JPH04203323A - Air intake device of engine - Google Patents

Air intake device of engine

Info

Publication number
JPH04203323A
JPH04203323A JP2334840A JP33484090A JPH04203323A JP H04203323 A JPH04203323 A JP H04203323A JP 2334840 A JP2334840 A JP 2334840A JP 33484090 A JP33484090 A JP 33484090A JP H04203323 A JPH04203323 A JP H04203323A
Authority
JP
Japan
Prior art keywords
intake
closing
late
port
delayed closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2334840A
Other languages
Japanese (ja)
Inventor
Yuji Akagi
赤木 裕治
Toshiki Okazaki
俊基 岡崎
Ryoji Kagawa
良二 香川
Kazuyasu Dosono
一保 堂園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2334840A priority Critical patent/JPH04203323A/en
Publication of JPH04203323A publication Critical patent/JPH04203323A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • F02B53/06Valve control therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To provide stable combustion with high efficiency by providing check valves in air intake delayed closing passages which communicate delayed closing circulation flow ports of respective cylinders with delayed closing intake ports of the other cylinders, and fuel injection valves at the downstream of the check valves to make mixture in a layered condition. CONSTITUTION:There are provided delayed closing circulation flow ports 25a, 25b which close later than air intake ports 11a, 11b, and delayed closing intake ports 26a, 26b which are positioned near the leading side than the delayed closing circulation flow ports 25a, 25b and opened at the latter half of the air intake stroke in respective cylinders 3, 4 in a rotary piston engine 1. In this constitution, there are provided air intake delayed closing passages 27a, 27b which communicate delayed closing circulation flow ports 25a, 25b of the respective cylinders 3, 4 with delayed closing intake ports 26a, 26b. Besides, check valves 28a, 28b which allow flow from the delayed closing circulation flow ports 25a, 25b side are provided in the air intake delayed closing passages 27a, 27b, and fuel injection valves 29a, 29b are provided at the downstream of the check valves. By this, it is thus possible to make fuel into particulates by high-speed flow due to air intake delayed closing, and make mixture in a layered condition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は吸気遅閉じシステムを採用したエンジンの吸気
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for an engine that employs an intake late closing system.

(従来の技術) エンジンの各気筒にメイン吸気ポートと該メイン吸気ポ
ートより遅れて閉じられる吸気遅閉じポートを設けると
ともに、各気筒の吸気遅閉じポートをそれぞれ他の気筒
の吸気遅閉じポートに連通させる吸気遅閉じ通路を設け
て、圧縮行程初期の気筒の混合気の一部を吸気行程前段
の他の気筒に流入させるようにし、それによって、吸気
行程にある気筒の吸気負圧を抑えボンピングロスを低減
するようにした吸気遅閉じシステムが、例えば特開昭6
3−71525号公報に記載されているように従来から
提案されている。このような吸気遅閉じシステムは、二
つの気筒が背中合わせに並ぶロークリピストンエンジン
においては中間ハウジングを貫通するように吸気遅閉じ
通路を設けるだけで実現でき、その場合に、吸気行程に
ある気筒のボンピングロスが低減できるという効果に加
えて、圧縮行程側の気筒では圧縮圧力が下がるためにア
ペックスシールを押圧する力が弱まり摺動抵抗が低減さ
れるという効果も生じる。また、過給手段を併用して、
圧縮行程の初期に他の気筒に逃げる分だけ予めメイン吸
気ポートから多めに吸気を送り込むようにすれば、エン
ジン運転領域の広い範囲で吸気遅閉じによる所謂ミラー
サイクルを成立させることができ、それによって燃費を
改善できることも知られている。
(Prior art) Each cylinder of an engine is provided with a main intake port and an intake slow-close port that closes later than the main intake port, and each cylinder's intake slow-close port is communicated with the intake slow-close port of another cylinder. An intake slow-closing passage is provided to allow a portion of the air-fuel mixture in the cylinder at the beginning of the compression stroke to flow into other cylinders at the front stage of the intake stroke, thereby suppressing the intake negative pressure of the cylinder in the intake stroke and reducing the pumping loss. For example, an intake slow closing system designed to reduce the
It has been proposed in the past as described in Japanese Patent No. 3-71525. Such an intake late-closing system can be realized in a low-return piston engine in which two cylinders are arranged back-to-back by simply providing an intake late-closing passage that penetrates the intermediate housing. In addition to the effect of reducing bombing loss, the compression pressure in the cylinder on the compression stroke side is reduced, so the force pressing the apex seal is weakened, and the sliding resistance is reduced. In addition, by using supercharging means,
By sending in more intake air from the main intake port in advance to account for the amount of air that escapes to other cylinders at the beginning of the compression stroke, it is possible to establish the so-called Miller cycle by closing the intake air late over a wide range of engine operating ranges. It is also known to improve fuel efficiency.

しかしながら、ミラーサイクルを実現する手段として吸
気遅閉じシステムを用いると、圧縮行程に入っても吸気
遅閉じポートが閉じるまでは断熱圧縮が始まらないため
圧縮トップでの混合気の温度が低くなり、そのため、特
に軽負荷時において燃焼が不安定になる。また、特にロ
ータリピストンエンジンでは、吸気行程の始めにロータ
のサイドシールが吸気ポートをまたぎ、同時にアペック
スシールが排気ポートをまたいだ状態にある時、その吸
気行程初期の作動室がロータ側面のサイドシールとオイ
ルシールの間のクリアランスを介して遅閉じ吸気ポート
に連通ずることによって、排気行程初期にある隣の作動
室からの燃焼ガスがこの吸気行程初期の作動室に流入し
、それが遅閉じ一3= ポートを経て他気筒の吸気行程にある作動室に流入する
という特有の現象があって、その結果、所謂ダイリュー
ションガスが増大して軽負荷時の燃焼安定性がさらに悪
化するという問題がある。そこで、軽負荷時には吸気遅
閉じ通路を閉じるよう制御することも考えられるが、軽
負荷域というのは本来燃費改善効果が最も期待できる領
域であって、この領域で吸気遅閉じを止めたのでは期待
通りの燃費改善が行えないことになる。また、例えば吸
気遅閉じ通路に流量制御弁を設けて開閉制御を行おうと
しても、過渡時に応答良くこれを行うことは実際上不可
能でもある。
However, when an intake late closing system is used as a means of realizing the Miller cycle, adiabatic compression does not begin until the intake late closing port closes even after entering the compression stroke, so the temperature of the air-fuel mixture at the compression top becomes low. , combustion becomes unstable, especially under light loads. In addition, especially in rotary piston engines, when the side seal of the rotor straddles the intake port at the beginning of the intake stroke and the apex seal straddles the exhaust port at the same time, the working chamber at the beginning of the intake stroke is the side seal on the side of the rotor. By communicating with the late-closing intake port through the clearance between the oil seal and the oil seal, combustion gas from the adjacent working chamber at the beginning of the exhaust stroke flows into this working chamber at the beginning of the intake stroke. 3 = There is a unique phenomenon in which the gas flows into the working chamber during the intake stroke of another cylinder through the port, and as a result, so-called dilution gas increases, further deteriorating combustion stability at light loads. There is. Therefore, it may be possible to control the intake late-closing passage to close it during light loads, but the light-load range is the area where the fuel efficiency improvement effect can be expected the most, and it is likely that the intake late-closing passage was stopped in this area. This means that the fuel efficiency cannot be improved as expected. Further, even if it is attempted to perform opening/closing control by providing a flow rate control valve in the intake slow-closing passage, for example, it is practically impossible to perform this with a good response during a transient period.

ところで、成層燃焼によって燃焼を改善することは従来
から知られており、ロークリピストンエンジンの場合で
も、例えば特開平1−216025号公報に記載のよう
に圧縮行程の作動室のリーディング側に燃料を噴射する
ことによって圧縮トップの点火栓近傍に燃料を偏在化さ
せるような試みがなされている。また、吸気遅閉じを行
うエンジンにおいて上記混合気温度の低下やダイリュー
ジョンガスの増大による燃焼の悪化を防止するための手
段として成層燃焼を利用することも従来から試みられ、
成層燃焼によって軽負荷域での不安定燃焼が解消できる
ことが確認されている。
By the way, it has been known for a long time to improve combustion by stratified combustion, and even in the case of low-return piston engines, for example, as described in Japanese Patent Application Laid-Open No. 1-216025, fuel is supplied to the leading side of the working chamber during the compression stroke. Attempts have been made to unevenly distribute fuel near the spark plug in the compression top by injecting it. In addition, attempts have been made to utilize stratified combustion as a means to prevent deterioration of combustion due to a decrease in the air-fuel mixture temperature and an increase in dilusion gas in engines that perform intake late closing.
It has been confirmed that stratified combustion can eliminate unstable combustion in the light load range.

(発明が解決しようとする課題) ところが、例えばロークリピストンエンジンにおいて圧
縮行程の作動室に燃料を噴射する場合には、燃料微粒化
のためのアンストエアが必要であり、そのアシストエア
を加圧供給するポンプが必要である。そのため、ポンプ
駆動等による機械抵抗損失が増大し、その分、吸気遅閉
じによる燃費改善の効果が損なわれてしまう。
(Problem to be Solved by the Invention) However, when injecting fuel into the working chamber of a compression stroke in a low-repetition piston engine, for example, unstuck air is required to atomize the fuel, and the assist air must be supplied under pressure. A pump is required. Therefore, mechanical resistance loss due to pump drive and the like increases, and the effect of improving fuel efficiency by closing the intake air late is correspondingly impaired.

本発明は上記問題点に鑑みてなされたものであって、混
合気温度が低くグイリュージョンガスの多い状態にあっ
ても混合気の層状化による安定燃焼を効率良く実現する
ことができ、軽負荷時を含む広い運転領域で吸気遅閉じ
によって燃費改善が行えるようにすることを目的とする
The present invention was made in view of the above-mentioned problems, and is capable of efficiently realizing stable combustion by stratifying the mixture even when the mixture temperature is low and there is a lot of illusion gas, and it is possible to efficiently achieve stable combustion under light load. The purpose of the present invention is to improve fuel efficiency by closing the intake air slowly over a wide range of driving conditions, including times.

(課題を解決するための手段) 本発明は、吸気遅閉じ通路の高速流れによって噴射燃料
の微粒化およびアシストが行えるようにしたものであっ
て、その構成はつぎのとおりである。すなわち、本発明
に係るエンジンの吸気装置は、各気筒にメイン吸気ポー
トと該メイン吸気ポートより遅れて閉じられる遅閉じ還
流ポートと遅閉じ還流ポートよりリーディング側に位置
して吸気行程後半に開かれる遅閉じ吸入ポートを設ける
とともに、各気筒の前記遅閉じ還流ポートを他の気筒の
遅閉じ吸入ポートに連通させる吸気遅閉じ通路を設け、
さらに、吸気遅閉じ通路に遅閉じ還流ポート側から遅閉
じ吸入ポート側への流れを許容する逆止弁を設け、この
逆止弁の下流に燃料噴射弁を設けたことを特徴とする。
(Means for Solving the Problems) The present invention is capable of atomizing and assisting the injected fuel by a high-speed flow in the intake late-closing passage, and its configuration is as follows. That is, the engine intake system according to the present invention includes a main intake port for each cylinder, a late closing reflux port that closes later than the main intake port, and a late closing reflux port that is located on the leading side of the late closing reflux port and opens in the latter half of the intake stroke. A slow-closing intake port is provided, and an intake slow-closing passage is provided that communicates the slow-closing reflux port of each cylinder with the slow-closing intake port of another cylinder,
Furthermore, the present invention is characterized in that a check valve that allows flow from the late-closing recirculation port side to the late-closing suction port side is provided in the intake late-closing passage, and a fuel injection valve is provided downstream of this check valve.

(作用) エンジンの各気筒に設けられた遅閉じ還流ポートからは
圧縮行程の初期にある作動室から混合気が高速で流出し
、それが吸気遅閉じ通路を通って他の気筒の遅閉じ吸入
ポートに流れ、吸気行程後半の燃焼室に入る。その際、
吸気遅閉じ通路に設けられた燃焼噴射弁から燃料を噴射
することによって、吸気遅閉じ通路内の高速流れにより
燃料微粒化が行われ、かつ、微粒化された燃料が燃焼室
内で偏在した状態となって安定した成層燃焼が行われる
(Function) The air-fuel mixture flows out at high speed from the working chamber at the beginning of the compression stroke from the slow-closing reflux port provided in each cylinder of the engine, and then passes through the intake slow-closing passage to the late-closing intake of other cylinders. It flows to the port and enters the combustion chamber in the latter half of the intake stroke. that time,
By injecting fuel from the combustion injection valve provided in the intake late-closing passage, fuel atomization is performed by the high-speed flow in the intake late-closing passage, and the atomized fuel is unevenly distributed in the combustion chamber. This results in stable stratified combustion.

(実施例) 以下、実施例を図面に基づいて説明する。(Example) Examples will be described below based on the drawings.

第1図は本発明の一実施例を示す2気筒ロータリピスト
ンエンジンのシステム図である。このロータリピストン
エンジン1は、中間ハ゛ウジング2を共有して直列に配
置されたフロント側とリヤ側の二つの気筒3.4を備え
ている。ただし、図では便宜上これら二つの気筒を左右
に分けて記載している。
FIG. 1 is a system diagram of a two-cylinder rotary piston engine showing one embodiment of the present invention. This rotary piston engine 1 includes two cylinders 3.4, one on the front side and the other on the rear side, which are arranged in series and share an intermediate housing 2. However, in the figure, these two cylinders are shown separated into left and right for convenience.

各気筒3,4は、上記中間ハウジング2.ロータハウジ
ング5.6および図示しないサイドハウジングによって
構成されるケーシングを備え、これらケーシングの内部
には共通の偏心軸7に支持され上記ロータハウジング5
.6のトロコイド状内周面に沿って遊星回転する略三角
形のロータ8゜9が配設されている。各気筒3,4のケ
ーシング内部には、上記ロータ8,9のフランク面によ
って図に10a、IObで示す各二つの作動室lOが区
画され、各作動室10a、IObはロータ8゜9の回転
につれ移動しその容積が変化することにより順次、吸入
、圧縮、膨張および排気を繰り返す。
Each cylinder 3, 4 is connected to the intermediate housing 2. The rotor housing 5.6 is provided with a casing composed of a rotor housing 5.6 and a side housing (not shown).
.. A substantially triangular rotor 8°9 that rotates planetarily along the trochoidal inner peripheral surface of the rotor 6 is disposed. Inside the casing of each cylinder 3, 4, two working chambers 1O, shown as 10a and IOb in the figure, are divided by the flank surfaces of the rotors 8, 9, and each working chamber 10a, IOb is divided by the rotation of the rotor 8°9. As it moves and its volume changes, suction, compression, expansion, and exhaust are repeated in sequence.

このような構成のロークリピストンエンジンにおいて、
各気筒3,4の吸気行程の作動室10a。
In a rotary piston engine with such a configuration,
Working chamber 10a for the intake stroke of each cylinder 3,4.

10bに対応する中間ハウジング2の両面にはそれぞれ
吸気ポートlla、llbが形成され、また、短軸部を
挟んで上記吸気ボー)11a、11bと対向する位置の
ロータハウジング5.6内面には排気ポート+2a、1
2bが形成されている。
Intake ports lla and llb are formed on both sides of the intermediate housing 2 corresponding to the intermediate housing 10b, and an exhaust port is formed on the inner surface of the rotor housing 5.6 at a position facing the above-mentioned intake ports 11a and 11b across the short shaft portion. Port +2a, 1
2b is formed.

そして、二つの気筒3,4の上記吸気ポート11a、I
lbに連通ずる各吸気通路13.14は、上流で一つの
上流側吸気通路15に集合され、該上流側吸気通路15
にはスロットル弁16が配設されている。また、この上
流側吸気通路15はその上流部が二つの分岐通路17.
18に分岐され、各分岐通路17.18には排気ターボ
過給機19−8= の二つのタービン20.21によって駆動されるブロア
22,23がそれぞれ配設されている。また、上流側吸
気通路15には、分岐点の下流にインタークーラ24が
設けられている。
Then, the intake ports 11a and I of the two cylinders 3 and 4 are
The intake passages 13, 14 communicating with lb are gathered upstream into one upstream intake passage 15, and the upstream intake passage 15
A throttle valve 16 is disposed at the throttle valve 16 . The upstream intake passage 15 has two branch passages 17.
18, and each branch passage 17.18 is provided with a blower 22, 23 driven by two turbines 20.21 of an exhaust turbo supercharger 19-8. Further, an intercooler 24 is provided in the upstream intake passage 15 downstream of the branch point.

中間ハウジング2の両面には、上記吸気ポート11a、
llbよりリーディング側において各気筒の作動室10
a、10bに開口する遅閉じ還流ポート25a、25b
がそれぞれ設けられ、また、これら遅閉じ還流ポート2
5a、25bよりさらにリーディング側において吸気行
程後半の作動室]Oa、10bに開口する遅閉じ吸入ポ
ート26a、26bがそれぞれ設けられている。そして
、フロント側気筒3の遅閉じ還流ポート25aとリヤ側
気筒4の遅閉じ吸入ポート26bとが第1の吸気遅閉じ
通路27aによって連通され、リヤ側気筒4の遅閉じ還
流ポート25bとフロント側気筒3の遅閉じ吸入ポート
26aとが第2の吸気遅閉じ通路27bによって連通さ
れている。また、上記第1および第2の吸気遅閉じ通路
27a、27bの途中には、遅閉じ還流ポート25a、
25b側から遅閉じ吸入ポート26a、26b側への流
れを許容し逆の流れを阻止する逆止弁28a。
On both sides of the intermediate housing 2, the above-mentioned intake port 11a,
Working chamber 10 of each cylinder on the leading side from llb
Late closing reflux ports 25a, 25b open to a, 10b
are provided respectively, and these slow-closing reflux ports 2
Further on the leading side from 5a and 25b, slow-closing suction ports 26a and 26b are provided, respectively, which open to the working chambers Oa and 10b in the latter half of the intake stroke. The slow-closing recirculation port 25a of the front cylinder 3 and the slow-closing intake port 26b of the rear cylinder 4 are communicated through the first intake slow-closing passage 27a, and the slow-closing recirculation port 25b of the rear cylinder 4 and the front side The late closing intake port 26a of the cylinder 3 is communicated with the second intake late closing passage 27b. Further, in the middle of the first and second intake slow closing passages 27a and 27b, a slow closing reflux port 25a,
A check valve 28a allows flow from the side 25b to the late closing suction ports 26a and 26b, and prevents a reverse flow.

28bがそれぞれ設けられ、また、それら逆止弁28a
、28bの下流に燃料噴射弁292L、 29bがそれ
ぞれ設けられている。ここで、上記各遅閉じ還流ポート
25a、25bは、吸気上死点後80〜90°で開き始
め吸気下死点後110〜170°で閉じ終わるよう設定
される。また、各遅閉じ吸入ポート26a、26bは、
吸気上死点後170〜200°で開き始め吸気下死点後
150〜200°で閉じるよう設定される。
28b are provided respectively, and these check valves 28a
, 28b are provided with fuel injection valves 292L and 29b, respectively. Here, each of the late-closing reflux ports 25a and 25b is set to open at 80 to 90 degrees after the intake top dead center and finish closing at 110 to 170 degrees after the intake bottom dead center. In addition, each slow-closing suction port 26a, 26b is
It is set to begin opening at 170 to 200 degrees after the intake top dead center and close at 150 to 200 degrees after the intake bottom dead center.

このような構成において、第2図に示すように、No、
1気筒(フロント側気筒3)の(+)〜(3)で示す各
作動室10aの圧縮行程において、No、2気筒(リヤ
側気筒4)の遅閉じ吸入ポート26bが開き始めてから
No、1気筒の遅閉じ還流ポート25aが閉じるまでの
間に、No、1気筒側からNo、2気筒側に第1の吸気
遅閉じ通路27aを混合気が高速で流れ、同様にNO1
2気筒の各作動室10bの圧縮行程において、No。
In such a configuration, as shown in FIG.
In the compression stroke of each working chamber 10a indicated by (+) to (3) of the first cylinder (front cylinder 3), No. 1 after the late closing intake port 26b of the second cylinder (rear cylinder 4) begins to open. Until the slow-closing recirculation port 25a of the cylinder closes, the air-fuel mixture flows at high speed through the first intake slow-closing passage 27a from the No. 1 cylinder side to the No. 2 cylinder side, and similarly the No. 1
In the compression stroke of each working chamber 10b of the two cylinders, No.

1気筒の遅閉じ吸入ポート26aが開き始めてからNo
、2気筒の遅閉じ還流ポート25bが閉じるまでの間に
、No、2気筒側からNo、1気筒側に第2の吸気遅閉
じ通路27bを混合気が高速で流れる。その際、各吸気
遅閉じ通路27a、27bにそれぞれ逆止弁28a、2
8bが設けられていることによって、それぞれの吸気遅
閉じ通路27a、27bのガスの流れは一方向のみとな
り、それにより、吸気遅閉じシステムとしての有効なガ
ス交換が確保される。
After the late-closing intake port 26a of cylinder 1 starts to open, the No.
, the air-fuel mixture flows at high speed through the second intake slow-closing passage 27b from the No. 2 cylinder side to the No. 1 cylinder side until the late-closing recirculation port 25b of the No. 2 cylinder closes. At that time, check valves 28a and 2 are provided in each intake slow closing passage 27a and 27b, respectively.
8b, gas flows in each intake slow closing passage 27a, 27b in only one direction, thereby ensuring effective gas exchange as an intake slow closing system.

また、各燃料噴射弁29a、29bからは、吸気遅閉じ
通路27a、27b内を遅閉じ吸入ポート26a、26
bから吸気行程後半の作動室lOa、jobに混合気が
送られるタイミングに合わせて燃料が噴射される。それ
によって、噴射圧アシストおよび燃料の微粒化が行われ
、微粒化された燃料が作動室10a、10bのリーディ
ング側に偏って分布する。そして、さらにロータ8,9
が回転して圧縮上死点近傍に達するまで上記のような燃
料の偏在状態が維持され、その結果、吸気遅閉じによっ
て混合気温度が低下しダイリューションガスが増大した
状態でありながら安定燃焼が実現する。
Further, from each fuel injection valve 29a, 29b, a late closing intake port 26a, 26 is connected to a late closing intake passage 27a, 27b.
Fuel is injected in accordance with the timing when the air-fuel mixture is sent from b to the working chambers lOa and job in the latter half of the intake stroke. As a result, injection pressure assist and fuel atomization are performed, and the atomized fuel is distributed toward the leading side of the working chambers 10a, 10b. And further rotors 8, 9
The uneven distribution of fuel as described above is maintained until the engine rotates and reaches near compression top dead center, and as a result, stable combustion is achieved even though the air-fuel mixture temperature decreases due to the late intake closing and dilution gas increases. will be realized.

なお、本発明はロータリピストンエンジン以外のエンジ
ンにも適用できるものである。
Note that the present invention can also be applied to engines other than rotary piston engines.

(発明の効果) 本発明は以上のように構成され、吸気遅閉じによる高速
流れによって燃料を微粒化することができ、混合気の層
状化による安定燃焼を効率良く実現することができるの
で、軽負荷時を含む広い運転領域で吸気遅閉じを行って
燃費向上を図ることができる。
(Effects of the Invention) The present invention is configured as described above, and the fuel can be atomized by the high-speed flow caused by the late closing of the intake air, and stable combustion can be efficiently achieved by stratifying the air-fuel mixture. It is possible to improve fuel efficiency by closing the intake air late over a wide range of operating conditions, including under load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す2気筒ロークリピスト
ンエンジンのシステム図、第2図は同実施例の作動説明
図である。 l;ロータリピストンエンジン、2:中間ハウジング、
3:気筒(フロント側)、4:気筒(リヤ側)、8,9
:ロータ、10a、10b:作動室、Ila、llb:
吸気ポート(メイン吸気ポート)、25a、25b+遅
閉じ還流ポート、26a、26b:遅閉じ吸入ポート、
27a、27b:吸気遅閉じ通路、28a、28b:逆
止弁、29a、29b:燃料噴射弁。 代理人 弁理士 進 藤 純 −
FIG. 1 is a system diagram of a two-cylinder rotary piston engine showing one embodiment of the present invention, and FIG. 2 is an explanatory diagram of the operation of the same embodiment. l: rotary piston engine, 2: intermediate housing,
3: Cylinder (front side), 4: Cylinder (rear side), 8, 9
: Rotor, 10a, 10b: Working chamber, Ila, llb:
Intake port (main intake port), 25a, 25b + slow closing reflux port, 26a, 26b: slow closing intake port,
27a, 27b: intake slow closing passage, 28a, 28b: check valve, 29a, 29b: fuel injection valve. Agent Patent Attorney Jun Susumu Fuji −

Claims (1)

【特許請求の範囲】[Claims] (1)各気筒にメイン吸気ポートと該メイン吸気ポート
より遅れて閉じられる遅閉じ還流ポートと該遅閉じ還流
ポートよりリーディング側に位置して吸気行程後半に開
かれる遅閉じ吸入ポートを設けるとともに、各気筒の前
記遅閉じ還流ポートを他の気筒の遅閉じ吸入ポートに連
通させる吸気遅閉じ通路を設け、さらに、前記吸気遅閉
じ通路に前記遅閉じ還流ポート側から前記遅閉じ吸入ポ
ート側への流れを許容する逆止弁を設け、該逆止弁の下
流に燃料噴射弁を設けたことを特徴とするエンジンの吸
気装置。
(1) Each cylinder is provided with a main intake port, a late closing reflux port that closes later than the main intake port, and a late closing intake port that is located on the leading side of the late closing reflux port and opens in the latter half of the intake stroke; An intake slow-closing passage is provided that communicates the late-closing reflux port of each cylinder with the late-closing suction port of another cylinder, and the intake late-closing passage is further provided with a passageway that connects the late-closing reflux port from the late-closing reflux port side to the late-closing suction port side. An intake system for an engine, comprising a check valve that allows flow, and a fuel injection valve downstream of the check valve.
JP2334840A 1990-11-29 1990-11-29 Air intake device of engine Pending JPH04203323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2334840A JPH04203323A (en) 1990-11-29 1990-11-29 Air intake device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334840A JPH04203323A (en) 1990-11-29 1990-11-29 Air intake device of engine

Publications (1)

Publication Number Publication Date
JPH04203323A true JPH04203323A (en) 1992-07-23

Family

ID=18281808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334840A Pending JPH04203323A (en) 1990-11-29 1990-11-29 Air intake device of engine

Country Status (1)

Country Link
JP (1) JPH04203323A (en)

Similar Documents

Publication Publication Date Title
EP0469596A2 (en) Multi-cylinder two cycle internal combustion engine
JPH04203323A (en) Air intake device of engine
US3958539A (en) Fuel injection type rotary piston engine
JP3377828B2 (en) Intake device for engine with mechanical supercharger
JPH0436026A (en) Intake system of engine
JPH04203322A (en) Air intake device of rotary piston engine
JPS6229617B2 (en)
JPS5851221A (en) Supercharging system for engine
JP2542021B2 (en) Rotary piston engine
JPS6069235A (en) Diesel engine with supercharger
JP2020097914A (en) Exhaust device of engine with turbocharger
JPS601222Y2 (en) Separate supercharged engine
JPS59692B2 (en) Exhaust turbocharged engine
JP2858707B2 (en) Engine control device
JPH0447388Y2 (en)
JPS6090924A (en) Internal-combustion engine with supercharger
JPS6355324A (en) Intake device of two-cylinder rotary piston engine
JPS59200017A (en) Engine with supercharger
JPS63179132A (en) Rotary piston engine with pumping loss reducing device
JPS62248823A (en) Intake device for engine
JPH04298658A (en) Fuel control device for engine
JPH03194125A (en) Dilution gas reducing device for rotary piston engine
JPH0340214B2 (en)
JPS60159337A (en) Engine with supercharger
JPS63297725A (en) Engine with turbocharger