JPH0420243B2 - - Google Patents

Info

Publication number
JPH0420243B2
JPH0420243B2 JP3016084A JP3016084A JPH0420243B2 JP H0420243 B2 JPH0420243 B2 JP H0420243B2 JP 3016084 A JP3016084 A JP 3016084A JP 3016084 A JP3016084 A JP 3016084A JP H0420243 B2 JPH0420243 B2 JP H0420243B2
Authority
JP
Japan
Prior art keywords
cooling
signal
transformer
electrical equipment
load factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3016084A
Other languages
Japanese (ja)
Other versions
JPS60175404A (en
Inventor
Shichiro Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3016084A priority Critical patent/JPS60175404A/en
Publication of JPS60175404A publication Critical patent/JPS60175404A/en
Publication of JPH0420243B2 publication Critical patent/JPH0420243B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、変圧器、リアクトル等の電気機器に
設けられた冷却装置を、可変周波数電源装置によ
り、駆動する電気機器用冷却制御装置に関するも
のである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a cooling control device for electrical equipment that drives a cooling device installed in electrical equipment such as a transformer and a reactor using a variable frequency power supply. be.

[発明の技術的背景] 電気機器例えば油入変圧器は、油入風冷式冷却
制御装置、あるいは送油風冷式冷却制御装置によ
つて冷却しているが、これら冷却制御装置は従
来、変圧器の負荷あるいは油温などによつて設定
された運転台数を制御するのが一般的である。
[Technical Background of the Invention] Electrical equipment such as oil-immersed transformers are cooled by oil-filled air-cooling type cooling control devices or oil-feeding air-cooling type cooling control devices. Conventionally, these cooling control devices Generally, the number of operating units is controlled based on the transformer load or oil temperature.

しかし、近年、省エネルギーの観点から、変圧
器の冷却装置が必要以上に冷却され、電力を無駄
にしていることが見直され、フアンやポンプ用電
動機(これを補機という)の回転速度を変圧器負
荷等に応じて変化させる制御方式が検討されつつ
ある。
However, in recent years, from the perspective of energy conservation, it has been reconsidered that the transformer cooling system is cooled more than necessary, which wastes power. Control methods that change according to load, etc. are being considered.

第1図は、横軸に負荷率をとり、縦軸に所要補
機能力率、及び補機電力率をとつた特性図であ
る。図において曲線Aは負荷率に対する所要補機
能力の理想曲線である。曲線Bは負荷率に応じて
補機台数を増減させる制御方式の補機電力例であ
り、従つて冷却装置の冷却能力は過剰となる場合
が多い。
FIG. 1 is a characteristic diagram in which the horizontal axis shows the load factor, and the vertical axis shows the required auxiliary function power factor and the auxiliary machine power factor. In the figure, curve A is an ideal curve of required auxiliary function power with respect to load factor. Curve B is an example of auxiliary machine power in a control system that increases or decreases the number of auxiliary machines according to the load factor, and therefore the cooling capacity of the cooling device is often excessive.

一般に冷却装置の冷却能力はフアンやポンプの
回転数にほぼ比例し、所要補機入力は回転数の3
乗に比例する。従つて曲線Aに沿つてフアンやポ
ンプ用電動機の回転速度を低減させた場合の所要
補機電力は曲線C,D,F,H、となり、従来の
台数制御による補機電力曲線Bに比し、斜線部分
が省電力効果として得られる。
In general, the cooling capacity of a cooling system is approximately proportional to the rotation speed of the fan or pump, and the required auxiliary input is 3 times the rotation speed.
Proportional to the power. Therefore, when the rotational speed of the fan and pump motor is reduced along curve A, the required auxiliary power becomes curves C, D, F, and H, which are compared to auxiliary power curve B based on conventional number control. , the shaded area is obtained as a power saving effect.

[背景技術の問題点] この可変周波数制御ブロツク図を第2図に示
す。1は変圧器、2は変圧器冷却装置でありフア
ンやポンプ、更にこれらを駆動する電動機から構
成されている。3は変圧器1の負荷量を検出する
変流器、4は変流器出力に基づいて負荷率を検出
する負荷率検出器、5は負荷率検出器4の出力に
応じて出力電力を制御する可変周波数変換装置、
11は冷却装置用電源装置である。変圧器1の負
荷率は負荷率検出器4にて検出され、この負荷率
に応じて可変周波数変換装置5の出力周波数が制
御され、変圧器の冷却装置2のフアン、ポンプ用
電動機回転速度が変化する。負荷率がI2(このと
きの特性はD点)以下の領域では、補機能力P2
からはもつと低速運転しても支障はないが補機が
一旦止まつて再起動する場合、フアンやポンプ用
電動機が起動可能な最低電力P1以上とする必要
がある。このため、従来は負荷率I2以下の領域で
は曲線Eの如く、補機電力をP2となるよう負荷
率検出器4を構成している。
[Problems with Background Art] A block diagram of this variable frequency control is shown in FIG. 1 is a transformer, and 2 is a transformer cooling device, which is composed of a fan, a pump, and an electric motor that drives these. 3 is a current transformer that detects the load amount of the transformer 1; 4 is a load factor detector that detects the load factor based on the output of the current transformer; 5 is a control device that controls output power according to the output of the load factor detector 4. variable frequency converter,
11 is a power supply device for the cooling device. The load factor of the transformer 1 is detected by the load factor detector 4, and the output frequency of the variable frequency converter 5 is controlled according to this load factor, and the fan and pump motor rotation speeds of the transformer cooling device 2 are controlled. Change. In the area where the load factor is below I 2 (the characteristic at this time is point D), the auxiliary function power P 2
There is no problem with low-speed operation, but when the auxiliary equipment stops and restarts, it is necessary to use the minimum power P 1 or more that can start the fan and pump motor. For this reason, conventionally, the load factor detector 4 is configured so that the auxiliary power becomes P 2 as shown by curve E in the region below the load factor I 2 .

上記の如く構成された可変周波数冷却御御装置
は低負荷率(第1図I2以下)の場合、所要補機り
理想曲線に比し、過剰冷却しているという欠点が
ある。
The variable frequency cooling control system constructed as described above has the disadvantage that at low load factors (lower than I2 in FIG. 1), excessive cooling occurs compared to the ideal curve for required auxiliary equipment.

[発明の目的] 本発明は上記問題点を解決することを目的とし
てなされたものであり、補機電力を所要補機理想
電力に近づけることによつて省エネ効果を大きく
する可変周波数制御による電気機器用冷却制御装
置を提供することにある。
[Object of the Invention] The present invention was made with the aim of solving the above-mentioned problems, and is an electrical device using variable frequency control that increases the energy saving effect by bringing the auxiliary power closer to the required auxiliary ideal power. An object of the present invention is to provide a cooling control device for

[発明の概要] 本発明では冷却用補機の電動機が停止→起動、
高速運転→低速運転の夫々において、最低所要補
機電力に差のあることに着目し、起動時は周波数
設定器を介して起動し、所定時間後は変圧器の負
荷率に応じて運転制御するよう切換制御してエネ
ルギー損失を補うようにしようとするものであ
る。
[Summary of the invention] In the present invention, the electric motor of the cooling auxiliary machine stops → starts,
Focusing on the fact that there is a difference in the minimum required auxiliary power between high-speed operation and low-speed operation, the system starts up via a frequency setting device, and after a predetermined period of time, the operation is controlled according to the load factor of the transformer. The idea is to use switching control to compensate for energy loss.

[発明の実施例] 以下図面を参照して実施例を説明する。第3図
は本発明による可変周波数制御による電気機器用
冷却制御装置の一実施例の構成図である。なお、
第2図と同一番号は同一機能を有する。負荷率検
出器4は、変圧器負荷に応じて第1図の曲線C,
D,F,G、に沿つて冷却装置補機電力(周波数
や電力)を制御する。6はフアンやポンプ用電動
機が停止状態から起動回転可能な補機電源周波数
以上の設定(曲線E相当でこのときの補機電力は
P2)がなされている周波数設定器である。7は
補助リレーで7a,7bはその常開接点、常閉接
点、8−P、8−Nは制御回路電源、9は冷却装
置に対する運転信号接点、10は限時継電器、1
0bはその常閉接点、11は冷却装置用電源装置
である。
[Embodiments of the Invention] Examples will be described below with reference to the drawings. FIG. 3 is a configuration diagram of an embodiment of a cooling control device for electrical equipment using variable frequency control according to the present invention. In addition,
The same numbers as in FIG. 2 have the same functions. The load factor detector 4 detects curves C and C in FIG. 1 according to the transformer load.
The cooling system auxiliary power (frequency and power) is controlled along D, F, and G. 6 is the setting above the auxiliary power supply frequency that allows the fan and pump motor to start and rotate from a stopped state (equivalent to curve E, the auxiliary power at this time is
P2 ) is a frequency setting device. 7 is an auxiliary relay, 7a and 7b are normally open contacts and normally closed contacts, 8-P and 8-N are control circuit power supplies, 9 is an operation signal contact for the cooling device, 10 is a time-limited relay, 1
0b is its normally closed contact, and 11 is a power supply device for the cooling device.

第4図の制御回路において、変圧器1の負荷を
CT3を介して負荷率検出器4にて検出し、可変
周波数変換装置5に制御信号を送出する。可変周
波数電源装置は商用周波数電圧を直流に変換し、
制御電圧(変圧器負荷率に応じて直流→可変周波
数、可変電圧)を出力する。
In the control circuit of Fig. 4, the load of transformer 1 is
It is detected by the load factor detector 4 via the CT 3 and a control signal is sent to the variable frequency conversion device 5. Variable frequency power supplies convert commercial frequency voltage to direct current,
Outputs control voltage (DC → variable frequency, variable voltage depending on transformer load factor).

負荷率検出器4は、変圧器負荷に応じて曲線C
に沿つて冷却装置補機電源周波数を制御する。負
荷率I2即ち特性曲線上のD点以下の領域で、フア
ン、ポンプ用電動機の低速回転限度があり、曲線
G(負荷率I1、補機電力P1)は電動機が停止状態
からでは回転トルク不足のため起動できないが、
高速回転状態から徐々に低速回転制御した場合の
運転可能限度の補機電力である。
The load factor detector 4 detects the curve C depending on the transformer load.
Control the cooling system auxiliary power supply frequency according to In the area below load factor I 2 , that is, point D on the characteristic curve, there is a low speed rotation limit for the fan and pump motors, and curve G (load factor I 1 , auxiliary power P 1 ) indicates that the motor cannot rotate from a stopped state. Unable to start due to lack of torque,
This is the auxiliary power that is at the operational limit when the rotation is gradually controlled from a high-speed rotation state to a low-speed rotation state.

冷却装置運転信号9により、補助継電器7、限
時継電器10が励磁され、補助継電器7は、一定
時間(限時継電器10の整定時間)後、励磁が解
かれる。従つて、冷却装置起動時は、負荷率検出
器4の信号を7bによつて開とし、電動機起動可
能な設定をされた周波数設定器6の信号を7aを
介して可変周波数変換装置5へ入力する。
The auxiliary relay 7 and the time-limited relay 10 are energized by the cooling device operation signal 9, and the auxiliary relay 7 is de-energized after a certain period of time (the settling time of the time-limited relay 10). Therefore, when starting the cooling system, the signal from the load factor detector 4 is opened via 7b, and the signal from the frequency setter 6, which is set to enable starting the motor, is input to the variable frequency converter 5 via 7a. do.

従つて、冷却制御装置起動一定時間のみ特性E
に沿つて設定周波数で運転するが、後、曲線C,
D,F,G、に沿つて運転することになる。
Therefore, the characteristic E is determined only during a certain period of time when the cooling control device is activated.
is operated at the set frequency along the curve C,
You will drive along D, F, G.

[発明の効果] 以上説明した如く、本発明によれば電動機の最
低回転周波数が停止状態→起動、高速運転→低速
運転の場合、両者に違いのあることに着目し、最
低回転周波数(停止→起動)〉最低回転周波数
(高速→低速)であることから、変圧器低負荷率
運転時(D点以下の領域)、従来の可変周波数冷
却制御装置は、停止→起動可能周波数制約による
曲線Eで運転するのに対し、回転低下限度周波数
に沿つた曲線D,F,G、で運転する。従つて曲
線Eと曲線D,F,Gに囲まれた斜線部が省電力
効果として得られる。
[Effects of the Invention] As explained above, according to the present invention, it is noted that there is a difference between the minimum rotational frequency of the motor when it is stopped → starting, and high speed operation → low speed operation, and the minimum rotational frequency (stop → Starting)〉Since this is the lowest rotational frequency (high speed → low speed), when the transformer is operating at a low load factor (area below point D), the conventional variable frequency cooling control device is able to switch from stop to start according to curve E due to the frequency constraint. In contrast, it operates on curves D, F, and G along the rotation reduction limit frequency. Therefore, the shaded area surrounded by curve E and curves D, F, and G can be obtained as a power saving effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は変圧器の負荷率−所要補機能力、補機
電力を示す曲線図、第2図は従来の可変速冷却制
御ブロツク図、第3図は本発明による可変周波数
制御による変圧器冷却制御装置の一実施例構成
図、第4図は制御回路図である。 1…変圧器、2…冷却装置、3…CT、4…負
荷率検出器、5…可変周波数電源装置、6…周波
数設定器、7,7a,7b…補助継電器、8−
P、8−N…制御回路電源、9…冷却制御装置運
転信号、10…限時継電器、11…冷却装置用電
源装置。
Figure 1 is a curve diagram showing transformer load factor-required auxiliary function power and auxiliary equipment power, Figure 2 is a block diagram of conventional variable speed cooling control, and Figure 3 is transformer cooling using variable frequency control according to the present invention. FIG. 4 is a configuration diagram of an embodiment of the control device, and FIG. 4 is a control circuit diagram. DESCRIPTION OF SYMBOLS 1...Transformer, 2...Cooling device, 3...CT, 4...Load factor detector, 5...Variable frequency power supply device, 6...Frequency setter, 7, 7a, 7b...Auxiliary relay, 8-
P, 8-N...Control circuit power supply, 9...Cooling control device operation signal, 10...Time-limiting relay, 11...Cooling device power supply device.

Claims (1)

【特許請求の範囲】[Claims] 1 電気機器に付属して設けた電気機器用冷却制
御装置の冷却能力を前記電気機器の負荷に応じて
制御するようにした電気機器用冷却制御装置にお
いて、前記電気機器の負荷量に対応した信号を出
力する変成器と、この変成器の出力信号を入力す
るように設けられ、この入力信号の大きさが予定
値未満のとき前記冷却装置の運転を維持するのに
最低限必要とする電力に相当する信号を出力し、
前記入力信号の大きさが予定値以上のときこの入
力信号にほぼ対応した信号を出力する負荷率検出
器と、前記冷却装置の起動時に最低限必要とする
電力に相当する信号を出力する周波数設定器と、
前記冷却装置の起動時に前記負荷率検出器の出力
信号を、冷却装置の運転時に前記周波数設定器の
出力信号を択一的に出力する切換手段と、この切
換手段の出力信号を入力し、この入力信号に応じ
て出力信号が制御される冷却装置用電源装置とか
ら成る電気機器用冷却制御装置。
1. In a cooling control device for electrical equipment that controls the cooling capacity of a cooling control device for electrical equipment provided attached to the electrical equipment according to the load of the electrical equipment, a signal corresponding to the load amount of the electrical equipment. A transformer is provided to output the output signal of the transformer, and the output signal of the transformer is inputted, and when the magnitude of the input signal is less than a predetermined value, the minimum power required to maintain the operation of the cooling device is Output the corresponding signal,
A load factor detector that outputs a signal approximately corresponding to the input signal when the magnitude of the input signal is greater than a predetermined value, and a frequency setting that outputs a signal corresponding to the minimum power required when starting the cooling device. The vessel and
A switching means for selectively outputting an output signal of the load factor detector when the cooling device is started and an output signal of the frequency setting device when the cooling device is operating; A cooling control device for electrical equipment comprising a cooling device power supply device whose output signal is controlled according to an input signal.
JP3016084A 1984-02-22 1984-02-22 Cooling controller for electric apparatus Granted JPS60175404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3016084A JPS60175404A (en) 1984-02-22 1984-02-22 Cooling controller for electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3016084A JPS60175404A (en) 1984-02-22 1984-02-22 Cooling controller for electric apparatus

Publications (2)

Publication Number Publication Date
JPS60175404A JPS60175404A (en) 1985-09-09
JPH0420243B2 true JPH0420243B2 (en) 1992-04-02

Family

ID=12295999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3016084A Granted JPS60175404A (en) 1984-02-22 1984-02-22 Cooling controller for electric apparatus

Country Status (1)

Country Link
JP (1) JPS60175404A (en)

Also Published As

Publication number Publication date
JPS60175404A (en) 1985-09-09

Similar Documents

Publication Publication Date Title
US4550281A (en) Synchronous motor control
JPH07154976A (en) Operating method of inverter cooling fan
JPH0420243B2 (en)
JPS58225617A (en) Transformer cooling apparatus
JPH09247990A (en) Inverter device and method for continuing operation at instantaneous break
JP2001037236A (en) Voltage control apparatus of power converting apparatus
JPH077981A (en) Damping method for electric motor by means of inverter device
JPH0348750B2 (en)
JPS636212Y2 (en)
JP2646822B2 (en) Inverter operation state switching method
JP2982436B2 (en) Inverter operation state switching method
JP3251820B2 (en) Motor control device
Dick Spotting drives for large motors
JPS5933809A (en) Transformer cooling apparatus
JPH05207778A (en) Speed controller for crane
JPH11266594A (en) Inverter controller and recording medium with program for control of fan for cooling inverter device recorded therein
JPS5913311A (en) Transformer cooling device
Link Behavior of DC link voltage source inverters with closed-loop controlled output current
JP2001251883A (en) Control unit of wound rotor induction motor
JPS61258677A (en) Controlling method for voltage type inverter
JPH03177005A (en) Cooling controller for transformer
JPH04222498A (en) Method of changing commercial operation of ac motor over to inverter operation
JPH03106797A (en) Inverter control hoist
JPH0160925B2 (en)
JPS61221594A (en) Variable speed controller of wound-rotor type induction motor