JPH04202629A - Production of cold rolled high carbon steel strip excellent in workability - Google Patents

Production of cold rolled high carbon steel strip excellent in workability

Info

Publication number
JPH04202629A
JPH04202629A JP33596190A JP33596190A JPH04202629A JP H04202629 A JPH04202629 A JP H04202629A JP 33596190 A JP33596190 A JP 33596190A JP 33596190 A JP33596190 A JP 33596190A JP H04202629 A JPH04202629 A JP H04202629A
Authority
JP
Japan
Prior art keywords
less
soaking
weight
point
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33596190A
Other languages
Japanese (ja)
Other versions
JP2852810B2 (en
Inventor
Daiki Akami
赤見 大樹
Minoru Okuno
奥野 穰
Katsuaki Takahara
高原 克明
Takashi Tokai
東海 隆史
Kokichi Moriyama
森山 晃吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP33596190A priority Critical patent/JP2852810B2/en
Publication of JPH04202629A publication Critical patent/JPH04202629A/en
Application granted granted Critical
Publication of JP2852810B2 publication Critical patent/JP2852810B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To obtain a homogeneous and sufficiently softened cold rolled steel strip in a short time by specifying conditions in primary annealing at the time of improving the material of a hot rolled strip of high carbon steel with specific composition by means of primary annealing and secondary annealing. CONSTITUTION:A hot rolled strip of a high carbon steel having a composition consisting of, by weight, 0.6-1.3% C, <=0.5% Si, <=1% Mn, <=1.6% Cr, and the balance Fe is subjected to first stage soaking and slow cooling consisting of soaking and holding at a temp. between the Ac1 point and 780 deg.C for >=1hr in a furnace with an atmosphere consisting of >=50vol.% of H2 gas and the balance N2 gas and cooling down to a temp. right under the Ar1 point at <=60 deg.C/hr cooling rate. Subsequently, this steel strip is subjected to second stage soaking and slow cooling consisting of soaking and holding at a temp. right under the Ac1 point for 3-20hr and cooling down to a temp. not higher than the Ar1 point at >=60 deg.C/hr cooling rate. The steel strip subjected to primary annealing consisting of these first stage and second stage soakings and slow coolings mentioned above is cold-rolled and then subjected to secondary annealing at a temp. in the region between 600 deg.C and a temp. right under the Ac1 point.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、刃物、ゼンマイ、ワッシャー、バネ、その他
の機械部品の素材として使用される加工性および熱処理
性にすぐれた高炭素冷延鋼帯の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a high carbon cold rolled steel strip with excellent workability and heat treatability, which is used as a material for cutlery, springs, washers, springs, and other mechanical parts. Relating to a manufacturing method.

〔従来の技術〕[Conventional technology]

刃物、ゼンマイ、ワッシャー、バネ、その他の機械部品
は高炭素冷延鋼帯(J I S  G 3311)を素
材とし、打抜き、曲げ、プレス加工、切削等の加工々程
と、焼入れ・焼もどし、その他の熱処理工程とを経て製
造される。その製品々質の向上・安定化、製造コストの
低減等を図るには、素材である高炭素冷延綱帯が、軟質
で加工性が良く、かつ組織の均質性にすぐれていること
が必要である。
Blades, mainsprings, washers, springs, and other mechanical parts are made of high-carbon cold-rolled steel strip (JIS G 3311), and undergo various processing processes such as punching, bending, press working, and cutting, as well as quenching and tempering. It is manufactured through other heat treatment steps. In order to improve and stabilize the quality of these products and reduce manufacturing costs, it is necessary that the raw material, high-carbon cold-rolled steel strip, is soft, has good workability, and has an excellent homogeneity of structure. It is.

そのための高炭素冷延鋼帯の材質改善方法として、熱延
鋼帯に対する焼鈍処理(−次焼鈍処理)と、冷間圧延後
の焼鈍処理(二次焼鈍処理)が行われている。高炭素鋼
帯は、熱延ま1では、[初析フェライト士パーライト」
、または「パーライト」、あるいは「パーライト+初析
セメンタイト」等からなる脆くて硬い組織を呈し、しか
もその組織は不均一である。−次焼鈍処理は、その熱延
組織を、球状化炭化物組織に変えることにより加工性を
高め、併せて組織の均質性を改善するための熱処理であ
る。また、冷間圧延後の二次焼鈍処理は、冷間圧延で歪
が導入された銅帯の集合組織に回復・再結晶を生起させ
て軟質化する熱処理であり、その焼鈍処理は銅帯を60
0°c−Act点直下に適当時間(約5〜25時間)加
熱保持することにより達成される。
As methods for improving the material quality of high-carbon cold-rolled steel strips for this purpose, annealing treatment (secondary annealing treatment) for hot-rolled steel strips and annealing treatment after cold rolling (secondary annealing treatment) are performed. High carbon steel strip is hot-rolled with [pro-eutectoid ferrite pearlite]
It exhibits a brittle and hard structure consisting of , or "pearlite", or "pearlite + pro-eutectoid cementite", and moreover, the structure is non-uniform. - The subsequent annealing treatment is a heat treatment for increasing workability by changing the hot rolled structure into a spheroidized carbide structure, and also improving the homogeneity of the structure. In addition, the secondary annealing treatment after cold rolling is a heat treatment that softens the copper strip by causing recovery and recrystallization in the texture of the copper strip, which has been strained by cold rolling. 60
This is achieved by heating and maintaining the temperature just below the 0°c-Act point for an appropriate period of time (approximately 5 to 25 hours).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記高炭素熱延鋼帯の硬脆な組織を、均一な球状化炭化
物組織に変える焼鈍処理として次の3つが代表的な方法
として行われている。
The following three methods are typical annealing treatments for changing the hard and brittle structure of the high carbon hot rolled steel strip into a uniform spheroidized carbide structure.

(イ)Ac1点直上に均熱した後、徐冷する。(a) After soaking to just above Ac1 point, slowly cool.

(ロ)Ac1点の上下を繰返した後、徐冷する。(b) After repeating up and down of Ac1 point, it is slowly cooled.

(ハ) AC,点画下で長時間均熱する。(c) Soak for a long time under AC and stippling.

上記(イ)と(ロ)は、温度管理に厳密を要する熱処理
方法であり、工具類などの小物品の熱処理として有用で
はあるが、熱延鋼帯のように嵩が大きい重量物を対象と
して、ヘル型炉(炉内温度分布に偏りが生じ易い)等で
実施するのは困難であり、所期の熱処理効果は得難い。
The above (a) and (b) are heat treatment methods that require strict temperature control, and are useful for heat treatment of small items such as tools, but they are not suitable for heat treatment of bulky and heavy items such as hot-rolled steel strips. It is difficult to carry out the heat treatment in a Hell type furnace (temperature distribution inside the furnace tends to be uneven), and it is difficult to obtain the desired heat treatment effect.

他方、(ハ)の焼鈍方法は、温度管理の許容幅が比較的
広く、汎用性のある方法であり、ハンチ式焼鈍炉によら
ざるを得ない調帯の焼鈍処理法として従来より専らこの
方法が行われている。しかし、その熱処理には約40時
間もの長時間を必要とするため、エネルギ消費も膨大で
あり、かつ処理能率にも問題がある。しかも、その焼鈍
処理による軟質化効果は必ずしも十分でなく、従って次
工程の冷間圧延における圧下率に制約があり、銅帯の板
厚によっては、冷間圧延途中での中間焼鈍の実施を必要
とするため、工程の煩瑣化や冷延バス回数の増大などの
不利を余儀なくされるという問題がある。
On the other hand, the annealing method (c) has a relatively wide tolerance for temperature control and is a versatile method. Conventionally, this method has been used exclusively as an annealing treatment method for belts that require a corbel annealing furnace. is being carried out. However, since the heat treatment requires a long time of about 40 hours, energy consumption is enormous and there are also problems in processing efficiency. Moreover, the softening effect of the annealing treatment is not necessarily sufficient, and therefore there are restrictions on the reduction rate in the next process of cold rolling, and depending on the thickness of the copper strip, it may be necessary to perform intermediate annealing during cold rolling. Therefore, there are problems in that disadvantages such as making the process more complicated and increasing the number of cold rolling baths are inevitable.

本発明は高炭素冷延鋼帯の製造に関する上記問題を解決
するためになされたものである。
The present invention has been made to solve the above-mentioned problems regarding the production of high carbon cold rolled steel strip.

〔課題を解決するための手段および作用〕本発明に係る
高炭素冷延鋼帯の製造方法は、C:0.6〜1.3重量
%、Si:0.5重量%以下、Mn:1重量%以下、C
r : 1.6重量%以下、残部実質的にFeからなり
、所望により、Feの一部が、Cu:0.30重量%以
下、Ni:2.20重量%以下、W : 2.50重蓋
%以下、Mo+2.50重量%、V:Q、3Q重量%の
群から選ばれる1種ないし2種以上の元素で置換された
化学組成を有する高炭素熱延鋼帯を、H2ガス50容量
%以上で残部N2ガスの混合ガス雰囲気炉中、Ac+点
〜780℃の温度域に1時間以上均熱保持後、60″C
/Hr以下の冷却速度でA F 1点直下まで冷却する
第1段の均熱・徐冷と、A e 1点直下に3〜20時
間均熱保持後、60″C/Hr以下の冷却速度でAr1
点以下まで冷却する第2段の均熱・徐冷とからなる一次
焼鈍処理に付した後、冷間圧延を行い、ついで600°
c−Ar+点画下の温度域での二次焼鈍処理を施すこと
を特徴としている。
[Means and effects for solving the problems] The method for producing a high carbon cold rolled steel strip according to the present invention includes C: 0.6 to 1.3% by weight, Si: 0.5% by weight or less, Mn: 1 Weight% or less, C
r: 1.6% by weight or less, the remainder substantially consists of Fe, and if desired, a part of Fe may be Cu: 0.30% by weight or less, Ni: 2.20% by weight or less, W: 2.50% by weight A high-carbon hot-rolled steel strip having a chemical composition substituted with one or more elements selected from the group of Lid% or less, Mo+2.50% by weight, V:Q, and 3Q% by weight was heated with 50 volumes of H2 gas. % or more and the remainder is N2 gas in a mixed gas atmosphere furnace, and after soaking for more than 1 hour in the temperature range of Ac+ point to 780℃, 60''C
1st stage soaking/slow cooling to just below A F 1 point at a cooling rate of /Hr or less, and cooling rate of 60"C/Hr or less after soaking and holding for 3 to 20 hours just below A e 1 point So Ar1
After being subjected to a primary annealing process consisting of a second stage of soaking and slow cooling to a temperature below 600°
It is characterized by performing secondary annealing treatment in the temperature range below c-Ar+stipple.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

上記化学組成を有する高炭素鋼の熱間圧延は常法に従っ
て行われ、熱延条件に特別の制限はないが、熱延鋼帯の
巻取りは、相変態終了後に行うのが好ましい。相変態を
終了する前の高温状態で巻取りを行った熱延鋼帯の組織
は、粗大な層状パーライトが発達した組織を呈するのに
対し、相変態終了後に巻取った熱延鋼帯は、「フェライ
ト+微細パーライト」、または「微細パーライト」、あ
2いは「微細パーライト+初析セメンタイト」からなる
均質な組織を有するので、焼鈍処理におけるオーステナ
イト相の偏析が少なく、球状化炭化物の分布の偏りや粒
径のバラツキを抑制するのに有効である。
Hot rolling of the high carbon steel having the above chemical composition is carried out according to a conventional method, and there are no particular restrictions on hot rolling conditions, but it is preferable to wind up the hot rolled steel strip after completion of phase transformation. The structure of a hot-rolled steel strip coiled at a high temperature before the completion of phase transformation exhibits a structure in which coarse layered pearlite has developed, whereas the structure of a hot-rolled steel strip coiled after completion of phase transformation is It has a homogeneous structure consisting of "ferrite + fine pearlite", "fine pearlite", or "fine pearlite + pro-eutectoid cementite", so there is less segregation of austenite phase during annealing treatment, and the distribution of spheroidized carbides is reduced. This is effective in suppressing deviation and variation in particle size.

本発明における熱延銅帯の焼鈍処理(−次焼鈍)は、N
2ガスが50容蓋%以上を占め、残部がN2ガスである
混合ガスC以下、「高水素ガス」と称する)を雰囲気ガ
スとして行われる。焼鈍炉における通常の雰囲気ガスは
、NX (H,≦2%、CO≦3%)、またはHNX 
(H,510%、残N2)等であるが、これに代えてH
zガスを主成分とする高水素ガスを使用することとした
のは、N2ガスを主成分とする上記NXガスやHNXガ
スに比し、熱伝導率が高いので、A (1点以上で焼鈍
を行う場合に要求される厳密な温度分布の管理が可能と
なり、狭い温度範囲の制御に適しているからである。ま
た、NXやHNXを雰囲気ガスとする焼鈍では、高炭素
鋼帯に特有の酸化皮膜(テンパーカラー)が顕著に発生
するのに対し、高水素ガスを雰囲気ガスとする場合は、
テンパーカラーが大幅に減少し、その効果として銅帯の
加熱効率が高められる。
The annealing treatment (-second annealing) of the hot rolled copper strip in the present invention is performed using N
The mixed gas C (hereinafter referred to as "hydrogen-rich gas") in which 2 gases account for 50% or more of the volume and the remainder is N2 gas is used as the atmospheric gas. The normal atmospheric gas in an annealing furnace is NX (H, ≦2%, CO≦3%) or HNX
(H, 510%, remaining N2) etc., but instead of this, H
The reason why we decided to use a high hydrogen gas containing z gas as its main component is that it has a higher thermal conductivity than the above-mentioned NX gas and HNX gas that contains N2 gas as its main component. This is because it enables the strict control of temperature distribution required when performing annealing, and is suitable for controlling a narrow temperature range.In addition, in annealing using NX or HNX as an atmospheric gas, A noticeable oxide film (temper color) occurs, but when high hydrogen gas is used as the atmospheric gas,
Temper color is significantly reduced, and the effect is that the heating efficiency of the copper strip is increased.

高水素ガスを雰囲気ガスとする一次焼鈍処理は、AC1
点〜780℃に均熱した後、徐冷する第1段の均熱・徐
冷工程と、A (1点直下に均熱した後、徐冷する第2
段の均熱・徐冷工程とからなる。
The primary annealing treatment using high hydrogen gas as the atmospheric gas is AC1
The first stage of soaking/slow cooling process involves soaking to a point of 780°C and then slow cooling.
It consists of soaking and slow cooling steps.

第1段における均熱は、熱延組織のパーライトをオース
テナイト中に固溶させる工程であり、それにつづく徐冷
は、未溶解の残留炭化物を核とする固溶Cの析出により
球状化炭化籾粒を生成させる工程である。その均熱温度
(A cI点以上)の上限を780℃としたのは、それ
を越える高温加熱を行うと、球状炭化物粉形成の核とな
る未溶解の炭化物を残留させることができなくなるから
である。
Soaking in the first stage is a process in which pearlite in the hot-rolled structure is dissolved in austenite, and the subsequent slow cooling is a process in which solid solution C is precipitated with undissolved residual carbides as nuclei, resulting in spheroidized carbide rice grains. This is the process of generating. The reason why the upper limit of the soaking temperature (above the A cI point) was set at 780°C is that if the heating temperature exceeds this temperature, undissolved carbide, which becomes the core of forming spherical carbide powder, cannot remain. be.

また、均熱時間を1時間以上としたのは、それより短い
時間では、パーライトの未溶解残留量が多くなり、球状
化炭化籾粒の生成が不十分となるからである。なお、そ
の均熱時間は、約3時間までで十分であり、それをこえ
る長時間均熱は特に必要としない。
Further, the reason why the soaking time is set to 1 hour or longer is because if the soaking time is shorter than that, the amount of undissolved pearlite will increase and the formation of spheroidized carbonized rice grains will become insufficient. Note that a soaking time of up to about 3 hours is sufficient, and soaking for a longer period of time than that is not particularly necessary.

第1段の均熱につづく徐冷速度を60 ”C/ Hr以
下としたのは、それをこえる冷却速度では、固溶Cの析
出が抑制されるため、未溶解炭化物を核とする球状化炭
化物の生成が不十分となり、オーステナイトに多量のC
が固溶したま%Ar、変態が生起し層状パーライト組織
となってしまうからである。
The reason why the slow cooling rate following the first stage soaking was set to 60"C/Hr or less is because at a cooling rate exceeding that, the precipitation of solid solution C is suppressed, so that spheroidization with undissolved carbides as the nucleus occurs. Carbide formation is insufficient, and a large amount of C is added to austenite.
This is because if %Ar remains in solid solution, transformation occurs and forms a layered pearlite structure.

また、その徐冷到達温度をAr1点直下としたのは、そ
れより低い温度に降温させる必要がないこと、およびそ
れにつづく第2段の均熱を行う際の熱経済性のためであ
る。
Moreover, the reason why the temperature reached by slow cooling is set to just below the Ar1 point is because there is no need to lower the temperature to a lower temperature than that, and because of the thermal economy when performing the subsequent second stage soaking.

第2段の均熱・徐冷工程における均熱は、前記第1段の
均熱・徐冷工程で生成させた球状化炭化籾粒を成長させ
るための処理である。均熱温度をAC1点直下とするの
は、固溶Cの析出による球状化炭化籾粒の成長を促すた
めである。また、その均熱時間を3〜20時間としたの
は、3時間に満たないと、固溶Cの析出および球状化炭
化籾粒の成長が不十分で、球状化炭化籾粒が微細なま1
の組織となり、結果として軟質化を十分に達成できな(
なるからであり、また20時間をこえても、球状化炭化
籾粒の成長とそれによる軟質化効果の増加はなく、熱経
済性および処理能率の面で不利となるからである。
The soaking in the second stage soaking and slow cooling process is a process for growing the spheroidized carbonized rice grains produced in the first stage soaking and slow cooling process. The reason why the soaking temperature is set to just below the AC1 point is to promote the growth of spheroidized carbide rice grains due to the precipitation of solid solution C. The reason why the soaking time was set to 3 to 20 hours is because if the soaking time is less than 3 hours, the precipitation of solid solution C and the growth of spheroidized carbide rice grains will be insufficient, and the spheroidized carbide rice grains will become fine. 1
structure, and as a result, sufficient softening cannot be achieved (
This is because even after 20 hours, the spheroidized carbonized rice grains do not grow and the resulting softening effect does not increase, which is disadvantageous in terms of thermoeconomic efficiency and processing efficiency.

第2段の均熱につづく冷却は、それまでの処理で生成し
た球状化炭化籾粒を安定化させ、更にフェライト中の固
溶Cを析出させるための処理である。この冷却はAc1
点より低い温度からの冷却とはいえ、未だ変態は完了し
ていないので、60℃/Hrをこえる急速な冷却を行う
と、オーステナイト中のCが固溶されたま・の状態で変
態が生起する結果、層状パーライトを生じ、層状パーラ
イトと球状化炭化籾粒の混合組織となってしまう。この
ため、60℃l0rをこえない冷却速度で、A11点以
下まで冷却することとした。
The cooling subsequent to the second stage soaking is a process for stabilizing the spheroidized carbonized rice grains produced in the previous processes and further precipitating solid solution C in the ferrite. This cooling is Ac1
Even though the temperature is lower than that of the austenite, the transformation has not yet been completed. Therefore, if the rapid cooling exceeds 60°C/Hr, the transformation will occur while the C in the austenite remains in solid solution. As a result, layered pearlite is produced, resulting in a mixed structure of layered pearlite and spheroidized carbonized rice grains. For this reason, it was decided to cool down to the A11 point or lower at a cooling rate that did not exceed 60°C 10r.

上記第1段と第2段の均熱・徐冷工程からなる一次焼鈍
処理の後、冷間圧延(圧下率約20%以上)を行う、−
次焼鈍処理が施された高炭素熱延銅帯は、フェライト基
地中に球状化炭化物粒(粒径:約1.5〜2μm)が−
様に分散した均質な組織を有しており、熱延まAの硬く
て脆い組織と異なって、良好な加工性を示し、従来の焼
鈍処理を行ったものよりも軟質である。従って、冷間圧
延での作業性にすぐれ、耳切れ等のトラブルを伴わずに
首尾よく冷間圧延を達成することができる。また、従来
の焼鈍処理を行った高炭素熱延鋼帯の冷間圧下率は約7
5%が限度であり、それ以上の冷間圧延を行うには中間
焼鈍の実施を余儀なくされるが、本発明による焼鈍処理
を受けた高炭素熱延鋼帯では、75%をこえ、は−′9
0%まで冷延圧下率を拡大することができる。このこと
は、そのま1冷間圧延回数および焼鈍処理回数の削減・
工程の簡素化を意味している。
After the primary annealing treatment consisting of the first and second soaking and slow cooling steps, cold rolling (reduction ratio of about 20% or more) is performed, -
The high-carbon hot-rolled copper strip subjected to the secondary annealing treatment has -
Unlike the hard and brittle structure of hot-rolled A, it has good workability and is softer than those subjected to conventional annealing. Therefore, the workability in cold rolling is excellent, and cold rolling can be successfully achieved without problems such as edge breakage. In addition, the cold reduction rate of high carbon hot rolled steel strip subjected to conventional annealing treatment is approximately 7.
5% is the limit, and intermediate annealing is required to perform further cold rolling, but in the high carbon hot rolled steel strip that has been annealed according to the present invention, it exceeds 75%, which is - '9
The cold rolling reduction ratio can be expanded to 0%. This means that the number of cold rolling and annealing treatments can be reduced.
This means simplifying the process.

冷間圧延の後、再び焼鈍処理が行われる。この焼鈍処理
(二次焼鈍)は、冷延圧延により形成された集合組織に
回復・再結晶を生じさせ、加工硬化が解消された軟質な
再結晶集合組織に変えるための熱処理である。その熱処
理は、600℃〜A e 1点直下に適当時間加熱保持
することにより達成される。600℃を下限とするのは
、それより低温ではフェライトの再結晶・粒成長が不十
分となり、軟質化効果に不足をきたすからであり、Ae
1点直下を上限とするのは、それをこえると、オーステ
ナイト相が生成し冷却過程で層状パーライトが現れ硬質
化するからである。二次焼鈍処理は、前記−次焼鈍処理
と異なって、必ずしも高水素ガス雰囲気とする必要はな
く、NXガスやHNXガス等であってよい。この熱処理
においては均熱保持はそれ程重要ではなく、約5〜25
時間程度の加熱保持を行えば十分であるので、かならず
しもバッチ焼鈍とする必要はなく、連続焼鈍炉で行うこ
とも可能である。また、冷却速度の制御も特に必要はな
く、例えば自然放冷としてよい。
After cold rolling, annealing treatment is performed again. This annealing treatment (secondary annealing) is a heat treatment for causing recovery and recrystallization of the texture formed by cold rolling and changing it to a soft recrystallized texture in which work hardening has been eliminated. The heat treatment is achieved by heating and holding at 600° C. to just below A e 1 point for an appropriate time. The lower limit is set at 600°C because at lower temperatures, recrystallization and grain growth of ferrite will be insufficient, resulting in a lack of softening effect.
The reason why the upper limit is set at just below 1 point is that if it exceeds that point, an austenite phase will be formed and layered pearlite will appear during the cooling process, resulting in hardening. The secondary annealing treatment, unlike the above-mentioned secondary annealing treatment, does not necessarily need to be performed in a high hydrogen gas atmosphere, and may be performed using NX gas, HNX gas, or the like. In this heat treatment, soaking is not so important, and approximately 5 to 25
Since it is sufficient to heat and hold the annealing for about an hour, it is not necessarily necessary to perform batch annealing, and it is also possible to perform the annealing in a continuous annealing furnace. Further, there is no particular need to control the cooling rate; for example, natural cooling may be used.

なお、冷間圧延後の二次焼鈍をバッチ焼鈍炉で行う場合
、綱帯コイルの巻き重ね面の焼付きを生しにくくする目
的で必要に応し、冷間圧延工程と二次焼鈍工程との間で
鋼帯表面の電解清浄処理工程が実施される。また、二次
焼鈍処理の後、スキンパス圧延が行われ、開先仕様によ
り所定サイズへの裁断が行われること等も、通常のそれ
と異ならない。
In addition, when performing secondary annealing after cold rolling in a batch annealing furnace, the cold rolling process and secondary annealing process may be combined as necessary to prevent seizure of the overlapping surface of the rope coil. An electrolytic cleaning treatment process is carried out on the surface of the steel strip. Further, after the secondary annealing treatment, skin pass rolling is performed, and cutting to a predetermined size according to the groove specifications is also performed, which is no different from usual.

第1図(1)(n )は、熱延鋼帯の一次焼鈍処理(第
1段の均熱・徐冷と第2段の均熱・徐冷)を、本発明に
従って高水素ガス雰囲気で行った場合と、ヒートサイク
ルは本発明の規定を満足しているが、その雰囲気を高水
素ガスに代えて従来の一般的な焼鈍処理雰囲気であるN
Xガスとした場合(いずれもバッチ焼鈍)について、焼
鈍後の熱延鋼帯のトップ部(T)、ミドル部(M)およ
びエンド部(E)の硬度を測定し、軟質化効果を比較し
た図である(CI:1図:高水素ガス使用、[I[)図
:NXガス使用、各図中、Xは平均値、σは標準偏差で
あり、いずれもN=9)。供試熱延鋼帯(熱延後の巻取
りは相変態終了後の通常巻取り)の化学組成は、C: 
0.86%、Si:0.22〜0.23%、Mn:0.
46〜0.47%、Cr:0.015〜O’、016%
、残部実質的にFeであり、高水素ガスは75%Hz 
 Nz、NXガスハ2 % H22、6% CON z
ヲ’F−h ソれ使用している。
Figure 1 (1) (n) shows the primary annealing treatment (first stage soaking/slow cooling and second stage soaking/slow cooling) of a hot rolled steel strip in a high hydrogen gas atmosphere according to the present invention. The heat cycle satisfies the specifications of the present invention, but the atmosphere was replaced with a high hydrogen gas and the conventional general annealing atmosphere was N.
In the case of X gas (all batch annealing), the hardness of the top part (T), middle part (M) and end part (E) of the hot rolled steel strip after annealing was measured and the softening effect was compared. FIG. The chemical composition of the test hot rolled steel strip (winding after hot rolling is normal winding after completion of phase transformation) is C:
0.86%, Si: 0.22-0.23%, Mn: 0.
46~0.47%, Cr:0.015~O', 016%
, the remainder is essentially Fe, and the high hydrogen gas is 75% Hz
Nz, NX gas 2% H22, 6% CON z
wo'F-h Sore is used.

([〕図および〔H〕図に示したとおり、NXガスを雰
囲気ガスとする焼鈍効果は極めて不完全で、特にミドル
部およびエンド部の軟質化の不足が著しい(〔■〕図)
のに対し、高水素ガス雰囲気とした場合はトップ部から
エンド部に到る調帯全体に亘りバラツキも少なく十分な
軟質化が達成されている([19図)。両者の比較から
、本発明における熱延綱帯の一次焼鈍処理は高水素ガス
雰囲気で行うことを必須とし、高水素ガスの使用(熱伝
導率の向上)により、所定のヒートサイクルが確実に実
行されることがわかる。
(As shown in Figures [] and [H], the annealing effect using NX gas as the atmosphere gas is extremely incomplete, and the lack of softening in the middle and end parts is particularly noticeable (Figure [■])
On the other hand, in the case of a high hydrogen gas atmosphere, sufficient softening was achieved with little variation over the entire band from the top to the end (Figure 19). From a comparison of the two, it was found that the primary annealing treatment of the hot-rolled steel strip in the present invention must be performed in a high hydrogen gas atmosphere, and the use of high hydrogen gas (improving thermal conductivity) ensures that the prescribed heat cycle is executed. I know it will happen.

第2図は、本発明による熱延綱帯の一次焼鈍処理(第1
段および第2段の均熱・徐冷)と、冷間圧延後の二次焼
鈍処理を行って得られた冷延鋼帯の硬さと、従来法によ
り熱延綱帯をAC1点直下で長時間加熱保持(処理時間
: 40Hr)の−次焼鈍処理と、冷間圧延後の二次焼
鈍処理を行って得られた冷延鋼帯の硬さを比較して示し
ている。本発明の一次焼鈍処理の雰囲気は高水素ガスで
あり、二次焼鈍処理は高水素ガスまたはNXガスとし、
従来法における一次および二次焼鈍処理はNXガスを使
用した。また二次焼鈍処理はいずれも690℃X 20
Hr→空冷とした。なお、供試材の化学組成および熱延
後の巻取り、並びに高水素ガス、NXガスの組成等は前
記第1図の試験におけるそれと同じである。
FIG. 2 shows the primary annealing treatment (first
The hardness of the cold-rolled steel strip obtained by performing the secondary annealing treatment after cold rolling and the hardness of the hot-rolled steel strip obtained by the conventional method of lengthening the hot-rolled steel strip just below the AC1 point. The hardness of cold-rolled steel strips obtained by performing a second annealing treatment of time heating and holding (processing time: 40 Hr) and a secondary annealing treatment after cold rolling are shown in comparison. The atmosphere of the primary annealing treatment of the present invention is high hydrogen gas, and the secondary annealing treatment is high hydrogen gas or NX gas,
NX gas was used for the primary and secondary annealing treatments in the conventional method. In addition, the secondary annealing treatment was performed at 690°C x 20
Hr → air cooling. Note that the chemical composition of the test material, the winding after hot rolling, the composition of high hydrogen gas, NX gas, etc. are the same as those in the test shown in FIG. 1 above.

図中、alおよびa2は本発明方法による冷延鋼帯の硬
さ(但し、al:二次焼鈍処理に高水素ガス使用、a2
:同処理にNXガス使用)であり、bは従来法による冷
延鋼帯の硬さである。いずれも銅帯のトップ部、ミドル
部およびエンド部の各部の測定値の平均値で示している
(N=9)、図示のとおり、本発明方法(al、 a2
)は従来法(b)に比べ軟質化効果にすぐれている。ま
た従来法による場合の冷間圧延の圧下率は約75%かは
イ限度であるのに対し、本発明方法による場合はそれを
越える冷間圧延が可能であり、85%の高圧下率の冷延
鋼帯であっても十分な軟質性を有している。なお、al
 (二次焼鈍処理に高水素ガス使用)とa2 (同処理
にNXガス使用)の軟質化の程度に実質的な差異はない
ことから、本発明における二次焼鈍処理は一次焼鈍処理
と異なって必ずしも高水素ガス雰囲気で行う必要はなく
、従来の焼鈍処理雰囲気を適用して差し支えないことが
わかる。
In the figure, al and a2 are the hardnesses of the cold-rolled steel strip produced by the method of the present invention (al: high hydrogen gas used in secondary annealing treatment, a2
: NX gas was used in the same treatment), and b is the hardness of the cold rolled steel strip by the conventional method. All are shown as the average value of the measured values of the top, middle and end parts of the copper strip (N=9).As shown in the figure, the method of the present invention (al, a2
) has a superior softening effect compared to the conventional method (b). In addition, the reduction rate of cold rolling by the conventional method is about 75%, which is the upper limit, but by the method of the present invention, it is possible to perform cold rolling that exceeds this, and it is possible to achieve a high reduction rate of 85%. Even cold-rolled steel strip has sufficient softness. In addition, al
Since there is no substantial difference in the degree of softening between a2 (high hydrogen gas used in the secondary annealing treatment) and a2 (NX gas used in the same treatment), the secondary annealing treatment in the present invention is different from the primary annealing treatment. It can be seen that the annealing treatment does not necessarily have to be carried out in a high hydrogen gas atmosphere, and that a conventional annealing treatment atmosphere may be applied.

次に本発明に使用される高炭素鋼の成分限定理由につい
て説明する。含有量を示す%は重量%である。
Next, the reasons for limiting the composition of the high carbon steel used in the present invention will be explained. % indicating content is weight %.

C:0.6〜1.3% Cは、鋼板に強度、焼入れ性、耐摩耗性等を付与する作
用を有する元素である。C量を低くする程、軟質化し加
工性は良くなるが、0.6%未満になると、A c 1
点以上に加熱したときのオーステナイトへのパーライト
の溶込みが急激に起きるため、球状化炭化物粒の形成に
必要な未溶解炭化物を残留させることが困難となる。他
方、1.3%をこえると、グラファイトが生成し脆くな
り、冷間圧延の実施も困難となる。このため、0.6〜
1.3%とする。
C: 0.6 to 1.3% C is an element that has the effect of imparting strength, hardenability, wear resistance, etc. to the steel plate. The lower the C content, the softer it becomes and the better the workability becomes, but when it is less than 0.6%, A c 1
When heated above a point, pearlite rapidly dissolves into austenite, making it difficult to leave undissolved carbide necessary for forming spheroidized carbide grains. On the other hand, if it exceeds 1.3%, graphite will form and become brittle, making it difficult to perform cold rolling. For this reason, 0.6~
It is set at 1.3%.

S i : 0.5%以下 Siは脱酸剤として添加され、またフェライトの強化、
焼入れ性向上等の作用を有する元素である。しかし、0
.5%をこえると、靭性の劣化を招くので、0.5%を
上限とする。
Si: 0.5% or less Si is added as a deoxidizing agent, and also strengthens ferrite.
It is an element that has effects such as improving hardenability. However, 0
.. If it exceeds 5%, the toughness deteriorates, so the upper limit is set at 0.5%.

Mn:1%以下 Mnは、調帯に必要な強度を付与し、またセメンタイト
安定化作用を有する元素である。しかし、1%をこえる
と、高温での焼戻し脆化の傾向が強くなるので、1%を
上限とする。
Mn: 1% or less Mn is an element that provides strength necessary for toning and also has a cementite stabilizing effect. However, if it exceeds 1%, there is a strong tendency for tempering embrittlement at high temperatures, so the upper limit is set at 1%.

Cr : 1.6%以下 Crは、銅帯に必要な強度、耐摩耗性を付与し、またグ
ラファイト化を阻止する作用を有するが、1.6%をこ
えると、焼入れ性の低下、焼戻し脆化を招くので、1.
6%以下とする。
Cr: 1.6% or less Cr gives the copper strip the necessary strength and wear resistance, and also has the effect of preventing graphitization, but if it exceeds 1.6%, hardenability decreases and tempering embrittlement occurs. 1.
6% or less.

Cu:0.3%以下 Cuは、熱延鋼帯の表面スケールの酸洗等による除去を
容易にする効果を有する元素であるが、0.3%をこえ
ると、脆弱化をまねくので、0.3%を上限とする。
Cu: 0.3% or less Cu is an element that has the effect of making it easier to remove the surface scale of hot rolled steel strips by pickling, etc. However, if it exceeds 0.3%, it causes brittleness, so .3% is the upper limit.

Ni : 2.2%以下 Niは、フェライト基地を強化し、引張強さを高める作
用を有する。しかし、2.2%をこえると、グラファイ
ト化が生し易くなり、またその増量はコスト的にも不利
である。このため、2.2%を上限とする。
Ni: 2.2% or less Ni has the effect of reinforcing the ferrite base and increasing the tensile strength. However, if it exceeds 2.2%, graphitization tends to occur, and increasing the amount is disadvantageous in terms of cost. Therefore, the upper limit is set at 2.2%.

W : 2.5%以下 Wは、焼戻し軟化抵抗性を高める効果を有するが、2.
5%をこえると、焼鈍時に安定炭化物が生成し、焼入れ
時の硬さムラが生しる原因となる。
W: 2.5% or less W has the effect of increasing tempering softening resistance, but 2.
When it exceeds 5%, stable carbides are generated during annealing, which causes uneven hardness during quenching.

このため、2.5%以下とする。Therefore, it is set to 2.5% or less.

Mo:0.3%以下 Moは、Wと同様に焼戻し軟化抵抗性を高める効果を有
し、また靭性向上に有効な元素である。
Mo: 0.3% or less Mo, like W, has the effect of increasing resistance to temper softening, and is also an effective element for improving toughness.

しかし、0.3%をこえて添加すると焼入れ性が低下す
るので、0.3%を上限とする。
However, if more than 0.3% is added, the hardenability decreases, so the upper limit is set at 0.3%.

V:Q、3%以下 ■は、オーステナイト粒を微細化し、焼入れ性を高める
効果を有し、かつ焼戻し軟化抵抗性の向上、靭性間上等
にも奏効する しかし、0.3%をこえて添加すると、
脆化を招(ので、0.3%を上限とする。
V:Q, 3% or less ■ has the effect of refining austenite grains and increasing hardenability, and is also effective in improving temper softening resistance and improving toughness. However, if it exceeds 0.3% When added,
This causes embrittlement (therefore, the upper limit is set at 0.3%).

なお、P、S等の不純分はこの種の鋼に通常許容される
範囲内で混在してもよい。例えば0.04%以下のPや
0.03%以下のS等の混在によって本発明の趣旨が損
なわれることはない。
Note that impurities such as P and S may be mixed within the range normally allowed for this type of steel. For example, the gist of the present invention is not impaired by the presence of 0.04% or less of P, 0.03% or less of S, or the like.

〔実施例〕〔Example〕

高炭素鋼の熱間圧延調帯(相変態後巻取り)に−次焼鈍
処理を施した後、冷間圧延を行い、ついで二次焼鈍処理
を施して製品冷延鋼帯を得、鋼帯のトップ部、ミドル部
およびエンド部から試験片を採取し硬度測定を行った。
A hot-rolled strip of high carbon steel (coiled after phase transformation) is subjected to secondary annealing treatment, then cold rolled, and then subjected to secondary annealing treatment to obtain a product cold-rolled steel strip. Test pieces were taken from the top, middle, and end portions of the test piece, and the hardness was measured.

第1表(1)に供試鋼の化学組成、第1表〔■〕に一次
焼鈍処理条件、冷延圧下率、および二次焼鈍処理条件と
、製品鋼帯の硬度測定結果(平均値)を併せて示す。表
中、「高水素ガス」は75%Hz −N zであり、r
NXガス」は、2%H2−2゜6%Co−N2である。
Table 1 (1) shows the chemical composition of the test steel, Table 1 [■] shows the primary annealing treatment conditions, cold rolling reduction ratio, secondary annealing treatment conditions, and hardness measurement results of the product steel strip (average value). are also shown. In the table, "high hydrogen gas" is 75%Hz -Nz, r
"NX gas" is 2% H2-2°6% Co-N2.

ぬ1〜5は発明例、N11ll〜15は比較例であり、
比較例のうち、Nα11〜13は、−次焼鈍処理の雰囲
気にNXガスを使用した点で本発明の規定からはずれて
いる例、No、14は一次焼鈍処理を、NXガス雰囲気
中、800℃の高温域で行った点で、本発明の規定から
はずれている例、またNo、15は一次および二次焼鈍
処理は本発明の規定を満足しているが、調帯の化学組成
が不適正(C含有量不足)の例である。
Nos. 1 to 5 are invention examples, Nos. 11ll to 15 are comparative examples,
Among the comparative examples, Nα11 to 13 are examples that deviate from the provisions of the present invention in that NX gas was used in the atmosphere for the secondary annealing treatment, and No. 14 was an example in which the primary annealing treatment was performed at 800°C in an NX gas atmosphere. In No. 15, the primary and secondary annealing treatments satisfy the provisions of the present invention, but the chemical composition of the tempering zone is inappropriate. This is an example of (insufficient C content).

発明側石1〜5はいずれも、比較例Nα11〜15を凌
ぐ良好な軟質化効果を得ている。比較例Nα11〜14
(−次焼鈍処理にNXガス使用)を発明例と対比すると
、Na 11〜13のようにその一次焼鈍処理に発明例
の3倍もの長時間を与えても、製品鋼帯の硬度は高く、
また、Nα14のように一次熱鈍における第1段の灼熱
温度が高すぎても、軟質化硬化は乏しい。これらの比較
例と発明例の軟質化効果を、冷延圧下率を加味して対比
するとその差異は歴然である。また、比較例Nα15か
ら明らかなように本発明による軟質化効果を確保するに
は焼鈍処理条件と共に銅帯の化学組成についても本発明
の規定を満足しなければならないことがわかる。
All of the invention side stones 1 to 5 have obtained a good softening effect that surpasses the comparative examples Nα11 to 15. Comparative examples Nα11 to 14
(-NX gas used for secondary annealing treatment) is compared with the invention example, even if the primary annealing treatment is three times longer than that of the invention example, as with Na 11-13, the hardness of the product steel strip is high;
Further, even if the scorching temperature in the first stage of primary annealing is too high as in Nα14, softening and hardening are poor. When the softening effects of these comparative examples and inventive examples are compared taking into account the cold rolling reduction ratio, the difference is obvious. Further, as is clear from Comparative Example Nα15, in order to ensure the softening effect according to the present invention, the chemical composition of the copper strip as well as the annealing treatment conditions must satisfy the provisions of the present invention.

〔発明の効果] 本発明方法によれば、微細な球状化炭化物組織を有する
均質で十分に軟質化された冷延鋼帯が得られる。また本
発明における熱延鋼帯に対する一次焼鈍処理は、従来法
と異なって極めて短時間で達成することができるので、
省エネルギ効果が大であり、かつ生産性の大幅な向上が
もたらされる。
[Effects of the Invention] According to the method of the present invention, a homogeneous and sufficiently softened cold-rolled steel strip having a fine spheroidized carbide structure can be obtained. In addition, the primary annealing treatment of the hot rolled steel strip in the present invention can be accomplished in an extremely short time, unlike conventional methods.
It has a large energy saving effect and significantly improves productivity.

しかも、−次焼鈍処理が施された熱延鋼帯は十分に軟質
化されているので、従来と異なって、圧下率の高い冷間
圧延も中間焼鈍処理を行わずに達成することができる。
Moreover, since the hot-rolled steel strip subjected to the secondary annealing treatment is sufficiently softened, unlike the conventional method, cold rolling with a high rolling reduction can be achieved without performing an intermediate annealing treatment.

従って、本発明は、刃物、ゼンマイ、ワンシャー、バネ
等の機械部品の素材として供給される高炭素冷延鋼帯の
製造法として極めて有用であり、その素材の製造コスト
の低減・生産性向上、並びに機械部品の品質向上・安定
化等に大きな効果が得られる。
Therefore, the present invention is extremely useful as a method for manufacturing high-carbon cold-rolled steel strips that are supplied as raw materials for machine parts such as cutlery, springs, washers, springs, etc., and reduces the manufacturing cost and improves productivity of the materials. In addition, great effects can be obtained in improving and stabilizing the quality of mechanical parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図CI )[I[)は、熱延鋼帯の一次焼鈍処理後
の硬さを示すグラフ、第2図は冷延鋼帯の硬さを示すグ
ラフである。
FIG. 1 CI) [I[) is a graph showing the hardness of the hot rolled steel strip after primary annealing treatment, and FIG. 2 is a graph showing the hardness of the cold rolled steel strip.

Claims (1)

【特許請求の範囲】 1、C:0.6〜1.3重量%、Si:0.5重量%以
下、Mn:1重量%以下、Cr:1.6重量%以下、残
部実質的にFeからなる化学組成を有する高炭素熱延鋼
帯を、H_2ガス50容量%以上で、残部はN_2ガス
である雰囲気炉中、A_c_1点〜780℃の温度域に
1時間以上均熱保持後、60℃/Hr以下の冷却速度で
A_r_1点直下まで冷却する第1段の均熱・徐冷と、
A_c_1点直下に3〜20時間均熱保持後、60℃/
Hr以下の冷却速度でA_r_1点以下まで冷却する第
2段の均熱・徐冷とからなる一次焼鈍処理に付した後、
冷間圧延を行い、ついで600℃〜A_c_1点直下の
温度域での二次焼鈍処理を施すことを特徴とする成形性
および熱処理性にすぐれた高炭素冷延鋼板の製造方法。 2、C:0.6〜1.3重量%、Si:0.5重量%以
下、Mn:1重量%以下、Cr:1.6重量%以下、お
よびCu:0.3重量%以下、Ni:2.2重量%以下
、W:2.50重量%以下、Mo:0.30重量%以下
、V:0.30重量%以下から選ばれる1種ないし2種
以上の元素、残部実質的にFeからなる化学組成を有す
る高炭素熱延鋼帯を、H_2ガス50容量%以上で、残
部はN_2ガスである雰囲気炉中、A_c_1点〜78
0℃の温度域に1時間以上均熱保持後、60℃/Hr以
下の冷却速度でA_r_1点直下まで冷却する第1段の
均熱・徐冷と、A_c_1点直下に3〜20時間均熱保
持後、60℃/Hr以下の冷却速度でA_r_1点以下
まで冷却する第2段の均熱・徐冷とからなる一次焼鈍処
理に付した後、冷間圧延を行い、ついで600℃〜A_
c_1点直下の温度域での二次焼鈍処理を施すことを特
徴とする成形性および熱処理性にすぐれた高炭素冷延鋼
板の製造方法。
[Claims] 1. C: 0.6 to 1.3% by weight, Si: 0.5% by weight or less, Mn: 1% by weight or less, Cr: 1.6% by weight or less, the balance is substantially Fe. A high-carbon hot rolled steel strip having a chemical composition of Soaking and slow cooling in the first stage of cooling to just below the A_r_1 point at a cooling rate of ℃/Hr or less,
After soaking for 3 to 20 hours just below point A_c_1, 60℃/
After being subjected to a primary annealing process consisting of a second stage of soaking and slow cooling in which the material is cooled to a temperature of A_r_1 or less at a cooling rate of Hr or less,
A method for producing a high carbon cold rolled steel sheet with excellent formability and heat treatability, which comprises performing cold rolling and then performing secondary annealing treatment in a temperature range of 600° C. to just below the A_c_1 point. 2, C: 0.6 to 1.3% by weight, Si: 0.5% by weight or less, Mn: 1% by weight or less, Cr: 1.6% by weight or less, and Cu: 0.3% by weight or less, Ni : 2.2% by weight or less, W: 2.50% by weight or less, Mo: 0.30% by weight or less, V: 0.30% by weight or less, the remainder substantially A high carbon hot-rolled steel strip having a chemical composition consisting of Fe is heated in an atmosphere furnace containing 50% by volume or more of H_2 gas and the balance being N_2 gas from point A_c_1 to 78
After soaking in a temperature range of 0℃ for more than 1 hour, the first stage soaking/slow cooling is performed at a cooling rate of 60℃/Hr or less to just below the A_r_1 point, and soaking for 3 to 20 hours to just below the A_c_1 point. After holding, it is subjected to a primary annealing process consisting of a second stage of soaking and slow cooling in which it is cooled to a temperature of A_r_1 or less at a cooling rate of 60°C/Hr or less, followed by cold rolling and then 600°C to A_
A method for producing a high carbon cold-rolled steel sheet with excellent formability and heat treatability, characterized by performing a secondary annealing treatment in a temperature range just below c_1 point.
JP33596190A 1990-11-29 1990-11-29 Manufacturing method of high carbon cold rolled steel strip with excellent workability Expired - Lifetime JP2852810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33596190A JP2852810B2 (en) 1990-11-29 1990-11-29 Manufacturing method of high carbon cold rolled steel strip with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33596190A JP2852810B2 (en) 1990-11-29 1990-11-29 Manufacturing method of high carbon cold rolled steel strip with excellent workability

Publications (2)

Publication Number Publication Date
JPH04202629A true JPH04202629A (en) 1992-07-23
JP2852810B2 JP2852810B2 (en) 1999-02-03

Family

ID=18294264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33596190A Expired - Lifetime JP2852810B2 (en) 1990-11-29 1990-11-29 Manufacturing method of high carbon cold rolled steel strip with excellent workability

Country Status (1)

Country Link
JP (1) JP2852810B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020100973A1 (en) * 2018-11-15 2020-05-22
CN115161443A (en) * 2022-07-28 2022-10-11 江苏联峰实业有限公司 Annealing process of heat-resistant steel
CN115341076A (en) * 2022-07-15 2022-11-15 大冶特殊钢有限公司 Spring steel and spheroidizing annealing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020100973A1 (en) * 2018-11-15 2020-05-22
WO2020100973A1 (en) * 2018-11-15 2020-05-22 株式会社シザーストリート Hair-finishing comb and combing method
CN115341076A (en) * 2022-07-15 2022-11-15 大冶特殊钢有限公司 Spring steel and spheroidizing annealing method thereof
CN115341076B (en) * 2022-07-15 2023-08-18 大冶特殊钢有限公司 Spring steel and spheroidizing annealing method thereof
CN115161443A (en) * 2022-07-28 2022-10-11 江苏联峰实业有限公司 Annealing process of heat-resistant steel

Also Published As

Publication number Publication date
JP2852810B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
JP5050433B2 (en) Method for producing extremely soft high carbon hot-rolled steel sheet
WO2020158357A1 (en) High-carbon hot-rolled steel sheet and method for manufacturing same
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP6569845B1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP3879459B2 (en) Manufacturing method of high hardenability high carbon hot rolled steel sheet
JP3125978B2 (en) Method for producing high carbon steel strip with excellent workability
JPH1161272A (en) Manufacture of high carbon cold-rolled steel plate excellent in formability
WO2020158356A1 (en) High carbon hot-rolled steel sheet and method for production thereof
JPH10204540A (en) Production of cold rolled high-carbon steel strip
JP3266902B2 (en) Manufacturing method of high carbon cold rolled steel strip
JPH04202629A (en) Production of cold rolled high carbon steel strip excellent in workability
JPH01259121A (en) Manufacture of ultrahigh strength steel stock excellent in ductility
JPS60234920A (en) Manufacture of ultrahigh tensile maraging cold rolled steel plate
JPS63169331A (en) Production of chromium stainless steel strip of high strength double phase structure having excellent ductility
JPH1060540A (en) Production of high carbon cold rolled steel strip
JPH1088237A (en) Production of cold rolled high carbon steel strip
JPH0213004B2 (en)
JPH0665645A (en) Production of high ductility hot rolled high tensile strength steel sheet
CN113490756B (en) Steel sheet, member, and method for producing same
JPH05171288A (en) Production of high carbon steel sheet having superior formability
JPH01132739A (en) Steel sheet for heat treatment
JPH0717968B2 (en) Method for manufacturing high carbon thin steel sheet with good formability
JPH01132740A (en) Steel sheet for heat treatment
JPS591631A (en) Manufacture of steel material
JPH0426719A (en) Production of 13cr stainless steel having high strength and high ductility