor to separate from the forward movement surface of the male rotor, and it is possible to eliminate tooth flank separation of the rotor.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図、第2図により説明する
。第1図において一対の雄ロータ1と雌ロータ2は、あ
るバックラッシュをもって噛合い、ケーシング3とDケ
ーシング4内に収納されている。ケーシング3内には雄
ロータ1と雌ロータ2のそれぞれの吸入側のラジアル荷
重を支持する軸受5,6が嵌入されている。又、Dケー
シング4には雄ロータ1と雌ロータ2のそれぞれの吐出
側のラジアル荷重を支持する軸受7,9、及び、スラス
ト荷重を支持する軸受8,10が嵌入されている。ケー
シング3には雄ロータ1の吸入側の軸封のためメカシー
ル19が装着されている。雄ロータ1と雌ロータ2の噛
合面には潤滑とシール及び冷却のため、又、軸受には潤
滑のため油が給油される。Vプーリ20を介して雄ロー
タ1を回転駆動し雌ロータ2は雄ロータ1によって従動
駆動される。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. In FIG. 1, a pair of male rotor 1 and female rotor 2 are housed in a casing 3 and a D casing 4, meshing with each other with a certain backlash. Bearings 5 and 6 are fitted into the casing 3 to support the radial loads on the suction sides of the male rotor 1 and female rotor 2, respectively. Furthermore, bearings 7 and 9 that support the radial load on the discharge side of the male rotor 1 and female rotor 2, and bearings 8 and 10 that support the thrust load are fitted into the D casing 4. A mechanical seal 19 is attached to the casing 3 to seal the shaft of the male rotor 1 on the suction side. Oil is supplied to the meshing surfaces of the male rotor 1 and the female rotor 2 for lubrication, sealing, and cooling, and to the bearings for lubrication. The male rotor 1 is rotationally driven through a V-pulley 20, and the female rotor 2 is driven by the male rotor 1.

吸入空気はアンローダバルブ21を通って吸入=7− ポート17へ吸込まれ、ロータ間で圧縮された後に、ケ
ーシング3に設けた吐出ポート18から吐出される。吐
出された高圧の空気と油はオイルセパレータ23で油分
を分離した後、調圧弁24゜逆止弁25を通ってアフタ
ークーラ26で冷却されて吐出され、消費空気として使
用される。オイルセパレータ23で分離された油はオイ
ルクーラ29で冷却されオイルフィルタ30を通って、
ロータの噛合部と各軸受へ、オイルセパレータ23と圧
縮機本体内との差圧によって給油される。吐出側の軸受
への給油はDケーシング4に設けた給油孔22を通して
各軸受7〜10へ給油される。
The intake air is drawn into the intake port 17 through the unloader valve 21, compressed between the rotors, and then discharged from the discharge port 18 provided in the casing 3. After oil is separated from the discharged high-pressure air and oil by an oil separator 23, the air passes through a pressure regulating valve 24 and a check valve 25, is cooled by an aftercooler 26, and is discharged to be used as consumed air. The oil separated by the oil separator 23 is cooled by the oil cooler 29, passes through the oil filter 30,
The meshing portion of the rotor and each bearing are supplied with oil by the differential pressure between the oil separator 23 and the compressor body. Oil is supplied to the bearings on the discharge side through oil supply holes 22 provided in the D casing 4 to each of the bearings 7 to 10.

軸受を通った油は、雄ロータ側はDカバー11内に、雌
ロータ側はDカバー12内にそれぞれ排油される。雄ロ
ータ側の排油は、Dカバー11内と吸入ポート17内と
の差圧によって回収配管工3を通って吸入ボート17内
へ回収される。−方、雌ロータ側の排油は、Dカバー1
2内と吸入ボート17内との差圧によって回収配管工6
を通って吸入ボート17内へ回収され・るが、この回収
−〇− 一8= 配管工6には電磁弁14と回収油量を縛るだめのオリフ
ィス15が並列に取付いている。全負荷運転時は、この
電磁弁14を開いて、雌ロータ側の排油は、電磁弁14
とオリフィス15の両方から回収される。
The oil that has passed through the bearing is drained into the D cover 11 on the male rotor side and into the D cover 12 on the female rotor side. The drained oil on the male rotor side is recovered into the suction boat 17 through the recovery plumber 3 due to the differential pressure between the inside of the D cover 11 and the inside of the suction port 17. - On the female rotor side, drain oil from D cover 1.
2 and the suction boat 17, the recovery plumber 6
The oil is collected into the suction boat 17 through the pipe, and the plumber 6 is equipped with a solenoid valve 14 and an orifice 15 in parallel to limit the amount of oil collected. During full load operation, this solenoid valve 14 is opened, and the drain oil on the female rotor side is drained through the solenoid valve 14.
and orifice 15.

消費空気量が減少すると、オイルセパレータ23内の圧
力が上昇する。消費空気量が圧縮機の吐出空気量の約半
分になった時の吐出圧力を圧力スイッチ27で検出し、
この圧力スイッチ27の電気信号により、アンローダバ
ルブ21を開基し、吸入空気を遮断するとともに放気電
磁弁28を開放して、オイルセパレータ23内の圧縮空
気を大気へ開放して圧縮機の負荷を軽減してアンロード
運転とする。このアンロード運転時には、吸入圧力は負
圧となり、吐出圧力は全負荷時の圧カフkgf/a#−
gに対し約2kgf/a#−gの低い圧力に保持される
When the amount of air consumption decreases, the pressure within the oil separator 23 increases. The pressure switch 27 detects the discharge pressure when the amount of air consumed becomes approximately half of the amount of air discharged from the compressor,
In response to the electric signal from the pressure switch 27, the unloader valve 21 is opened to cut off the intake air, and the discharge solenoid valve 28 is opened to release the compressed air in the oil separator 23 to the atmosphere, thereby reducing the load on the compressor. Reduce the load and perform unloading operation. During this unloading operation, the suction pressure becomes negative pressure, and the discharge pressure becomes pressure cuff kgf/a#- at full load.
The pressure is maintained at a low level of approximately 2 kgf/a#-g.

アンロード運転時には、圧力スイッチ27の電気信号に
より、上述の電磁弁]4は閉じる。このため、アンロー
ド時には、雌ロータ側の排油は、−1〇− オリフィス15からのみ、吸入ポート17へ回収され、
回収油量を少なく絞ることができる。
During unloading operation, the above-mentioned solenoid valve 4 is closed by an electric signal from the pressure switch 27. Therefore, during unloading, the drained oil on the female rotor side is collected only from the -10- orifice 15 and into the suction port 17.
The amount of recovered oil can be reduced.

第2図に、電磁弁14とオリフィス15の垂直方向の取
付位置を説明するために、雌ロータ2の吐出側の軸受部
の縦断面図を示す。Dカバー12の上下に油回収用の孔
を設け、上部にオリフィス15を、下部に電磁弁14を
設ける。アンロード時は、電磁弁14を閉じ、オリフィ
ス15からのみ油を回収させるため、アンロード時は、
雌ロータ2の軸受9,10には油が満杯状態とすること
ができる。これによって、軸受の油のかき回しによる動
摩擦抵抗を過大にすることができる。
FIG. 2 shows a longitudinal sectional view of the bearing portion on the discharge side of the female rotor 2 in order to explain the vertical mounting positions of the solenoid valve 14 and the orifice 15. Holes for oil recovery are provided at the top and bottom of the D cover 12, an orifice 15 is provided at the top, and a solenoid valve 14 is provided at the bottom. During unloading, the solenoid valve 14 is closed and oil is collected only from the orifice 15.
The bearings 9 and 10 of the female rotor 2 can be filled with oil. This makes it possible to increase dynamic frictional resistance due to stirring of oil in the bearing.

第3図に、雄ロータ1と雌ロータ2が噛合った状態での
軸心に対し直角方向の断面図を示す。
FIG. 3 shows a cross-sectional view in a direction perpendicular to the axis of the male rotor 1 and the female rotor 2 in a state where they are in mesh with each other.

図中の矢印は、アンロード運転中に雌ロータ2に作用す
るトルクの作用方向を示す。矢印の実線は空気圧力によ
って作用するガストルクを示し、破線は慣性トルク(1
1110−タ2が雄ロータ1によって回転を伝達される
ことにより生じる慣性トルクと雄ロータ2の回転むらに
より回転方向の進み遅れにより生じるトルクの和)を示
し、−点鎖線は雌ロータ2の軸受9,10の動摩擦トル
クを示す。ガストルクと軸受の動摩擦1−ルクは運転中
に雌ロータ2を雄ロータ1の駆動側歯面である前進面側
に押しつける方向に作用し、慣性トルクは雌ロータ2を
雄ロータ1の前進面から引き離す方向に作用する。
The arrow in the figure indicates the direction of torque acting on the female rotor 2 during the unloading operation. The solid line with the arrow indicates the gas torque exerted by air pressure, and the dashed line indicates the inertial torque (1
1110 - shows the sum of the inertia torque generated when the rotation is transmitted to the rotor 2 by the male rotor 1 and the torque generated due to the advance and lag in the rotational direction due to uneven rotation of the male rotor 2. - The dashed line indicates the bearing of the female rotor 2. 9 and 10 are shown. During operation, the gas torque and the dynamic friction of the bearing (1-lux) act in the direction of pressing the female rotor 2 against the forward-moving surface, which is the drive-side tooth surface of the male rotor 1, and the inertial torque pushes the female rotor 2 away from the forward-moving surface of the male rotor 1. Acts in the direction of pulling it apart.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、アンロード時に雌ロータの軸受に発生
する動摩擦トルクが増加する。このトルクは雌ロータを
雄ロータの前進面に押しつける方向に作用するため、雌
ロータは前進面から離れて歯面分離するという現象が起
りくくなる。このためロータ同士の歯面の歯打ちによる
耳ざわりな高周波騒音と、ロータの振動の低減を図るこ
とができる。
According to the present invention, the dynamic friction torque generated in the bearing of the female rotor during unloading increases. Since this torque acts in the direction of pressing the female rotor against the forward movement surface of the male rotor, the phenomenon in which the female rotor separates from the forward movement surface and the tooth surface is less likely to occur. Therefore, it is possible to reduce the harsh high-frequency noise caused by the rattling of the tooth surfaces of the rotors and the vibration of the rotor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すスクリュー圧縮機の横
断面図及び、空気と油の配管系統図を示す。第2図は第
1図の雌ロータの吐出側軸受部の縦断面図、第3図は、
第1図の雄ロータと雌ロータの噛合った状態での軸心に
対して直角方向の断面図、第4図は従来技術におけるス
クリュー圧縮機の空気と油の配管系統図、第5図は、第
4図の雄ロータ1と雌ロータ2の噛合った状態での軸心
に対して直角力′向の断面図を示す。 1・・・雄ロータ、2・・・雌ロータ、3・・・ケーシ
ング、4・・・Dケーシング、5,6,7,8,9.1
0・・・軸受、11.12・・Dカバー、13.16・
・回収配管、14・・・電磁弁、15・・・オリフィス
、17・・・吸入ポート、18・・吐出ポート、19・
・メカシール、20・・・■プーリ、21・・・アンロ
ーダバルブ、22・・給油口、23・・オイルセパレー
タ、24・・・調圧弁、25・・・逆止弁、26・・・
アフタークーラ、27・・・圧力スイッチ、28・・・
放気弁、29 ・オイ卑 lV
FIG. 1 shows a cross-sectional view of a screw compressor and an air and oil piping system diagram showing one embodiment of the present invention. Figure 2 is a longitudinal sectional view of the discharge side bearing of the female rotor in Figure 1, and Figure 3 is a
Figure 1 is a cross-sectional view taken in a direction perpendicular to the axis of the male and female rotors in a meshed state, Figure 4 is a diagram of the air and oil piping system of a conventional screw compressor, and Figure 5 is , is a sectional view taken in the direction of the force perpendicular to the axis of the male rotor 1 and the female rotor 2 in the meshed state of FIG. 4. 1... Male rotor, 2... Female rotor, 3... Casing, 4... D casing, 5, 6, 7, 8, 9.1
0...bearing, 11.12...D cover, 13.16...
・Recovery piping, 14... Solenoid valve, 15... Orifice, 17... Suction port, 18... Discharge port, 19...
・Mechanical seal, 20...Pulley, 21...Unloader valve, 22...Oil filler port, 23...Oil separator, 24...Pressure regulating valve, 25...Check valve, 26...
Aftercooler, 27...Pressure switch, 28...
Air release valve, 29 ・Oi base lV

Claims (1)

【特許請求の範囲】[Claims] 1、互いに噛合う一対の雄ロータと雌ロータより形成さ
れるスクリュー圧縮機本体において、アンロード時に発
生する前記雌ロータの歯面分離振動を低減するために、
前記雌ロータの吐出側軸受へ給油する油の回収配管に電
磁弁を設けて、アンロード時に、回収油量を減らせる機
能をもたせたことを特徴とする油冷式スクリュー圧縮機
1. In a screw compressor main body formed by a pair of male and female rotors that mesh with each other, in order to reduce tooth surface separation vibration of the female rotor that occurs during unloading,
An oil-cooled screw compressor, characterized in that an electromagnetic valve is provided in an oil recovery pipe that supplies oil to a discharge side bearing of the female rotor, so as to have a function of reducing the amount of recovered oil during unloading.
JP32933690A 1990-11-30 1990-11-30 Oil cooled type screw compressor Pending JPH04203382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32933690A JPH04203382A (en) 1990-11-30 1990-11-30 Oil cooled type screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32933690A JPH04203382A (en) 1990-11-30 1990-11-30 Oil cooled type screw compressor

Publications (1)

Publication Number Publication Date
JPH04203382A true JPH04203382A (en) 1992-07-23

Family

ID=18220315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32933690A Pending JPH04203382A (en) 1990-11-30 1990-11-30 Oil cooled type screw compressor

Country Status (1)

Country Link
JP (1) JPH04203382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845265A1 (en) * 2006-04-10 2007-10-17 Aerzener Maschinenfabrik GmbH Rotary piston machine and bearing arrangement therefor
EP1948947A2 (en) 2005-11-17 2008-07-30 Schaeffler KG Bearing set for machine units the shafts of which require exact guidance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1948947A2 (en) 2005-11-17 2008-07-30 Schaeffler KG Bearing set for machine units the shafts of which require exact guidance
EP1845265A1 (en) * 2006-04-10 2007-10-17 Aerzener Maschinenfabrik GmbH Rotary piston machine and bearing arrangement therefor

Similar Documents

Publication Publication Date Title
EP2055957B1 (en) Scroll Compressor
US8882476B2 (en) Oil-flooded screw compressor, motor drive system, and motor control
EP0464315B1 (en) Oil-flooded screw compressor
US7326039B2 (en) Apparatus for varying capacity of scroll compressor
JP3766725B2 (en) Oil-cooled screw compressor
JP2008255798A (en) Method and device for sealing rotor shaft seal of oil-free rotary compressor
JP2008255797A (en) Rotor shaft seal device of oil-free rotary compressor
JPH07158576A (en) Two-stage type oil free screw compressor
JPH04203382A (en) Oil cooled type screw compressor
JP4185598B2 (en) Oil-cooled screw compressor
JP5222900B2 (en) Operation method of screw compressor
JP4792383B2 (en) Operation method of screw compressor
JPS62199927A (en) Control method for supercharger associated with wet clutch
JP5542518B2 (en) air compressor
JPH03992A (en) Screw compressor
JPH1030449A (en) Compressor of refrigerating cycle for vehicle
JP4088396B2 (en) Screw compressor
JP3796656B2 (en) Oil supply type screw compressor and its control method
WO2014106233A1 (en) Compressor control for reverse rotation failure
JPH01211679A (en) Scroll compressor
JP2766045B2 (en) Rotary oilless compressor
JPH0227198Y2 (en)
JPS60249684A (en) Scroll type hydraulic machine
JPS5941355Y2 (en) oil cooled compressor
JP2002021757A (en) Lubricating oil recovering device of screw compressor and lubricating oil recovering method using this device