JPH0420257B2 - - Google Patents

Info

Publication number
JPH0420257B2
JPH0420257B2 JP56116242A JP11624281A JPH0420257B2 JP H0420257 B2 JPH0420257 B2 JP H0420257B2 JP 56116242 A JP56116242 A JP 56116242A JP 11624281 A JP11624281 A JP 11624281A JP H0420257 B2 JPH0420257 B2 JP H0420257B2
Authority
JP
Japan
Prior art keywords
heat treatment
semiconductor substrate
current amplification
transistor
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56116242A
Other languages
Japanese (ja)
Other versions
JPS5817668A (en
Inventor
Toshio Sonobe
Yukio Tsuzuki
Ryuzo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP11624281A priority Critical patent/JPS5817668A/en
Publication of JPS5817668A publication Critical patent/JPS5817668A/en
Publication of JPH0420257B2 publication Critical patent/JPH0420257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は半導体基板の製造方法に関し、特にト
ランジスタおよびモノリシツクICの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor substrate, and more particularly to a method of manufacturing a transistor and a monolithic IC.

従来、トランジスタおよびモノリシツクICは、
半導体基板の表面に所定の不純物拡散、あるいは
酸化処理を施して素子領域を形成したのち、Al
等の配線膜を形成し、熱処理を行つて配線と半導
体基板内の拡散層との間にオーミツク接合を形成
していた。たとえば、バイポーラ型モノリツク
ICいおいてラテラル型PNPトランジスタを製造
する場合には、第1図に示すように埋込N+層と
エピタキシヤルN-層とを形成した半導体基板1
に、P+によるアイソレーシヨン領域2、コレク
タP+領域3およびエミツタP+領域4、ベースN+
領域5を順次形成したのち、前記コレクタP+
域3、エミツタP+領域4、ベースN+領域5に対
応する位置にある酸化膜6を開窓し、たとえば
Alからなる配線7を形成し、450℃乃至550℃で
10分乃至60分間の熱処理を施し、Al配線7とP+
層3,4およびN+層5とのオーミツク接合を形
成する、いわゆるシンター処理を行い、さらに保
護絶縁膜8を形成していた。
Traditionally, transistors and monolithic ICs
After forming an element region by performing predetermined impurity diffusion or oxidation treatment on the surface of the semiconductor substrate, Al
An ohmic junction was formed between the wiring and the diffusion layer in the semiconductor substrate by forming a wiring film such as the above and performing heat treatment. For example, bipolar monolith
When manufacturing a lateral type PNP transistor in an IC, as shown in FIG. 1, a semiconductor substrate 1 with a buried N + layer and an epitaxial N - layer formed
In, isolation region 2 by P + , collector P + region 3 and emitter P + region 4, base N +
After sequentially forming the regions 5, windows are opened in the oxide film 6 at positions corresponding to the collector P + region 3, emitter P + region 4, and base N + region 5, for example.
The wiring 7 made of Al is formed and heated at 450℃ to 550℃.
After heat treatment for 10 to 60 minutes, Al wiring 7 and P +
A so-called sintering process was performed to form ohmic junctions with the layers 3 and 4 and the N + layer 5, and a protective insulating film 8 was further formed.

しかしながら、前記製造方法を用いて製作した
トランジスタの電流増巾率Bは(1)式に示す理論式
から得られる値に比べて小さく、とりわけ 1/BWB2/2LoB 2+DPEPoE/DoBNPBWB/LPE (1) B;電流増巾率 NPB;P型ベース内での電子の平衡濃度 WB;ベース幅 PoE;N型エミツタ内での正孔の平衡濃度 DPE;エミツタ内正孔の拡散定数 LoB;ベース内電子拡散長 DoB;ベース内電子の拡散定数 LPE;エミツタ内正孔拡散長 ラテラル型PNPトランジスタにおいては1桁以
上小さい場合が生ずる。
However, the current amplification factor B of the transistor manufactured using the above manufacturing method is smaller than the value obtained from the theoretical formula shown in equation (1), especially 1/BWB 2 /2L oB 2 +D PE P oE /D oB N PB W B /L PE (1) B; Current amplification rate N PB ; Equilibrium concentration of electrons in the P-type base W B ; Base width P oE ; Equilibrium concentration of holes in the N-type emitter D PE ; Diffusion constant of holes in the emitter L oB ; Electron diffusion length in the base D oB ; Diffusion constant of electrons in the base L PE ; Diffusion constant of holes in the emitter In lateral type PNP transistors, cases may be smaller than one order of magnitude.

半導体素子を形成する場合、一般に数回以上の
熱処理工程やエツチング工程およびイオン打込
み、電子ビーム蒸着工程等数多くの工程を経る。
このとき、いわゆる結晶歪みが生じて各種の欠陥
が生成されるため電荷のトラツプを引きおこすよ
うな準位が特に界面近くに形成される。これによ
りトランジスタの電流増巾率Bは影響をうけるた
め、上記(1)式は(2)式となる。
When forming a semiconductor element, it generally goes through many steps such as several heat treatment steps, etching steps, ion implantation, and electron beam evaporation steps.
At this time, so-called crystal distortion occurs and various defects are generated, so that levels that cause charge traps are formed particularly near the interface. Since this affects the current amplification rate B of the transistor, the above equation (1) becomes equation (2).

1/B=WB 2/2LoB 2+DPEPoE/DoBNPBWB/LPE+K(2) ここでKはトラツプ準位による影響についての
修正項である。
1/B=W B 2 /2L oB 2 +D PE P oE /D oB N PB W B /L PE +K(2) Here, K is a correction term for the influence of the trap level.

したがつてトランジスタの電流増巾率の低下を
おさえるためにはKの値をできるだけ小さくする
必要があり、このため不純物拡散や酸化工程にお
いて結晶歪の発生を極力おさえる工夫、たとえば
低温酸化等の方法がとられているが、これによつ
ても前記電流増巾率の低下を防ぐにはまだ不十分
であり、かつ工程が複雑であつた。
Therefore, in order to suppress the decrease in the current amplification rate of the transistor, it is necessary to make the value of K as small as possible, and for this reason, methods such as low-temperature oxidation are necessary to suppress the occurrence of crystal distortion as much as possible during the impurity diffusion and oxidation processes. However, even this method is still insufficient to prevent the decrease in the current amplification rate, and the process is complicated.

また、NPNトランジスタやバーテイカル型
PNPトランジスタ等とラテラル型PNPトランジ
スタを同時に形成するバイポーラICの製造にお
いて、ラテラル型PNPトランジスタの電流増巾
率を大きくとろうとするとトランジスタの耐圧低
下等の現象を引きおこしIC全体の電気特性にま
で影響を与えた。
In addition, NPN transistors and vertical type
In the manufacture of bipolar ICs in which PNP transistors and lateral type PNP transistors are formed at the same time, attempting to increase the current amplification rate of the lateral type PNP transistors causes phenomena such as a decrease in the breakdown voltage of the transistors, which affects the electrical characteristics of the entire IC. gave.

そこで本発明は上記の欠点にかんがみ、ICの
構造および素子領域形成工程は従来のままとしな
がらもバイポーラ型ICに含まれるトランジスタ
特にラテラル型PNPトランジスタおよびバーテ
イカル型PNPトランジスタの電流増巾率を増大
させ、またMOS型ICに含まれるMOSトランジス
タの相互コンダクタンスを増大させることを目的
とする。
Therefore, in view of the above-mentioned drawbacks, the present invention increases the current amplification rate of transistors included in bipolar ICs, particularly lateral type PNP transistors and vertical type PNP transistors, while leaving the IC structure and element region forming process unchanged. , and also aims to increase the mutual conductance of MOS transistors included in MOS type ICs.

発明者らは、電子ビーム蒸着により配線層を形
成したのち低温で長時間熱処理すると上記ラテラ
ル型PNPトランジスタおよびバーテイカル型
PNPトランジスタの電流増巾率が大巾に増大し、
さらに電子ビーム蒸着時の配線膜の堆積速度が大
きいほど電流増巾率の増大が著しくなることを見
出した。
The inventors found that by forming a wiring layer by electron beam evaporation and then heat-treating it at a low temperature for a long time, the above-mentioned lateral type PNP transistor and vertical type
The current amplification rate of PNP transistors increases greatly,
Furthermore, we found that the higher the deposition rate of the wiring film during electron beam evaporation, the more significant the increase in current amplification rate.

本発明は上記現象の探究の結果に基づくもの
で、 トランジスタを形成した半導体基板表面に、電
子ビーム蒸着法により電極または配線膜を形成す
る形成工程と、 前記電極または配線膜を形成後、上記形成工程
において前記半導体基板がうけたX線損傷を回復
すべく該半導体基板に第1の熱処理を施す第1熱
処理工程と、 前記半導体基板に存在する結晶歪みを緩和すべ
く、上記第1の熱処理より低温かつ該第1の熱処
理より長時間の第2の熱処理を該半導体基板に施
す第2熱処理工程とを含み、さらに、 上記形成工程において、前記電極または配線膜
の形成速度が、前記X線損傷に起因する上記トラ
ンジスタの電流増幅率の低下を抑制すべく、X線
集積線量によつて予め設定されていることを特徴
とする。
The present invention is based on the results of research into the above phenomenon, and includes a formation step of forming an electrode or wiring film by electron beam evaporation on the surface of a semiconductor substrate on which a transistor is formed; and after forming the electrode or wiring film, the above-mentioned formation a first heat treatment step in which the semiconductor substrate is subjected to a first heat treatment to recover from X-ray damage sustained by the semiconductor substrate during the step; a second heat treatment step of subjecting the semiconductor substrate to a second heat treatment at a lower temperature and for a longer time than the first heat treatment; In order to suppress a decrease in the current amplification factor of the transistor due to

以下、バイポーラ型モノリシツクICにおける
ラテラル型PNPトランジスタを製造する場合を
例にとつて詳細に説明する。
Hereinafter, a case in which a lateral type PNP transistor in a bipolar type monolithic IC is manufactured will be described in detail as an example.

まず、第1図に示すように、埋込N+層とエピ
タキシアルN-層とを形成した半導体基板1に、
P+によるアイソレーシヨン領域2、コレクタP+
領域3およびエミツタP+領域4、ベースN+領域
5を順次形成する。次いで周知のホトエツチング
技術により前記コレクタP+領域3、エミツタP+
領域4、ベースN+領域5に対応する位置にある
酸化膜6を開窓し、たとえばAlからなる配線層
7を形成する。このときAlは電子ビーム蒸着法
を用いて1〜2μmの厚さに堆積し、蒸着時の基板
温度は150℃以上300℃以下、Alの堆積速度は45
Å/sec以上、望ましくは70Å/sec以上とする。
この堆積速度を得るためには、半導体基板1と電
子ビーム蒸着のための蒸着源(Alソース)との
距離が25cmの場合、電子銃投入電力は4.0KW以
上必要とし、1cm当りでは160W以上必要とする。
70Å/secの堆積速度を得るためには、前記距離
が25cmの場合、4.5KW必要であつた。
First, as shown in FIG. 1, on a semiconductor substrate 1 on which a buried N + layer and an epitaxial N - layer are formed,
Isolation area 2 due to P + , collector P +
A region 3, an emitter P + region 4, and a base N + region 5 are sequentially formed. The collector P + region 3 and emitter P + are then etched by well-known photoetching techniques.
Openings are made in the oxide film 6 at positions corresponding to the region 4 and the base N + region 5, and a wiring layer 7 made of Al, for example, is formed. At this time, Al is deposited to a thickness of 1 to 2 μm using the electron beam evaporation method, the substrate temperature during deposition is 150°C to 300°C, and the Al deposition rate is 45°C.
Å/sec or more, preferably 70 Å/sec or more.
To obtain this deposition rate, when the distance between the semiconductor substrate 1 and the evaporation source (Al source) for electron beam evaporation is 25 cm, the electron gun input power needs to be 4.0 KW or more, and 160 W or more per 1 cm. shall be.
To obtain a deposition rate of 70 Å/sec, 4.5 KW was required when the distance was 25 cm.

次に周知のホトエツチング技術を用いてAl配
線パターンを形成したのち、たとえば10%の水素
を含む窒素雰囲気中で450乃至600℃、10分乃至60
分間、望ましくは500℃で10分乃至20分間、第1
の熱処理を施し、さらに前記雰囲気中で300℃乃
至450℃、30乃至240分間、望ましくは350℃で50
分乃至90分間、第2の熱処理を施す。こののち、
例えばプラズマCVD法により300℃乃至350℃で
かつ前記第2の熱処理温度を越えない温度で保護
絶縁膜8、たとえば厚さ1μmの窒化シリコン膜を
250〜350Å/minの堆積速度で形成する。この場
合、窒化シリコン膜に限らず酸化シリコン膜等で
も良い。
Next, after forming an Al wiring pattern using a well-known photoetching technique, it is heated at 450 to 600°C for 10 to 60 minutes in a nitrogen atmosphere containing 10% hydrogen.
for 1 minute, preferably at 500℃ for 10 to 20 minutes.
and further heat treatment in the above atmosphere at 300°C to 450°C for 30 to 240 minutes, preferably at 350°C for 50 minutes.
A second heat treatment is applied for 90 minutes to 90 minutes. After this,
For example, the protective insulating film 8, for example, a silicon nitride film with a thickness of 1 μm, is formed by plasma CVD at 300°C to 350°C and at a temperature not exceeding the second heat treatment temperature.
Formed at a deposition rate of 250-350 Å/min. In this case, the film is not limited to a silicon nitride film, but may also be a silicon oxide film or the like.

ここで第1の熱処理は配線膜と半導体基板との
良好なオーミツク接触を得るためのものであり、
同時に電子ビーム蒸着時にうけるX線損傷による
トランジスタの電流増巾率の低下をある程度回復
させるためのものである。
Here, the first heat treatment is for obtaining good ohmic contact between the wiring film and the semiconductor substrate,
At the same time, it is intended to recover to some extent the decrease in the current amplification rate of the transistor due to X-ray damage during electron beam evaporation.

次に第1の熱処理に比べて低温かつ長時間の第
2の熱処理を実施することにより第1の熱処理で
は除去できなかつた素子形成時あるいは配線形成
時等に発生した結晶歪みがゆつくりと十分に緩和
され、前記歪みに起因した電荷のトラツプ準位等
が消滅するため、電流増巾率は増大する。第2図
は熱処理工程による電流増巾率の変化の様子を示
す図で、第2熱処理により第1熱処理の1.3〜2
倍近くの電流増巾率が得られた。また、前記第2
熱処理後の保護絶縁膜形成時に前記第2熱処理の
度を越えない温度とすることにより、再び熱歪み
が発生するのを防止することができる。
Next, by performing a second heat treatment at a lower temperature and longer time than the first heat treatment, crystal distortions that occurred during element formation or wiring formation, etc. that could not be removed by the first heat treatment, are slowly and sufficiently removed. Since the charge trap level caused by the distortion disappears, the current amplification rate increases. Figure 2 is a diagram showing how the current amplification rate changes due to the heat treatment process.
A current amplification rate nearly twice as high was obtained. In addition, the second
By setting the temperature at which the protective insulating film is formed after the heat treatment not to exceed the temperature of the second heat treatment, it is possible to prevent thermal distortion from occurring again.

一方、半導体基板に電子ビーム蒸着により配線
膜を形成する場合に堆積速度を大きく、すなわち
電子銃投入電力を大きくとると短時間に配線膜を
形成することが可能となり、蒸着源より発生する
X線が半導体基板を照射する総量すなわちX線集
積線量が少なくなるため、いわゆるX線損傷に起
因した電流増巾率の低下の度合いが軽減される。
第3図は電子ビーム蒸着前後の電流増巾率の堆積
速度による変化の様子を示すもので、堆積速度が
大きいほど電流増巾率の低下が少ない。この電流
増巾率の変化率が35%以上のものは500℃10分〜
20分の熱処理により蒸着前の電流増巾率に完全回
復した。さらに第2図において、前記第2の熱処
理を行うと電流増巾率はより高くなり、堆積速度
が70Å/secの場合は20Å/secの場合の約1.4倍
となりまた第1熱処理後の約2倍が得られた。
On the other hand, when forming a wiring film on a semiconductor substrate by electron beam evaporation, increasing the deposition rate, that is, increasing the power input to the electron gun, makes it possible to form the wiring film in a short time. Since the total amount of X-ray radiation that irradiates the semiconductor substrate, that is, the integrated X-ray dose, is reduced, the degree of decrease in current amplification rate caused by so-called X-ray damage is reduced.
FIG. 3 shows how the current amplification rate changes with the deposition rate before and after electron beam evaporation, and the higher the deposition rate, the less the decrease in the current amplification rate. If the rate of change in current amplification rate is 35% or more, 500℃ for 10 minutes or more.
After 20 minutes of heat treatment, the current amplification rate was completely restored to the value before vapor deposition. Further, in FIG. 2, when the second heat treatment is performed, the current amplification rate becomes higher, and when the deposition rate is 70 Å/sec, it is about 1.4 times that when the deposition rate is 20 Å/sec, and about 2 times after the first heat treatment. Got double.

前記実施例においては、Al蒸着後第1及び第
2の熱処理を行つたのち保護絶縁膜を形成した
が、Al蒸着後に第1の熱処理を行い、次いで保
護絶縁膜を形成したのち第2の熱処理を行つても
同様の効果が得られる。この場合の保護絶縁膜の
形成は第1の熱処理温度を越えない温度で行う必
要はあるが、第2の熱処理の温度を越えてもよ
い。
In the above embodiment, the protective insulating film was formed after the first and second heat treatments were performed after Al vapor deposition, but the first heat treatment was performed after Al vapor deposition, and then the second heat treatment was performed after forming the protective insulating film. The same effect can be obtained by doing. In this case, the protective insulating film needs to be formed at a temperature that does not exceed the first heat treatment temperature, but may exceed the second heat treatment temperature.

また、実施例においてはAlの蒸着について述
べたが、他の電極・配線材料・たとえばMoやW
等を用いてもよい。
In addition, although the embodiments have described the vapor deposition of Al, other electrode and wiring materials such as Mo and W may also be used.
etc. may also be used.

また実施例のラテラル型PNPトランジスタの
みでなく、バーテイカル型PNPトランジスタを
含むバイポーラ型ICやMOSトランジスタを含む
MOS型ICにも適用できる。
In addition to the lateral type PNP transistor in the example, it also includes bipolar type ICs including vertical type PNP transistors and MOS transistors.
It can also be applied to MOS type ICs.

本発明によれば、ICの構造をかえることなく、
また素子領域の形成工程は特別の工夫を加えるこ
とのない単純な工程のままで、電極または配線の
形成後にバイポーラ型トランジスタの電流増巾率
を増大することができ、あるいはMOS型トラン
ジスタの相互コンダクタンスを増大することがで
きる。
According to the present invention, without changing the structure of the IC,
In addition, the process of forming the element region remains a simple process without adding any special measures, and after forming electrodes or wiring, the current amplification rate of a bipolar transistor can be increased, or the mutual conductance of a MOS transistor can be increased. can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はバイポーラ型ICにおけるラテラル型
PNPトランジスタの断面図、第2図はAlの電子
ビーム蒸着前後のトランジスタの電流増巾率B変
化率(蒸着前を100%とする)のAl堆積速度依存
性を示す特性図、第3図は本発明に係る熱処理過
程と電流増巾率蒸着の変化の様子を示す特性図で
ある。 1…半導体基板、2…P+によるアイソレーシ
ヨン領域、3…コレクタP+領域、4…エミツタ
P+領域、5…ベースN+領域、6…酸化膜、7…
Al配線、8…保護絶縁膜。
Figure 1 shows the lateral type of bipolar IC.
A cross-sectional view of a PNP transistor. Figure 2 is a characteristic diagram showing the dependence of the current amplification rate B of the transistor before and after electron beam evaporation of Al (with the value before evaporation being 100%) on the Al deposition rate. FIG. 3 is a characteristic diagram showing changes in the heat treatment process and current amplification rate deposition according to the present invention. 1... Semiconductor substrate, 2... Isolation region by P + , 3... Collector P + region, 4... Emitter
P + region, 5... base N + region, 6... oxide film, 7...
Al wiring, 8...protective insulating film.

Claims (1)

【特許請求の範囲】 1 トランジスタを形成した半導体基板表面に、
電子ビーム蒸着法により電極または配線膜を形成
する形成工程と、 前記電極または配線膜を形成後、上記形成工程
において前記半導体基板がうけたX線損傷を回復
すべく該半導体基板に第1の熱処理を施す第1熱
処理工程と、 前記半導体基板に存在する結晶歪みを緩和すべ
く、上記第1の熱処理より低温かつ該第1の熱処
理より長時間の第2の熱処理を該半導体基板に施
す第2熱処理工程とを含み、さらに、 上記形成工程において、前記電極または配線膜
の形成速度が、前記X線損傷に起因する上記トラ
ンジスタの電流増幅率の低下を抑制すべく、X線
集積線量によつて予め設定されていることを特徴
とする半導体装置の製造方法。
[Claims] 1. On the surface of a semiconductor substrate on which a transistor is formed,
a formation step of forming an electrode or wiring film by electron beam evaporation; and after forming the electrode or wiring film, a first heat treatment on the semiconductor substrate in order to recover X-ray damage caused to the semiconductor substrate in the formation step; a first heat treatment step in which the semiconductor substrate is subjected to a second heat treatment at a lower temperature than the first heat treatment and for a longer time than the first heat treatment in order to alleviate crystal distortion existing in the semiconductor substrate; Further, in the formation step, the formation rate of the electrode or wiring film is controlled by an integrated X-ray dose in order to suppress a decrease in the current amplification factor of the transistor caused by the X-ray damage. A method for manufacturing a semiconductor device, characterized in that settings are made in advance.
JP11624281A 1981-07-23 1981-07-23 Manufacture of semiconductor device Granted JPS5817668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11624281A JPS5817668A (en) 1981-07-23 1981-07-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11624281A JPS5817668A (en) 1981-07-23 1981-07-23 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5817668A JPS5817668A (en) 1983-02-01
JPH0420257B2 true JPH0420257B2 (en) 1992-04-02

Family

ID=14682307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11624281A Granted JPS5817668A (en) 1981-07-23 1981-07-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5817668A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841668A (en) * 1971-09-27 1973-06-18
JPS4968680A (en) * 1972-11-06 1974-07-03
JPS52115189A (en) * 1976-03-23 1977-09-27 Sony Corp Production of semiconductor device
JPS5512752A (en) * 1978-07-12 1980-01-29 Mitsubishi Electric Corp Semiconductor device manufacturing method
JPS5723264A (en) * 1980-06-04 1982-02-06 Siemens Ag Method of stabilizing current amplification characteristics of n-p-n silicon transistor
JPS57141958A (en) * 1981-02-27 1982-09-02 Oki Electric Ind Co Ltd Manufacture of lateral type transistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841668A (en) * 1971-09-27 1973-06-18
JPS4968680A (en) * 1972-11-06 1974-07-03
JPS52115189A (en) * 1976-03-23 1977-09-27 Sony Corp Production of semiconductor device
JPS5512752A (en) * 1978-07-12 1980-01-29 Mitsubishi Electric Corp Semiconductor device manufacturing method
JPS5723264A (en) * 1980-06-04 1982-02-06 Siemens Ag Method of stabilizing current amplification characteristics of n-p-n silicon transistor
JPS57141958A (en) * 1981-02-27 1982-09-02 Oki Electric Ind Co Ltd Manufacture of lateral type transistor

Also Published As

Publication number Publication date
JPS5817668A (en) 1983-02-01

Similar Documents

Publication Publication Date Title
JPH0523055B2 (en)
JPH0147014B2 (en)
JPH0469814B2 (en)
JPS5821419B2 (en) Lattice defect removal method
US5015593A (en) Method of manufacturing semiconductor device
JPS59920A (en) Manufacture of semiconductor device
JPS61180482A (en) L-high speed manufacturing method for fast bipolar analog large integrated circuit
JPS5922380B2 (en) Handout Taisoshino Seizouhouhou
JPH0521448A (en) Manufacture of semiconductor device
JPH0558257B2 (en)
JPS6289357A (en) Manufacture of low resistivity region with low defect density in bipolar integrated circuit
JPH0420257B2 (en)
JP3167362B2 (en) Manufacturing method of bipolar type MOS semiconductor device
JP2718757B2 (en) MOS type semiconductor device and method of manufacturing the same
JPS60127755A (en) Manufacture of semiconductor device
JP3300645B2 (en) Semiconductor device and manufacturing method thereof
KR19990029502A (en) Manufacturing Method of Semiconductor Device
JPH0595000A (en) Manufacture of semiconductor device
JPS6216014B2 (en)
JP3384439B2 (en) Method for manufacturing semiconductor device
JPS6030112B2 (en) Transistor manufacturing method
JPH09500760A (en) Manufacturing process of semiconductor device with arsenic implanted emitter
JPH01108772A (en) Manufacture of bipolar transistor
JPH04168764A (en) Manufacture of semiconductor device
JP2005150509A (en) Method for manufacturing semiconductor device