JP3796656B2 - Oil supply type screw compressor and its control method - Google Patents

Oil supply type screw compressor and its control method Download PDF

Info

Publication number
JP3796656B2
JP3796656B2 JP2001151771A JP2001151771A JP3796656B2 JP 3796656 B2 JP3796656 B2 JP 3796656B2 JP 2001151771 A JP2001151771 A JP 2001151771A JP 2001151771 A JP2001151771 A JP 2001151771A JP 3796656 B2 JP3796656 B2 JP 3796656B2
Authority
JP
Japan
Prior art keywords
recovery
valve
screw compressor
lubricating oil
supply type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001151771A
Other languages
Japanese (ja)
Other versions
JP2002349463A (en
Inventor
裕治 紙屋
知之 角
光幸 山本
優和 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2001151771A priority Critical patent/JP3796656B2/en
Publication of JP2002349463A publication Critical patent/JP2002349463A/en
Application granted granted Critical
Publication of JP3796656B2 publication Critical patent/JP3796656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は給油式スクリュー圧縮機とその制御方法に係り、特に、軸封装置からの油の回収技術に関する。
【0002】
【従来の技術】
従来、軸が互いに平行でかつねじり方向が逆をなす雄雌1組のスクリューローターと、これらスクリューローターを微小の隙間を介して収容するボアを有し、かつこのボアの一方の端面に吸気口が、他方の端面に吐出口が形成されたケーシングとを備え、負荷調整のためのインバータと吸入弁を設けた回転数制御給油式スクリュー圧縮機が知られている。この回転数制御給油式スクリュー圧縮機では、駆動のために雄(オス)ローターの吸気側軸端をケーシングの外部へ延長し、プーリまたはカップリングが取付られている。ケーシングの内部にはローターを支持する軸受があり、この軸受は潤滑のために給油されている。このため、そのオスローター吸気側軸が前記ケーシングを貫通する個所に軸封装置を設け、潤滑油がケーシング外に漏れ出さないようにシールを行なう。しかし、軸封装置からは僅かではあるが潤滑油の漏れ出しがあるので、この漏れ出した潤滑油を一時貯留する溝を軸封装置の外側に設け、この溝を吸入弁の1次側(入り側)に接続する回収用配管を使用し、吸入弁を通過する空気により生じる負圧と軸封装置外部の大気圧との差圧を利用して前記溝に溜まる潤滑油を回収していた。
【0003】
また、軸封装置からの潤滑油回収装置の従来技術としては、例えば特開平9−88860号公報に記載の技術がある。
【0004】
【発明が解決しようとする課題】
上記従来技術では、軸封装置から洩れ出た油は、その外部の溝に集められたのち、回収用配管を経て吸入弁1次側に生じる負圧によって吸い上げられ、吸入弁を通って再び圧縮機本体へと回収される。
【0005】
空気圧縮機の一般的な容量調整方法である吸込み絞り弁方式では、空気量の調整のため吸入弁の開度を全開から全閉まで無段階に調整するため、空気使用量の少ない低負荷になっても潤滑油回収のための吸入弁1次側の負圧は十分にある。
【0006】
一方、回転数制御方式の場合、空気使用量に合わせた容量調整は、圧縮機本体の回転数を変化させて行われるため、吸入弁の開度調整は行なわれない。したがって、潤滑油回収先の吸入弁1次側の負圧は、吸入弁開度が変化しないため、全負荷状態を最高にして回転数が低下する低負荷ほど低くなり潤滑油回収能力は低下する。図4に圧縮機回転数と圧縮機吸込負圧の関係を示す。図4に示す通り、全負荷運転時には十分な負圧により潤滑油回収能力を発揮してきた回収用配管もユーザーの空気使用量の減少に応じて圧縮機本体の回転数が減速して低回転数になると、吸入弁を通過する空気量が減少し吸入弁1次側の負圧が減少する。吸入弁開度は、回転数制御範囲全域で全開のまま一定であるため、低回転数時には2次側の負圧も同様に減少していく。従って、ある回転数A以下の運転領域において潤滑油の回収に十分な吸入弁1次側の負圧の確保ができず回収能力不足となる。このため、ある負荷領域以下の運転状態が続くと、充分な潤滑油回収能力が発揮できなくなる可能性があった。また、回収できなかった潤滑油は外部へと飛散し、駆動用ベルトに付着しスリップを誘発することもある。
【0007】
本発明の目的は、回転数制御方式の給油式スクリュー圧縮機の軸封装置から洩れでた潤滑油の回収能力の不十分な負荷領域を解消することにある。
【0008】
【課題を解決するための手段】
潤滑油の回収能力を維持するためには、回収用配管の下流端の負圧を維持するようにすればよい。発明者等は、吸入弁の2次側に回収用配管を接続すれば、吸入弁の閉止により回収用配管の下流端の負圧を維持できることに着目し、本発明に至った。
【0009】
すなわち、本発明は上記課題を達成するために、遠隔操作による開閉が可能な吸入弁を備え、回転数を変化させて容量制御を行う給油式スクリュー圧縮機において、軸封装置外部に漏れ出した潤滑油を溜めるために設けられた溝部等の貯留手段と、この貯留手段と吸入弁の一次側を接続する回収用配管と、この回収用配管と前記吸入弁の2次側を逆止弁を介して接続する回収用配管分岐管と、前記回収用配管の潤滑油回収能力が不足していると判断したとき、前記吸入弁を所定の時間閉止する潤滑油回収制御手段とを設けたことを特徴とする。
【0010】
回収用配管の潤滑油回収能力が不足しているかどうかの判断は、圧縮機回転数が予め定めた回転数よりも低くなっているかどうか、吸入弁の圧力が予め定められた圧力よりも高くなっていないかどうか、あるいは、前記溝部の油面の位置が予め定めた位置よりも高くなっていないかどうか、などの基準を用いることが可能である。
【0011】
また、前記回収用配管分岐管には、回収能力を調整するために絞り機構を設けるのが望ましい。
【0012】
【発明の実施の形態】
本発明の実施の形態を図面を用いて説明する。図1は本実施の形態の回転数制御給油式スクリュー圧縮機の系統図である(ただし、油分離装置、給油系統等は省略してある)。図示の回転数制御給油式スクリュー圧縮機は、給油式スクリュー圧縮機本体1と、給油式スクリュー圧縮機本体1を駆動する駆動用電動機7と、電動機7の回転数を制御するインバータ8と、給油式スクリュー圧縮機本体1の空気吸込み側に結合された開閉可能な吸入弁2と、インバータ8から出力される信号に基づいて前記吸入弁2を開閉する潤滑油回収制御手段である潤滑油回収制御装置9と、給油式スクリュー圧縮機本体1と前記吸入弁を接続する回収用配管4及び回収用配管分岐管4Aと、を含んで構成されている。
【0013】
給油式スクリュー圧縮機本体1は、軸が互いに平行でかつねじり方向が逆をなす雄雌1組のスクリューローターと、これらスクリューローターを微小の隙間を介して収容するボアを有し、かつこのボアの一方の端面に吸気口が、他方の端面に吐出口が形成されたケーシングとを備えている。駆動のために雄(オス)ローターの吸気側軸端はケーシングの外部へ延長され、プーリまたはカップリングが取付られている(図2はプーリが取りつけられた例である)。ケーシングの内部にはローターを支持する軸受があり、この軸受は潤滑のために給油されている。このため、そのオスローター吸気側軸が前記ケーシングを貫通する個所に軸封装置3が設けられ、潤滑油がケーシング外に漏れ出さないようにシールしている。しかし、軸封装置3からは僅かではあるが潤滑油の漏れ出しがあるので、この漏れ出した潤滑油を一時貯留するメカニカルシール外部溝11を軸封装置の外側に設けてある。
【0014】
図2は、給油式スクリュー圧縮機本体1と給油式スクリュー圧縮機本体1に結合された吸入弁2を示す一部破断側面図である。吸入弁2は、横方向から流入した空気を下方に流出させるよう構成され、流出方向と直交する方向に形成された弁座25に対してその下面に弁体24が当接して弁を閉止するようになっている。弁座25の上方に空洞部を備えたシリンダ26が軸線を上下方向にして設けられ、この空洞部に、軸線に沿って上下に摺動するピストン24Aが内装されている。ピストン24A下面には前記軸線方向に延びるピストンロッドが結合され、このピストンロッドは前記シリンダ26下端を貫通して前記弁体24上面に結合されている。前記シリンダ内部には、ピストン24A下面とシリンダ底面の間に介装されてピストン24Aを上方に付勢するバネ23が設けられている。また、図示のようにシリンダ下部には内径が前記ピストン24Aの外径よりも小さくなった段差部が形成され、そこがピストン24Aの下降下限となっている。なお、前記シリンダ26の下端部と前記弁座25の間には空気流路となる隙間が設けられ、弁開状態では、横方向から流入した空気は、この隙間を経て弁座の開口に流入するようになっている。
【0015】
ピストン24Aは、その上下の面に加わる圧力とバネ23の弾発力の合力で上下に動き、弁体24は開閉2位置を取るようになっている。シリンダには図示されていないが、ピストン24Aの下降下限よりも下の部分(下部区画)に圧縮機の吐出空気を導入する加圧管路と、前記下部区画の内圧を放出する排気管路が設けられ、それぞれに電磁弁が介装されている。同様に、シリンダの上昇上限位置よりも上の部分(上部区画)には、圧縮機の吐出空気を導入する加圧管路と、前記上部区画の内圧を放出する排気管路が設けられ、それぞれに電磁弁が介装されている。前記下部区画、上部区画に接続された加圧管路、排気管路の電磁弁は、前記潤滑油回収制御装置9により開閉制御されるようになっている。なお、下部区画に圧縮機の吐出空気を導入する加圧管路を省き、上部区画に接続された加圧管路の電磁弁を閉じ、排気管路の電磁弁を開いてバネ23の力で弁体24を上昇させて弁を閉じるように構成することも可能である。
【0016】
給油式スクリュー圧縮機本体1の吸気側軸の軸封装置3の近くに設けられたメカニカルシール外部溝11と吸入弁2の1次側(吸入弁1次側ポート21)とが回収用配管4でを連通され、この回収用配管4と吸入弁2の2次側(吸入弁2次側ポート21)とが逆止弁5を介して回収用配管分岐管4Aで連通されている。ここでは「吸入弁1次側」とは内部の弁座より上流側を指し、「同2次側」とは弁座より下流側でかつ圧縮室入口までを指す。なお、逆止弁5は、吸入弁2から回収用配管4に向かう流れを止めるものである。また、逆止弁5と吸入弁2の間には、回収能力を調整するための絞り6が設けられているが、場合によっては省いてもよい。
【0017】
通常運転時では、吸入弁は全開状態にあり、閉止運転(吸入空気を制限し、かつ圧縮エアを外部に放出しながら運転する方式。消費電力抑制に効果がある。減圧運転・パージ運転ともいう)時には弁を全閉する。また、圧縮機の停止時には吸入弁は全閉にし、圧縮機本体内を逆流してきた潤滑油を外部に漏らさない逆止機能も果たす。
【0018】
図3は軸封装置にメカニカルシールを用いた場合の部分断面図である。給油式スクリュー圧縮機本体1の吸気側軸には例えばメカニカルシールなどの軸封装置3が設けられ、ここより外部に洩れ出した潤滑油を一時溜めておくためのメカニカルシール外部溝11を備える。前記回収用配管4は、このメカニカルシール外部溝11の底部を吸入弁2の1次側ポート21に接続する。
【0019】
この構成により、吸入弁2を通過する空気により生じる負圧と軸封装置外部の大気圧との差圧を利用して前記メカニカルシール外部溝11に溜まる潤滑油を吸入弁2に回収する。
【0020】
以下、上記構成の実施の形態の動作について説明する。
【0021】
圧縮機停止状態では、上部区画に圧縮機の吐出空気を導入する加圧管路の電磁弁が開かれ、上部区画の内圧を放出する排気管路の電磁弁は閉じられている。一方、下部区画に圧縮機の吐出空気を導入する加圧管路の電磁弁は閉じられ、下部区画の内圧を放出する排気管路の電磁弁は開かれている。弁体24は、バネ23に付勢されて上昇し、吸入弁2は閉じられている。
【0022】
圧縮機が起動されると、吸入弁2の2次側が負圧となり、前記上部区画には、圧縮機内の空気が圧縮されて導入され、この圧力差による弁開方向の力がバネ23の力よりも強くなって弁体24が下降する。すなわち、吸入弁2が開いて通常運転が開始される。
【0023】
図4に示す通り、ある回転数A以下の運転領域において潤滑油の回収に十分な負圧の確保ができず回収不足となる。なお、回転数制御方式の場合、回転数制御可能な最低回転数(図4のB)があり、それ以下の回転数での回転数による容量制御は行なわれない。本実施の形態では、この回収能力が維持できなくなる回転数Aをあらかじめ潤滑油回収制御装置9に記憶し、インバータ8から運転回転数を表す信号を潤滑油回収制御装置9に出力する。潤滑油回収制御装置9は、インバータ8から出力される前記信号に基づいて運転回転数を常に監視する。
【0024】
図5に本実施の形態に係る潤滑油回収の運転制御タイムチャートを示す。潤滑油回収制御装置9は常時監視している運転回転数が回転数Aを下回った時に、運転切り替えのための内蔵タイマーをスタートさせ、T1時間経過後に閉止運転に切り替える。切り替えの際、潤滑油回収制御装置9は、前記下部区画の加圧管路の電磁弁を開いて排気管路の電磁弁を閉じ、前記上部区画の加圧管路の電磁弁を閉じて排気管路の電磁弁を開く。すなわち、閉止運転では吸入弁2は全閉状態となり吸入空気はゼロとなる。この状態では、吸入弁1次側に負圧は生じないが、吸入弁2が全閉となるので同2次側負圧は十分にあり、この2次側負圧が逆止弁5を介して回収用配管4に加わるので、潤滑油の回収は継続される。
【0025】
潤滑油の回収のための閉止運転継続時間T2は、油の貯留量と閉止運転時の油回収能力を勘案してあらかじめ設定し、閉止運転への切り替え時間T1と継続時間T2は潤滑油回収制御装置にあらかじめ記憶させておく。閉止運転継続時間T2は、15〜60秒程度でよい。閉止運転への切り替え時間T1は、回転数A付近で回転数が瞬間的に回転数A以下になりまたすぐに回転数A以上になるようなときに、閉止運転に切り換わるような事態を避けるため、つまり運転の安定性を保つために設定される。
【0026】
潤滑油回収制御装置9は、閉止運転に切り替えたら、前記内蔵タイマーをリセットしてスタートさせ、閉止運転継続時間T2経過後、再び回転数制御に復帰する。このとき、潤滑油回収制御装置9は、前記下部区画の加圧管路の電磁弁を閉じて排気管路の電磁弁を開き、前記上部区画の加圧管路の電磁弁を開いて排気管路の電磁弁を閉じる。これにより吸入弁2は開かれ、空気の吸入、圧縮が再開される。
【0027】
閉止運転中は圧縮空気負荷側への圧縮空気の供給が一時停止されるから、閉止運転への切り替え時には、吐出圧力を一旦上昇させてから閉止運転への切り替えを行うと、上昇した圧力分だけ余分に空気が負荷側に供給されているため、負荷側での圧縮空気使用時間が稼げ、閉止運転時間が長くとれるため有効である。
【0028】
上記実施の形態では圧縮機回転数を監視して閉止運転に切り替えるが、潤滑油回収は圧縮機負圧を利用しているから、負圧を測定する真空センサを吸入弁2の1次側に取り付け、潤滑油回収制御装置9に設定した負圧になったとき閉止運転に切り替える方式としてもよい。この場合、吸入弁2に発生する負圧で直接的に回収制御を実施するため回収精度があがり、圧縮機機種に応じた個別設定(回転数設定)が不要となるため部品の共用化ができる副次的なメリットもある。負圧を測定する真空センサは、吸入弁2の2次側に取り付けてもよいが、2次側に取り付けると、閉止運転に切り換わるたびに急激な圧力変化に曝され、寿命維持の点で望ましくない。
【0029】
さらに、メカニカルシール外部溝11など、軸封装置から漏れ出た油を貯留する個所の油量を検知するセンサを設け、このセンサがあらかじめ定められた上限油量を表す信号を出力したとき、閉止運転に切り替える方式としてもよい。この場合は通常運転に復帰する方式として、タイマーにより通常運転に復帰する方式、センサがあらかじめ定められた油量を表す信号を出力したとき通常運転に復帰する方式のいずれの方式でも採用可能である。
【0030】
潤滑油回収構造としては吸入弁2次側への回収用配管を設けるのみで可能であるが、回収用配管4と回収用配管分岐管4Aを設けることで、圧縮機の停止時において潤滑油を外部に漏らさないようにする効果がある。運転中、圧縮機本体内は吸込み側のほぼ大気圧状態から吐出側の高圧状態と圧力勾配があるが、この状態で停止すると吐出側の圧縮空気・潤滑油が吸込み側へと逆流する。通常、この逆流スピードよりも早く吸入弁2内の弁体24を完全閉塞し、空気・潤滑油を圧縮機本体の外へ漏らさないように制御している。このように高圧の圧縮空気・潤滑油が逆流する吸入弁2次側に接続した回収用配管分岐管4Aには逆止弁5が取付てあるものの、逆止弁5の閉じ遅れにより若干量の漏れがある。この漏れは圧力脈動となり回収用配管4へと逆流を始めるが、吸入弁1次側への配管と合流した地点で圧力が分散され、メカニカルシール外部溝11へは届かない。したがってメカニカルシール外部溝11から潤滑油が外部へ飛び出すことはなく、メカニカルシール外部溝周辺は清浄に保たれる。
【0031】
【発明の効果】
回転数制御の全域で軸封装置からの潤滑油回収が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す系統図である。
【図2】図1に示す実施の形態の部分の詳細を示す配管接続系統図である。
【図3】図2に示す実施の形態の軸封装置部分の詳細を示す部分断面図である。
【図4】圧縮機回転数と吸込負圧の関係を示す概念図である。
【図5】本発明の実施の形態に係る潤滑油回収制御タイムチャートである。
【符号の説明】
1 給油式スクリュー圧縮機本体
2 吸入弁
3 軸封装置(メカニカルシール)
4 回収用配管
4A 回収用配管分岐管
5 逆止弁
6 絞り
7 電動機
8 インバータ
9 潤滑油回収制御装置
11 メカニカルシール外部溝
21 吸入弁1次側ポート
22 吸入弁2次側ポート
23 バネ
24 弁体
24A ピストン
25 弁座
26 シリンダ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oil supply type screw compressor and a control method thereof, and more particularly, to a technique for recovering oil from a shaft seal device.
[0002]
[Prior art]
Conventionally, it has a pair of male and female screw rotors whose axes are parallel to each other and the torsional directions are reversed, and a bore that accommodates these screw rotors through a minute gap, and an inlet port on one end surface of this bore However, there is known a rotation speed control oil supply type screw compressor including a casing having a discharge port formed on the other end face, and provided with an inverter for adjusting a load and a suction valve. In this rotational speed control oil supply type screw compressor, a male (male) rotor has an intake side shaft end extended to the outside of the casing for driving, and a pulley or a coupling is attached. Inside the casing is a bearing that supports the rotor, and this bearing is lubricated for lubrication. For this reason, a shaft seal device is provided where the Osloter intake side shaft passes through the casing, and sealing is performed so that the lubricating oil does not leak out of the casing. However, since there is a slight leakage of lubricating oil from the shaft seal device, a groove for temporarily storing the leaked lubricant oil is provided outside the shaft seal device, and this groove is provided on the primary side of the intake valve ( The recovery piping connected to the inlet side) was used to recover the lubricating oil accumulated in the groove using the differential pressure between the negative pressure generated by the air passing through the intake valve and the atmospheric pressure outside the shaft seal device. .
[0003]
Moreover, as a prior art of the lubricating oil collection | recovery apparatus from a shaft seal apparatus, there exists a technique of Unexamined-Japanese-Patent No. 9-88860, for example.
[0004]
[Problems to be solved by the invention]
In the above prior art, oil leaked from the shaft seal device is collected in the groove outside the shaft seal, sucked up by the negative pressure generated on the primary side of the suction valve through the recovery pipe, and compressed again through the suction valve. It is collected in the machine body.
[0005]
The suction throttle valve method, which is a general capacity adjustment method for air compressors, adjusts the opening of the intake valve steplessly from fully open to fully closed in order to adjust the air volume. Even so, there is sufficient negative pressure on the primary side of the intake valve for recovery of the lubricating oil.
[0006]
On the other hand, in the case of the rotational speed control method, the capacity adjustment in accordance with the amount of air used is performed by changing the rotational speed of the compressor body, so that the opening degree of the intake valve is not adjusted. Therefore, the negative pressure on the primary side of the suction valve for collecting the lubricating oil does not change the opening degree of the suction valve, so that the lower the load, the lower the rotational speed when the full load state is maximized, and the lower the lubricating oil collecting capacity. . FIG. 4 shows the relationship between the compressor speed and the compressor suction negative pressure. As shown in FIG. 4, the recovery piping that has exhibited the lubricating oil recovery capability with sufficient negative pressure during full load operation also reduces the rotation speed of the compressor body as the user's air consumption decreases, resulting in a low rotation speed. As a result, the amount of air passing through the intake valve decreases, and the negative pressure on the primary side of the intake valve decreases. Since the suction valve opening remains constant throughout the rotation speed control range, the negative pressure on the secondary side similarly decreases at low rotation speeds. Therefore, in the operating range below a certain rotation speed A, the negative pressure on the primary side of the intake valve sufficient for recovery of the lubricating oil cannot be secured, resulting in insufficient recovery capability. For this reason, if the operation state below a certain load region continues, there is a possibility that sufficient lubricating oil recovery capability cannot be exhibited. In addition, the lubricating oil that could not be recovered may scatter to the outside, adhere to the driving belt, and cause a slip.
[0007]
An object of the present invention is to eliminate a load region where the recovery capability of lubricating oil leaked from a shaft seal device of an oil supply type screw compressor of a rotational speed control system is insufficient.
[0008]
[Means for Solving the Problems]
In order to maintain the recovery capability of the lubricating oil, the negative pressure at the downstream end of the recovery pipe may be maintained. The inventors of the present invention have focused on the fact that if the recovery pipe is connected to the secondary side of the suction valve, the negative pressure at the downstream end of the recovery pipe can be maintained by closing the suction valve, leading to the present invention.
[0009]
That is, in order to achieve the above object, the present invention has a suction valve that can be opened and closed by remote control, and in an oil supply type screw compressor that performs capacity control by changing the number of revolutions, it leaks outside the shaft seal device. A storage means such as a groove provided for storing lubricating oil, a recovery pipe connecting the storage means and the primary side of the suction valve, and a check valve connecting the secondary side of the recovery pipe and the suction valve A recovery pipe branch pipe connected through the recovery pipe and a lubricating oil recovery control means for closing the suction valve for a predetermined time when it is determined that the recovery oil capacity of the recovery pipe is insufficient. Features.
[0010]
Judgment of whether the recovery pipe has insufficient lubricating oil recovery capability depends on whether the compressor rotational speed is lower than the predetermined rotational speed, or the suction valve pressure is higher than the predetermined pressure. It is possible to use a criterion such as whether or not the oil level of the groove portion is higher than a predetermined position.
[0011]
Further, it is desirable that the recovery pipe branch pipe is provided with a throttle mechanism in order to adjust the recovery capability.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of a rotational speed control oil supply type screw compressor of the present embodiment (however, an oil separation device, an oil supply system, etc. are omitted). The illustrated rotational speed control oil supply type screw compressor includes an oil supply type screw compressor body 1, a drive motor 7 that drives the oil supply type screw compressor body 1, an inverter 8 that controls the rotation speed of the electric motor 7, and an oil supply. Type open and close intake valve 2 coupled to the air suction side of the main body of the screw compressor 1 and lubricating oil recovery control as lubricating oil recovery control means for opening and closing the intake valve 2 based on a signal output from the inverter 8 The apparatus 9 includes an oil supply type screw compressor main body 1 and a recovery pipe 4 and a recovery pipe branch pipe 4A that connect the suction valve.
[0013]
The oil-feeding screw compressor main body 1 has a pair of male and female screw rotors whose axes are parallel to each other and whose torsion directions are opposite to each other, and a bore that accommodates these screw rotors through a minute gap. And a casing having an air inlet at one end surface and a discharge port at the other end surface. For driving, a male (male) rotor has an intake side shaft end extended to the outside of the casing, and a pulley or a coupling is attached (FIG. 2 shows an example in which the pulley is attached). Inside the casing is a bearing that supports the rotor, and this bearing is lubricated for lubrication. For this reason, the shaft seal device 3 is provided where the Osloter intake side shaft passes through the casing, and seals so that the lubricating oil does not leak out of the casing. However, since there is a slight leakage of the lubricating oil from the shaft seal device 3, a mechanical seal external groove 11 for temporarily storing the leaked lubricant oil is provided outside the shaft seal device.
[0014]
FIG. 2 is a partially broken side view showing the oil supply type screw compressor main body 1 and the suction valve 2 coupled to the oil supply type screw compressor main body 1. The intake valve 2 is configured to allow the air flowing in from the lateral direction to flow out downward, and the valve body 24 abuts the lower surface of the valve seat 25 formed in a direction orthogonal to the outflow direction to close the valve. It is like that. A cylinder 26 having a hollow portion is provided above the valve seat 25 with an axis line in the vertical direction, and a piston 24A that slides up and down along the axis line is provided in the hollow portion. A piston rod extending in the axial direction is coupled to the lower surface of the piston 24A. The piston rod penetrates the lower end of the cylinder 26 and is coupled to the upper surface of the valve body 24. Inside the cylinder, a spring 23 is provided between the lower surface of the piston 24A and the bottom surface of the cylinder to urge the piston 24A upward. Further, as shown in the drawing, a step portion having an inner diameter smaller than the outer diameter of the piston 24A is formed at the lower portion of the cylinder, and this is the lower limit of the lowering of the piston 24A. A gap serving as an air flow path is provided between the lower end portion of the cylinder 26 and the valve seat 25. In the valve open state, air flowing in from the lateral direction flows into the opening of the valve seat through this gap. It is supposed to be.
[0015]
The piston 24 </ b> A moves up and down by the resultant force of the pressure applied to the upper and lower surfaces thereof and the elastic force of the spring 23, and the valve body 24 takes two open / close positions. Although not shown in the cylinder, there are provided a pressure line for introducing the discharge air of the compressor to a portion (lower section) below the lower limit of lowering of the piston 24A, and an exhaust line for releasing the internal pressure of the lower section. Each is equipped with a solenoid valve. Similarly, a part (upper section) above the upper limit position of the cylinder is provided with a pressure line for introducing the discharge air of the compressor and an exhaust line for releasing the internal pressure of the upper part. A solenoid valve is installed. The lower section, the pressurization pipe connected to the upper section, and the solenoid valve of the exhaust pipe are controlled to be opened and closed by the lubricant recovery control device 9. In addition, the pressurization pipe line which introduces the discharge air of the compressor to the lower section is omitted, the solenoid valve of the pressurization pipe connected to the upper section is closed, the solenoid valve of the exhaust pipe is opened, and the valve body is operated by the force of the spring It is also possible to configure the valve to close by raising 24.
[0016]
A mechanical seal external groove 11 provided in the vicinity of the shaft seal device 3 of the intake side shaft of the oil supply type screw compressor main body 1 and the primary side (intake valve primary side port 21) of the intake valve 2 are the recovery pipe 4 The recovery pipe 4 and the secondary side (suction valve secondary side port 21) of the suction valve 2 are connected via a check valve 5 via a recovery pipe branch pipe 4A. Here, the “primary side of the intake valve” refers to the upstream side of the internal valve seat, and the “secondary side” refers to the downstream side of the valve seat and the inlet of the compression chamber. The check valve 5 stops the flow from the suction valve 2 toward the recovery pipe 4. Further, a throttle 6 for adjusting the recovery capability is provided between the check valve 5 and the suction valve 2, but may be omitted depending on circumstances.
[0017]
During normal operation, the intake valve is in a fully open state, and closed operation (a system that operates while restricting intake air and releasing compressed air to the outside. Effective in reducing power consumption. Also called decompression operation / purge operation. ) Sometimes the valve is fully closed. In addition, when the compressor is stopped, the intake valve is fully closed, and a check function that prevents the lubricating oil that has flown back in the compressor body from leaking outside is also achieved.
[0018]
FIG. 3 is a partial cross-sectional view when a mechanical seal is used in the shaft seal device. A shaft seal device 3 such as a mechanical seal is provided on the intake side shaft of the oil supply type screw compressor main body 1 and includes a mechanical seal external groove 11 for temporarily storing lubricating oil leaked from the outside. The recovery pipe 4 connects the bottom of the mechanical seal external groove 11 to the primary port 21 of the intake valve 2.
[0019]
With this configuration, the lubricating oil accumulated in the mechanical seal outer groove 11 is collected in the suction valve 2 by utilizing the differential pressure between the negative pressure generated by the air passing through the suction valve 2 and the atmospheric pressure outside the shaft seal device.
[0020]
The operation of the embodiment having the above configuration will be described below.
[0021]
In the compressor stop state, the electromagnetic valve of the pressurizing line that introduces the discharge air of the compressor to the upper section is opened, and the electromagnetic valve of the exhaust line that releases the internal pressure of the upper section is closed. On the other hand, the solenoid valve of the pressurizing line for introducing the discharge air of the compressor into the lower section is closed, and the solenoid valve of the exhaust line for releasing the internal pressure of the lower section is opened. The valve body 24 is lifted by being biased by the spring 23, and the suction valve 2 is closed.
[0022]
When the compressor is started, the secondary side of the suction valve 2 becomes negative pressure, and the air in the compressor is compressed and introduced into the upper section, and the force in the valve opening direction due to this pressure difference is the force of the spring 23. It becomes stronger than that and the valve body 24 descends. That is, the suction valve 2 is opened and normal operation is started.
[0023]
As shown in FIG. 4, a negative pressure sufficient for recovery of the lubricating oil cannot be secured in an operation region of a certain rotation speed A or less, resulting in insufficient recovery. In the case of the rotational speed control method, there is a minimum rotational speed that can be controlled (B in FIG. 4), and capacity control based on the rotational speed at a rotational speed lower than that is not performed. In the present embodiment, the rotational speed A at which the recovery capability cannot be maintained is stored in advance in the lubricating oil recovery control device 9, and a signal indicating the operating rotational speed is output from the inverter 8 to the lubricating oil recovery control device 9. The lubricant recovery control device 9 constantly monitors the operating rotational speed based on the signal output from the inverter 8.
[0024]
FIG. 5 shows an operation control time chart of the lubricant recovery according to the present embodiment. The lubricating oil recovery control device 9 starts a built-in timer for switching operation when the operating rotational speed that is constantly monitored falls below the rotational speed A, and switches to a closed operation after the time T1 has elapsed. At the time of switching, the lubricant recovery control device 9 opens the solenoid valve of the pressurization line in the lower section and closes the solenoid valve of the exhaust section, closes the solenoid valve of the pressurization line in the upper section and exhausts the exhaust pipe. Open the solenoid valve. That is, in the closed operation, the intake valve 2 is fully closed and the intake air becomes zero. In this state, no negative pressure is generated on the suction valve primary side, but the suction valve 2 is fully closed, so that the secondary side negative pressure is sufficient, and this secondary side negative pressure passes through the check valve 5. Therefore, the recovery of the lubricating oil is continued.
[0025]
The closing operation continuation time T2 for the recovery of the lubricating oil is set in advance in consideration of the oil storage amount and the oil recovery capability during the closing operation, and the switching time T1 and the continuation time T2 to the closing operation are the lubricating oil recovery control. Store in advance in the device. The closing operation duration time T2 may be about 15 to 60 seconds. The switching time T1 to the closed operation avoids a situation in which the operation is switched to the closed operation when the rotation speed instantaneously becomes equal to or lower than the rotation speed A near the rotation speed A and immediately exceeds the rotation speed A. Therefore, it is set in order to keep the driving stability.
[0026]
When switching to the closed operation, the lubricant recovery control device 9 resets and starts the built-in timer, and again returns to the rotational speed control after the closed operation duration time T2 has elapsed. At this time, the lubricating oil recovery control device 9 closes the electromagnetic valve of the pressurization line in the lower section and opens the electromagnetic valve of the exhaust line, and opens the electromagnetic valve of the pressurization line in the upper section and closes the exhaust pipe. Close the solenoid valve. As a result, the suction valve 2 is opened, and the suction and compression of air are resumed.
[0027]
Since the supply of compressed air to the compressed air load side is temporarily stopped during the closed operation, when switching to the closed operation, if the discharge pressure is once increased and then switched to the closed operation, only the increased pressure Since extra air is supplied to the load side, the compressed air usage time on the load side can be gained, and the closing operation time can be increased, which is effective.
[0028]
In the above embodiment, the compressor rotational speed is monitored and switched to a closed operation. However, since the lubricant recovery uses the compressor negative pressure, a vacuum sensor for measuring the negative pressure is provided on the primary side of the suction valve 2. The system may be switched to the closed operation when the negative pressure set in the attaching and lubricating oil recovery control device 9 is reached. In this case, since the collection control is directly performed with the negative pressure generated in the suction valve 2, the collection accuracy is improved, and individual setting (rotation speed setting) according to the compressor model is not required, so that parts can be shared. There are also secondary benefits. The vacuum sensor that measures the negative pressure may be attached to the secondary side of the suction valve 2, but if it is attached to the secondary side, it will be exposed to a rapid pressure change every time it switches to the closed operation, in terms of maintaining the life. Not desirable.
[0029]
Further, a sensor is provided for detecting the oil amount at a location where the oil leaked from the shaft seal device such as the mechanical seal outer groove 11 is stored, and when the sensor outputs a signal indicating a predetermined upper limit oil amount, the sensor is closed. It is good also as a system switched to driving | operation. In this case, as a method for returning to normal operation, either a method for returning to normal operation by a timer or a method for returning to normal operation when a sensor outputs a signal indicating a predetermined oil amount can be adopted. .
[0030]
The lubricating oil recovery structure can be achieved by simply providing a recovery pipe to the secondary side of the suction valve. However, by providing the recovery pipe 4 and the recovery pipe branch pipe 4A, the lubricating oil can be supplied when the compressor is stopped. This has the effect of preventing leakage. During operation, the compressor main body has a pressure gradient from a substantially atmospheric pressure state on the suction side to a high pressure state on the discharge side, and when stopped in this state, compressed air / lubricating oil on the discharge side flows backward to the suction side. Usually, the valve body 24 in the suction valve 2 is completely closed earlier than the reverse flow speed, and control is performed so that air and lubricating oil do not leak out of the compressor body. Although the check pipe 5A is attached to the recovery pipe branch pipe 4A connected to the suction valve secondary side where the high-pressure compressed air / lubricating oil flows backward as described above, a slight amount is caused by the delay in closing the check valve 5. There is a leak. This leakage becomes pressure pulsation and starts to flow back to the recovery pipe 4, but the pressure is dispersed at the point where it joins the pipe to the suction valve primary side, and does not reach the mechanical seal outer groove 11. Therefore, the lubricating oil does not jump out of the mechanical seal outer groove 11 and the periphery of the mechanical seal outer groove is kept clean.
[0031]
【The invention's effect】
Lubricating oil can be collected from the shaft seal device in the entire range of rotation speed control.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of the present invention.
FIG. 2 is a piping connection system diagram showing details of a portion of the embodiment shown in FIG. 1;
FIG. 3 is a partial sectional view showing details of a shaft seal device portion of the embodiment shown in FIG. 2;
FIG. 4 is a conceptual diagram showing the relationship between compressor rotation speed and suction negative pressure.
FIG. 5 is a lubricating oil recovery control time chart according to the embodiment of the present invention.
[Explanation of symbols]
1 Oil supply screw compressor body 2 Suction valve 3 Shaft seal device (mechanical seal)
4 Recovery Pipe 4A Recovery Pipe Branch Pipe 5 Check Valve 6 Restrictor 7 Electric Motor 8 Inverter 9 Lubricating Oil Recovery Controller 11 Mechanical Seal External Groove 21 Suction Valve Primary Port 22 Suction Valve Secondary Port 23 Spring 24 Valve Body 24A Piston 25 Valve seat 26 Cylinder

Claims (6)

遠隔操作による開閉が可能な吸入弁を備え、回転数を変化させて容量制御を行う給油式スクリュー圧縮機において、ローターの軸封装置から洩れ出た潤滑油を一時貯留する貯留手段と、この貯留手段と前記吸入弁の入り側を接続して貯留手段の潤滑油を吸入弁の入り側に回収する回収用配管と、この回収用配管と前記吸入弁の出側を逆止弁を介して接続し前記貯留手段の潤滑油を吸入弁の出側に回収する回収用配管分岐管と、前記回収用配管の潤滑油回収力が不足していると判断したとき、予め設定された時間だけ前記吸入弁を閉じる潤滑油回収制御手段と、を備えた給油式スクリュー圧縮機。In an oil supply type screw compressor having a suction valve that can be opened and closed by remote operation and performing capacity control by changing the number of revolutions, a storage means for temporarily storing lubricating oil leaked from a shaft seal device of a rotor, and the storage A recovery pipe for connecting the inlet and the inlet side of the intake valve to recover the lubricating oil of the storage means to the inlet side of the intake valve, and connecting the recovery pipe and the outlet side of the intake valve via a check valve When the recovery pipe branch pipe for recovering the lubricating oil in the storage means to the outlet side of the suction valve and the recovery oil collecting power of the recovery pipe are determined to be insufficient, the suction pipe is set for a preset time. And a lubricating oil recovery control means for closing the valve. 請求項1記載の給油式スクリュー圧縮機において、前記潤滑油回収制御手段は、圧縮機回転数が予め定めた回転数よりも低下したとき、回収用配管の潤滑油回収力が不足していると判断するよう構成されていることを特徴とする給油式スクリュー圧縮機。2. The oil supply type screw compressor according to claim 1, wherein when the compressor rotation speed is lower than a predetermined rotation speed, the lubricating oil recovery control means has insufficient lubricating oil recovery power of the recovery pipe. A lubricated screw compressor, characterized in that it is configured to determine. 請求項1記載の給油式スクリュー圧縮機において、前記潤滑油回収制御手段は、前記吸入弁入り側の圧力が予め定めた圧力よりも高くなったとき、回収用配管の潤滑油回収力が不足していると判断するよう構成されていることを特徴とする給油式スクリュー圧縮機。2. The oil supply type screw compressor according to claim 1, wherein when the pressure on the suction valve entrance side becomes higher than a predetermined pressure, the lubricant recovery control means lacks the lubricant recovery force of the recovery pipe. It is comprised so that it may judge that it is having, The oil supply type screw compressor characterized by the above-mentioned. 請求項1記載の給油式スクリュー圧縮機において、前記潤滑油回収制御手段は、前記貯留手段の油面位置が予め定めた位置よりも高くなったとき、回収用配管の潤滑油回収力が不足していると判断するよう構成されていることを特徴とする給油式スクリュー圧縮機。2. The oil supply type screw compressor according to claim 1, wherein the lubricating oil recovery control means has a shortage of lubricating oil recovery power in the recovery pipe when the oil level position of the storage means becomes higher than a predetermined position. It is comprised so that it may judge that it is having, The oil supply type screw compressor characterized by the above-mentioned. 請求項1〜4の内のいずれか1項に記載の給油式スクリュー圧縮機において、前記回収用配管分岐管に絞り機構を設けたことを特徴とする給油式スクリュー圧縮機。The oil supply type screw compressor of any one of Claims 1-4 WHEREIN: The throttle mechanism was provided in the said piping piping for collection | recovery, The oil supply type screw compressor characterized by the above-mentioned. 遠隔操作による開閉が可能な吸入弁と、ローターの軸封装置から洩れ出た潤滑油を一時貯留する貯留手段と前記吸入弁の入り側を接続する回収用配管と、この回収用配管と前記吸入弁の出側を逆止弁を介して接続する回収用配管分岐管と、を備え、回転数を変化させて容量制御を行う給油式スクリュー圧縮機の制御方法において、圧縮機の回転数が予め定めた回転数以下に低下したとき、予め設定された時間だけ前記吸入弁を閉じることを特徴とする給油式スクリュー圧縮機の制御方法。A suction valve that can be opened and closed by remote operation, a storage means for temporarily storing lubricating oil leaked from the shaft seal device of the rotor, a recovery pipe connecting the inlet side of the suction valve, the recovery pipe and the suction In a control method for an oil-fed screw compressor that includes a recovery pipe branch pipe that connects the outlet side of a valve via a check valve, and performs capacity control by changing the rotation speed, the rotation speed of the compressor is set in advance. A control method for an oil supply type screw compressor, wherein the suction valve is closed for a preset time when the rotation speed falls below a predetermined rotational speed.
JP2001151771A 2001-05-22 2001-05-22 Oil supply type screw compressor and its control method Expired - Lifetime JP3796656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151771A JP3796656B2 (en) 2001-05-22 2001-05-22 Oil supply type screw compressor and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151771A JP3796656B2 (en) 2001-05-22 2001-05-22 Oil supply type screw compressor and its control method

Publications (2)

Publication Number Publication Date
JP2002349463A JP2002349463A (en) 2002-12-04
JP3796656B2 true JP3796656B2 (en) 2006-07-12

Family

ID=18996551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151771A Expired - Lifetime JP3796656B2 (en) 2001-05-22 2001-05-22 Oil supply type screw compressor and its control method

Country Status (1)

Country Link
JP (1) JP3796656B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178011B2 (en) * 2007-01-05 2013-04-10 株式会社日立産機システム Compressor and control method of compressor
JP5030768B2 (en) * 2007-12-27 2012-09-19 北越工業株式会社 Oil-cooled screw compressor
JP6863157B2 (en) * 2017-07-24 2021-04-21 株式会社Ihi Seal structure

Also Published As

Publication number Publication date
JP2002349463A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP5358608B2 (en) Screw compressor and chiller unit using the same
JP4627492B2 (en) Oil-cooled screw compressor
KR101185659B1 (en) Scroll fluid machine
JPH0758074B2 (en) Oil-free screw compressor device
JP4532327B2 (en) Compressor and operation control method thereof
JP3796656B2 (en) Oil supply type screw compressor and its control method
JP5033400B2 (en) Method for reducing load of oil-cooled screw compressor and oil-cooled screw compressor
JP5222900B2 (en) Operation method of screw compressor
JP2007085360A (en) Method for operating screw compressor
JP3914713B2 (en) Screw compressor operating method and screw compressor
JP3921359B2 (en) Oil-cooled screw compressor
JP5980754B2 (en) Oil-cooled air compressor and control method thereof
JP4088396B2 (en) Screw compressor
JPH1077977A (en) Scroll type compressor
JP2002021757A (en) Lubricating oil recovering device of screw compressor and lubricating oil recovering method using this device
CN219198156U (en) Air inlet control valve in compressor field
JPS60247082A (en) Scroll compressor
CN112901495B (en) Compressor assembly, control method thereof and air conditioner
JP2558968Y2 (en) Screw compressor
JPH08189489A (en) Oil separation device of oil cooling type compressor
JP2004360543A (en) Air conditioner and air compressor
JPH11210636A (en) Capacity control device for compressor
JP2013032728A (en) Oil cooled screw compressor
JPH0139914Y2 (en)
JPH0227198Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3796656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

EXPY Cancellation because of completion of term