JPS5933809A - Transformer cooling apparatus - Google Patents

Transformer cooling apparatus

Info

Publication number
JPS5933809A
JPS5933809A JP14496782A JP14496782A JPS5933809A JP S5933809 A JPS5933809 A JP S5933809A JP 14496782 A JP14496782 A JP 14496782A JP 14496782 A JP14496782 A JP 14496782A JP S5933809 A JPS5933809 A JP S5933809A
Authority
JP
Japan
Prior art keywords
transformer
variable
power source
cooler
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14496782A
Other languages
Japanese (ja)
Inventor
Toshihiko Fujiwara
利彦 藤原
Moriaki Takechi
盛明 武智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14496782A priority Critical patent/JPS5933809A/en
Publication of JPS5933809A publication Critical patent/JPS5933809A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

PURPOSE:To eliminate the insertion loss of a variable-frequency inverter and contrive an improvement in efficiency, by a method wherein a cooler is driven by the variable-frequency inverter when a transformer is in a light load condition thereby to reduce the auxiliary loss and is directly driven by a commercial frequency power source when the transformer is in a load condition near its rated load. CONSTITUTION:With an electromagnetic contactor 8 opened, electromagnetic contactors 13 and a no-fuse breaker 9 are closed to connect a cooler 2 to a variable-frequency inverter 12. Any change in output frequency of the inverter 12 changes the revolution numbers of oil transfer pump motors 3 and fan motors 4, resulting in changes in oil transfer rate and air-supply rate. Consequently, the cooling capacity and auxiliary loss of the cooler 2 change. On the basis of a signal detected by a detection unit 5, an arithmetic control unit 1 obtains a required cooling capacity in accordance with the load condition of the transformer. The electromagnetic contactors 8 and 13 in combination constitute a selector circuit for selectively changing over between a commercial frequency power source 10 and the variable-frequency inverter 12. When the transformer is in a load condition near its rated load and the insertion loss of the variable- frequency exceeds the auxiliary loss reducing effect offered by the control of revolution number of the cooler, the selector circuit changes over to the commercial frequency power source to drive the transformer directly by the commercial frequency power source.

Description

【発明の詳細な説明】 この発明は、例えば送油風冷式などの強制冷却式変圧器
の冷却装置に関し、特に、冷却器用送油ポンプ及びファ
ン運転のだめの所要電力(以下、補機損失と記す)の低
減を図るための、冷却器運転制御方式の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling system for a forced cooling type transformer, such as an oil supply air-cooled type, and particularly relates to a cooling system for a forced cooling type transformer such as an oil supply air-cooled type. This invention relates to an improvement in a cooler operation control method to reduce the

第1図は従来の送油風冷式変圧器の冷却装置を中心とし
た構成図であり、(1)は変圧器本体、(2)は冷却器
本体、(3)は油を循環させる送油ポンプ及びモータ(
以下送油ポンプモータと記す)、(4)は送風用ファン
とモータ(以下、ファンモータと記す)(5)は変圧器
の運転状態を検出する検出部、(7)は検出部(5)で
検出した変圧器の運転状態に応じて送油ポンプモータ(
3)やファンモータ(4)の電源回路を電磁接触器(8
)により開閉させる制御部、(9)は冷却装置全体の電
源を開閉するノーフユーズ遮断器、(6)は制御部(7
)、電磁接融器(8)、ノー7ユーズ遮断器(9)など
を収納する冷却器制御盤、α0け商用周波電源である。
Figure 1 is a configuration diagram centered on the cooling system of a conventional oil-feeding air-cooled transformer. Oil pump and motor (
(hereinafter referred to as oil pump motor), (4) is a ventilation fan and motor (hereinafter referred to as fan motor), (5) is a detection unit that detects the operating state of the transformer, and (7) is a detection unit (5). The oil pump motor (
3) and the fan motor (4) power circuit with an electromagnetic contactor (8).
), (9) is a no-use circuit breaker that opens and closes the power supply for the entire cooling system, and (6) is a control unit (7).
), an electromagnetic welder (8), a cooler control panel that houses the No. 7 use circuit breaker (9), etc., and a commercial frequency power source.

尚、送油ポンプモータ(3)及びファンモータ(4)は
誘導電動機であり、又、検出部(5)の検出信号として
は、一般に変圧器負荷電流及び温度、又は何れか一方が
使用されている。
The oil pump motor (3) and fan motor (4) are induction motors, and the detection signal of the detection unit (5) is generally the transformer load current and/or temperature. There is.

第2図は第1図の冷却装置の主要部を示すブロック図で
あり、4台の冷却器を接続した場合を示している。尚第
1図、第2図において、各機器や装置間の接続縁のうち
実線は電力線、破線は信号線、一点鎖線は電磁接触器へ
の制御線を示し、以下の図においても同様とする。
FIG. 2 is a block diagram showing the main parts of the cooling device shown in FIG. 1, and shows a case where four coolers are connected. In Figures 1 and 2, among the connection edges between devices and devices, solid lines indicate power lines, dashed lines indicate signal lines, and dash-dotted lines indicate control lines to electromagnetic contactors, and the same applies to the following figures. .

従来の送油風冷式変圧器は上記のように構成され、冷却
装置は、定格負荷状態において変圧器の温度が規定の温
度上昇限度以下となるよう選定されている。従つ゛て、
変圧器の負荷か定格負荷より低減した軽負荷状態では、
変圧器の発生損失は定格負荷状態より低減し、一部の冷
却器を停止しても変圧器は規定の温度上昇限度以下で運
転することが可能であり、補機損失を節減することがで
きる。このため、検出部(5)で検出した変圧器の運転
状態に応じて、冷却器の運転台数を制御することが行わ
れている。
A conventional oil-feeding, air-cooled transformer is constructed as described above, and the cooling device is selected so that the temperature of the transformer is below a specified temperature rise limit under rated load conditions. Follow me,
Under light load conditions, where the load on the transformer is lower than the rated load,
The loss generated by the transformer is reduced compared to the rated load state, and even if some coolers are stopped, the transformer can operate below the specified temperature rise limit, reducing auxiliary equipment loss. . For this reason, the number of operating coolers is controlled according to the operating state of the transformer detected by the detection unit (5).

第3図及び第4図は従来の冷却器運転制御方式の例を示
したものであり、第3図の方式では検出部(5)で検出
した負荷電流が、予め設定した電流区分の何れにあるか
を制御部(7)で判定し、該当する区分に対応して所定
の冷却器(2)の電磁接触器(8)を閉じて冷却器の運
転台数制御を行う。また第4図の方式では、検出部(5
)で変圧器温度を検出し、同様の運転制御を行う。この
場合の冷却装置全体の補機損失は、冷却器の運転台数に
比例し、定格運転時に比べて補機損失を低減することが
できる。
Figures 3 and 4 show examples of conventional cooler operation control methods. In the method shown in Figure 3, the load current detected by the detection unit (5) falls into any of the preset current categories. The control unit (7) determines whether there is one, and closes the electromagnetic contactor (8) of a predetermined cooler (2) corresponding to the corresponding category to control the number of operating coolers. Furthermore, in the method shown in Fig. 4, the detection section (5
) to detect the transformer temperature and perform similar operation control. In this case, the auxiliary equipment loss of the entire cooling system is proportional to the number of operating coolers, and the auxiliary equipment loss can be reduced compared to the rated operation.

しかるに、近年、省エネルギー化の観点から、変圧器に
ついても更に補機損失の低減が要求されている。
However, in recent years, from the viewpoint of energy conservation, there has been a demand for further reduction of auxiliary loss in transformers.

この発明は変圧器用冷却器の運転制御方式として前述の
制御方式に比べて更に補機損失を低減し、且つ運転効率
を上げることができる冷却装置を提供することを目的と
するものである。
An object of the present invention is to provide a cooling device that can further reduce auxiliary equipment loss and increase operating efficiency as compared to the above-mentioned control methods as an operation control method for a transformer cooler.

第5図はこの発明の一実施例の冷却装置の主要部分を示
すブロック図であり、4台(又は4群)の冷却器を接続
した場合を示している。第5図において(2)〜(5)
 、(8)〜00は第2図と同一であり、亜は商用周波
電源α1よりの電力を演算制御部aηの出力信号によっ
て定まる周波数の電力に変換し、送油ポンプモータ(3
)とファンモータ(4)に供給する可変電圧可変筒Ij
L敗逆変換器(以下可変周波インバータと記す)、αυ
は検出部(5)の信号にもとづいて送油ポンプモータ(
3)及びファンモータ(4)の駆動周波数を決定し、そ
の指令信号を可変周波インバータ@に出力する演算制御
部、α3tま可変周波インバータ(6)の開閉を行う電
磁接触器である。
FIG. 5 is a block diagram showing the main parts of a cooling device according to an embodiment of the present invention, and shows a case in which four (or four groups) of coolers are connected. In Figure 5, (2) to (5)
, (8) to 00 are the same as in FIG.
) and the variable voltage cylinder Ij that supplies the fan motor (4)
L-loss inverter (hereinafter referred to as variable frequency inverter), αυ
is the oil pump motor (
3) and an arithmetic control unit that determines the drive frequency of the fan motor (4) and outputs the command signal to the variable frequency inverter @, and an electromagnetic contactor that opens and closes the variable frequency inverter (6) up to α3t.

上記のように構成された冷却装置において、電磁接触@
(8)を開放し、電磁接触器t)I、ノーフユーズ遮断
器(9)を閉じて冷却器(2)を可変周波インパークに
接続し、可変周波インバータ(2)の出力周波数を変化
すれば、送油ポンプモータ(3)及びファンモータ(4
)の回転数が変化し、送油量及び送風量が変化するので
、冷却器(2)の冷却能力と補機損失が変化する。第6
図及び第7図は、送油ポンプモータ(3)及び7アンモ
ータ(4)の駆動電源周i数と冷却器の冷却能力及び補
機損失の関係の一例を示すものであり、送油ポンプとフ
ァンの軸動力が回転数のほぼ8乗に比例して変化するの
に対し、冷却能力の変化は一般に補機損失の変化に比べ
て緩やかであるので、冷却装置全体の冷却能力の変化を
送油ポンプモータ(3)及び7アンモータ(4)の回E
&変化によって行うと、従来の如く冷却器の運転台数の
変化によって行う場合に比べて同一冷却能力でも補機損
失が低下する。従って検出部(5)で検出したM″8を
もとに、演算制御部αηにおいて変圧器の負荷状態に応
じた所要冷却能力を求め、これに対応する送油ポンプモ
ータ(3)及びファンモータ(4)の回転数が得られる
よう、可変周波インバータ0のの出力周波数を制御すれ
ば、従来の冷却装置に比べて補+1&損失を更に低減で
きる。
In the cooling device configured as above, electromagnetic contact @
(8), close the electromagnetic contactor t)I and the no-use circuit breaker (9), connect the cooler (2) to the variable frequency impark, and change the output frequency of the variable frequency inverter (2). , oil pump motor (3) and fan motor (4)
) changes, and the amount of oil and air blown changes, so the cooling capacity of the cooler (2) and the auxiliary equipment loss change. 6th
The figure and Fig. 7 show an example of the relationship between the driving power frequency i of the oil pump motor (3) and the 7-arm motor (4), the cooling capacity of the cooler, and the auxiliary equipment loss. While the shaft power of the fan changes in proportion to the 8th power of the rotation speed, changes in cooling capacity are generally slower than changes in auxiliary equipment loss, so changes in the cooling capacity of the entire cooling system are Oil pump motor (3) and 7 motor (4) E
If this is done by changing the cooling capacity, the auxiliary equipment loss will be lower even with the same cooling capacity, compared to the conventional case of changing the number of operating coolers. Therefore, based on M″8 detected by the detection unit (5), the required cooling capacity according to the load condition of the transformer is determined in the arithmetic and control unit αη, and the corresponding oil pump motor (3) and fan motor are If the output frequency of the variable frequency inverter 0 is controlled so as to obtain the rotation speed (4), the compensation loss can be further reduced compared to the conventional cooling device.

尚、第5図において電磁接触器(8)及び03は、冷却
器(2)の駆動電源を、商用周波電源00又は可変周波
インバータαつの何れかに選択切換えるだめの切換回路
であり、定格周波数付近での効率改善を図るものである
。即ち、定格周波数付近で、可変周波インバータの挿入
損失が、冷却器の回転数制御による補機損失低減効果を
上廻る範囲では、商用電源に切換え、商用電源で直接駆
動する方が有利であり、また可変周波インバータの容量
も低減できる。更に、可変周波インバータ@の故障発生
時にも商用電源に切換え冷却器の運転継続が可能となる
In addition, in FIG. 5, the electromagnetic contactors (8) and 03 are switching circuits for selectively switching the driving power source of the cooler (2) to either the commercial frequency power source 00 or the variable frequency inverter α, and the rated frequency The aim is to improve efficiency in the vicinity. In other words, in the vicinity of the rated frequency, within the range where the insertion loss of the variable frequency inverter exceeds the auxiliary equipment loss reduction effect by controlling the rotation speed of the cooler, it is advantageous to switch to the commercial power source and drive directly with the commercial power source. Furthermore, the capacity of the variable frequency inverter can also be reduced. Furthermore, even when a failure occurs in the variable frequency inverter @, it is possible to switch to commercial power and continue operating the cooler.

しかるに、可変周波インバータ(6)から商用電源0υ
へ切換えを行う場合、可変周波インバータ(2)の出力
周波数が商用周波と異なる場合や、周波数が一致しても
位相が異なる場合には、送油ポンプモータ(3)やファ
ンモータ(4)に過大な電流が流れ、送油ポンプモータ
やファンモータ及び可変周波インバータなどに損傷を与
える虞れがある。従って、冷却器の電源を可変周波イン
バータ(6)から商用電源0υへ切換える場合や、逆に
商用電源0υから可変周波インバータ@へ切換える場合
には、送油ポンプモータ(3)及び7アンモータ(4)
を一旦停止した後、再始動することが必要である。
However, the commercial power supply 0υ from the variable frequency inverter (6)
When switching to the oil pump motor (3) or fan motor (4), if the output frequency of the variable frequency inverter (2) differs from the commercial frequency, or if the frequencies match but the phases differ, Excessive current may flow and damage the oil pump motor, fan motor, variable frequency inverter, etc. Therefore, when switching the power supply of the cooler from the variable frequency inverter (6) to the commercial power supply 0υ, or conversely from the commercial power supply 0υ to the variable frequency inverter @, the oil pump motor (3) and the )
It is necessary to stop it once and then restart it.

第8図はこの発明の他の実施例を示す冷却装置ブロック
図で、冷却器の電源切換えのために、送油ポンプモータ
を一旦停止すると、変圧器内部の巻線や鉄心の冷却油流
が遮断され、巻線や鉄心の過熱により絶縁物が劣化する
虞れがある場合に効果的である。すなわちこの実施例は
変圧器内部の冷却油流を完全に停止することなく冷却器
の電源切換えを可能とするものである。
FIG. 8 is a block diagram of a cooling system showing another embodiment of the present invention. When the oil pump motor is temporarily stopped in order to switch the power supply of the cooler, the cooling oil flow in the windings and core of the transformer is stopped. This is effective when the insulation is likely to deteriorate due to overheating of the windings or core. That is, this embodiment makes it possible to switch the power supply of the cooler without completely stopping the flow of cooling oil inside the transformer.

第8図は冷却器及び可変周波インバータを各々2群で構
成した場合を示している。第8図において(3)〜(5
)及び(9)〜0υは第5図と同一のものであり、(2
a)、(2b)は1台又は複数の冷却器で構成された冷
却器群、(12a)及び(12b)は可変周波インバー
タ、(8a)、(8b)、(18a)及び(18b)は
電磁接触器である。
FIG. 8 shows a case where the cooler and the variable frequency inverter are each configured in two groups. In Figure 8, (3) to (5)
) and (9) ~ 0υ are the same as in Figure 5, and (2
a) and (2b) are a cooler group composed of one or more coolers, (12a) and (12b) are variable frequency inverters, and (8a), (8b), (18a) and (18b) are It is an electromagnetic contactor.

上記のように構成された冷却装置において、ノー7ユー
ズ遮断器(9)、電磁接触器(18a)、(18b)を
閉じ、電磁接触器(8a)、(8b)を開いて、冷却器
(2)を可変周波イ、ンパータ(x2a)、(t2b)
で駆動している状態から、商用周波電源00で直接駆動
するよう回路の切換えを行う場合、2群の可変周波イン
バータの一方、例えば可変周波インバータ(12a)に
接続された電磁接触器(18a)を開路して、冷却器n
 (2a)の送油ポンプモータ(3)及びファンモータ
(4)が停止したのち、電磁接触器(8a)を閉じて冷
却器群(2a)を商用周波電源で始動し、しかる後、同
様の手順で冷却器群(2b)の電源を可変周波インバー
タ(12b)から商用周波電源OQに切換えを行えば、
冷却器群(2a)及び(2b)は同時には停止せず、従
って変圧器本体内部の冷却油流喪失による温度上昇を防
止し、変圧器運転の信頼性を高めることができる。
In the cooling device configured as described above, the No. 7 use circuit breaker (9), the electromagnetic contactors (18a), (18b) are closed, the electromagnetic contactors (8a), (8b) are opened, and the cooler ( 2) as a variable frequency converter (x2a), (t2b)
When switching the circuit from a state where the circuit is driven by the commercial frequency power supply 00 to direct drive by the commercial frequency power supply 00, the electromagnetic contactor (18a) connected to one of the two groups of variable frequency inverters, for example, the variable frequency inverter (12a). Open circuit and cooler n
After the oil pump motor (3) and fan motor (4) in (2a) have stopped, the electromagnetic contactor (8a) is closed and the cooler group (2a) is started with the commercial frequency power supply, and then the same If you switch the power supply of the cooler group (2b) from the variable frequency inverter (12b) to the commercial frequency power supply OQ according to the procedure,
The cooler groups (2a) and (2b) do not stop at the same time, thus preventing a temperature rise due to loss of cooling oil flow inside the transformer main body, and improving reliability of transformer operation.

尚上記他の実施例では、冷却器及び可変周波インバータ
を2群で構成する場合について述べたが、3群以上の任
意の群数で構成した場合にも、可変周波インバータと商
用電源の切換えを全群同時には行わないことにより、同
様の効果が期待できる。
In the above other embodiments, the case where the cooler and the variable frequency inverter are configured in two groups has been described, but even when the cooler and the variable frequency inverter are configured in any number of groups of three or more, switching between the variable frequency inverter and the commercial power source can be performed. A similar effect can be expected by not performing this in all groups at the same time.

また、上記実施例では送油風冷式変圧器について述べた
が、送油自冷式や、他の冷却媒体による冷却方式、例え
ば送油水冷式変圧器に本発明を適用しても同様な効果が
期待できる。
Furthermore, although the above embodiment describes an oil-feeding air-cooled transformer, the present invention can be similarly applied to an oil-feeding self-cooling type or a cooling method using another cooling medium, such as an oil-feeding water-cooled transformer. You can expect good results.

この発明は、以上説明した通り、変圧器冷却装置として
、可変周波インバータ、変圧器の運転状態を検出する検
出部、検出部で検出した変圧器の運転状態に応じて可変
周波インバータの出力周波数を制御する制御部、所定の
条件で冷却器の駆動電源を可変周波インバータ又は商用
周波電源の何れかに切換える切換回路を備えたから、変
圧器か軽負荷の状態では冷却器を可変周波インバータで
駆動することにより、補機損失の低減を図ることができ
、また、定格負荷に近い状態では、可変周波インバータ
を切放し商用電源で直接駆動することにより可変周波イ
ンバータの挿入損失を除去し、効率向上を図ることがで
きる。
As explained above, the present invention provides a transformer cooling device that includes a variable frequency inverter, a detection section that detects the operating state of the transformer, and an output frequency of the variable frequency inverter according to the operating state of the transformer detected by the detection section. The control unit is equipped with a switching circuit that switches the drive power source of the cooler to either a variable frequency inverter or a commercial frequency power source under predetermined conditions, so the cooler is driven by the variable frequency inverter under light load conditions. In addition, when the load is close to the rated load, the variable frequency inverter is disconnected and driven directly by commercial power, which eliminates the variable frequency inverter's insertion loss and improves efficiency. be able to.

また上記変圧器冷却装置において、冷却器及び可変周波
インバータを複数群で構成し、可変周波インバータと商
用電源の切換えを複数群間時には行わないように時間差
をもたせることにより、冷却器の電源切換え時の変圧器
本体内部の冷却油流の喪失による温度上昇を防止するこ
とができる。
In addition, in the above transformer cooling system, the cooler and the variable frequency inverter are configured in multiple groups, and by providing a time difference so that switching between the variable frequency inverter and the commercial power source is not performed between multiple groups, when switching the power source of the cooler, It is possible to prevent temperature rise due to loss of cooling oil flow inside the transformer body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の送油風冷式変圧器の冷却装置を中心とし
た構成図、第2図は第1図の冷却装置のブロック図、第
3図及び第4図は従来の冷却装置の運転制御条件の例を
示す図、第5図はこの発明の一実施例を示す冷却装置の
ブロック図、第6図及び第7図は各々冷却器のW、#電
源周波数と冷却器の冷却能力及び補機損失の特性例を示
す図、第8図はこの発明の他の実施例を示す冷却装置の
ブロック図である。 図において、(1)は変圧器本体、(2)は冷却器本体
、(2a)(2b)は冷却器群、(3)は送油ポンプモ
ータ、(4)はファンモータ、(5)は検出部、(s)
 、 (8a)、(8b)は電磁接触器、(9)はノー
フユーズ遮断器、qoは商用周波電源、OI)は演算制
御部、02 、 (i2a) 、 (x2b)は可変周
波インバータ、03 、 (18a) 、 (18b)
 、は電磁接触器である。 なお図中同一符号は同−或は相当する部分を示すものと
する。 代理人 葛野信− 第3図 01112In −一))ノ王)ガメミt M qヶ1ノ&二、第4図 OTI  T2 □5星度 第5図 第6図 第8図 1
Figure 1 is a block diagram of the cooling system of a conventional oil-feeding air-cooled transformer, Figure 2 is a block diagram of the cooling system of Figure 1, and Figures 3 and 4 are of a conventional cooling system. A diagram showing an example of operation control conditions, FIG. 5 is a block diagram of a cooling device showing an embodiment of the present invention, and FIGS. 6 and 7 respectively show the W of the cooler, the power frequency, and the cooling capacity of the cooler. FIG. 8 is a block diagram of a cooling device showing another embodiment of the present invention. In the figure, (1) is the transformer body, (2) is the cooler body, (2a) and (2b) are the cooler group, (3) is the oil pump motor, (4) is the fan motor, and (5) is the Detection unit (s)
, (8a), (8b) are electromagnetic contactors, (9) is a no-use circuit breaker, qo is a commercial frequency power supply, OI) is an arithmetic control unit, 02, (i2a), (x2b) is a variable frequency inverter, 03, (18a), (18b)
, is an electromagnetic contactor. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 3 01112In - 1)) King) Gamemi t M qga 1 & 2, Figure 4 OTI T2 □ 5 star degree Figure 5 Figure 6 Figure 8 Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)変圧器の冷却媒体を誘導@動機で強制的に循環さ
せる冷却器、前記変圧器の運転状態を検出する検出部、
この検出部からの信号に応じて前記誘導電動機へ供給す
る駆動周波数を決定し、周波数指令信号を発生する演算
制御部、この演算制御からの指令信号に基づいて商用周
波電源を可変周波数の電力に変換し前記誘導雷#機を変
速駆動する可変電圧可変周波数逆変換器、および変圧器
の運転状態により前記誘導電動機の駆動電源を前記可変
電圧可変周波数逆変換器又は商用周波電源の何れかに切
換える切換回路を備えた変圧器冷却装置。
(1) A cooler that forcibly circulates the cooling medium of the transformer using an induction @motor, a detection unit that detects the operating state of the transformer,
A calculation control unit that determines the driving frequency to be supplied to the induction motor according to the signal from the detection unit and generates a frequency command signal, and converts the commercial frequency power source into variable frequency power based on the command signal from the calculation control. a variable voltage variable frequency inverter that converts the induction lightning and drives the induction lightning machine at variable speed; and a power source for driving the induction motor is switched to either the variable voltage variable frequency inverter or the commercial frequency power source depending on the operating state of the transformer. Transformer cooling system with switching circuit.
(2)変圧器の冷却媒体を誘導型uJ機で強制的に循環
させる冷却器、前記変圧器の運転状態を検出する検出部
、この検出部からの信号に応じて前記誘導電動機へ供給
する駆動周波数を決定し、周波数指令信号を発生する演
算制御部、この演算制御部からの指令信号に基づいて商
用周波電源を可変周波数の電力に変換し前記誘導電動機
を変速駆動する可変電圧可変周波数逆変換器、変圧器の
運転状台により前記誘導電動機の駆動電源をr<tr記
可変電圧可変周波数逆変換器又は商用周波電源の何れか
に切換える切換回路を備え、前記冷却器及び可変電圧可
変周波数逆変換器を少なくとも2個以上の複数ユニット
で構成し、可変電圧可変周波数逆変換器と商用周波電源
の切換えを前記ユニット間で時間差をもだせたことを特
徴とする変圧器冷却装置。
(2) A cooler that forcibly circulates the cooling medium of the transformer using an induction type UJ machine, a detection unit that detects the operating state of the transformer, and a drive that supplies the induction motor to the induction motor in response to a signal from this detection unit. an arithmetic control section that determines the frequency and generates a frequency command signal; a variable voltage variable frequency inverse conversion that converts a commercial frequency power source into variable frequency power based on the command signal from this arithmetic control section and drives the induction motor at variable speeds; a switching circuit for switching the driving power source of the induction motor to either a variable voltage variable frequency inverter or a commercial frequency power source using a driving state board of a transformer; A transformer cooling device characterized in that the converter is constituted by at least two or more units, and the variable voltage variable frequency inverter and the commercial frequency power source are switched at a time difference between the units.
JP14496782A 1982-08-19 1982-08-19 Transformer cooling apparatus Pending JPS5933809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14496782A JPS5933809A (en) 1982-08-19 1982-08-19 Transformer cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14496782A JPS5933809A (en) 1982-08-19 1982-08-19 Transformer cooling apparatus

Publications (1)

Publication Number Publication Date
JPS5933809A true JPS5933809A (en) 1984-02-23

Family

ID=15374350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14496782A Pending JPS5933809A (en) 1982-08-19 1982-08-19 Transformer cooling apparatus

Country Status (1)

Country Link
JP (1) JPS5933809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106765941A (en) * 2016-12-16 2017-05-31 山东金洲科瑞节能科技有限公司 A kind of central air-conditioning Fresh air handling units control system for monitoring real time energy consumption
EP3061105A4 (en) * 2013-10-22 2017-06-14 ABB Technology Ltd. A method to optimize operation of a transformer cooling system,the corresponding system and a method to determine the vfd capacity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3061105A4 (en) * 2013-10-22 2017-06-14 ABB Technology Ltd. A method to optimize operation of a transformer cooling system,the corresponding system and a method to determine the vfd capacity
US10763027B2 (en) 2013-10-22 2020-09-01 Abb Power Grids Switzerland Ag Method to optimize operation of a transformer cooling system, the corresponding system and a method to determine the VFD capacity
CN106765941A (en) * 2016-12-16 2017-05-31 山东金洲科瑞节能科技有限公司 A kind of central air-conditioning Fresh air handling units control system for monitoring real time energy consumption

Similar Documents

Publication Publication Date Title
JP6530174B2 (en) Refrigeration cycle device
CN107154771B (en) Fan frequency control system for converters
JP2009516154A (en) Application of switched reluctance motion control system in chiller system
JP2016086587A (en) Motor
US7640767B2 (en) Low voltage variable speed drive for application on medium/high voltage mains
JPS58225617A (en) Transformer cooling apparatus
JPS5933809A (en) Transformer cooling apparatus
CN109322691B (en) Energy consumption braking device of tunnel fan
JP7270841B2 (en) Motor drive device and air conditioner
JP2005039890A (en) Ac motor driving device
CN209738827U (en) Double-motor controller
CN112217424A (en) Cooling fan of medium-voltage frequency converter cabinet and control device and method of air conditioner
RU223872U1 (en) DEVICE FOR REGULATING THE POWER OF ROLLING STOCK FAN MOTORS
JP2559678Y2 (en) Start-up operation device for tunnel ventilation machine
JPH0360396A (en) Refrigerator unit
RU2819035C1 (en) Alternating current electric locomotive fan rpm automated control system
JP2778475B2 (en) Cooling device for power semiconductor device
CN212935801U (en) Cooling fan of medium-voltage frequency converter cabinet and adjusting device of air conditioner
JPH0430167B2 (en)
RU2021108767A (en) ARCHITECTURE OF A FAILURE POWER SUPPLY SYSTEM FOR AIRCRAFT ELECTRIC PROPULSIONS
JPS5933808A (en) Transformer cooling apparatus
JPS5913311A (en) Transformer cooling device
JPS62245609A (en) Cooling apparatus for transformer
JPS58212342A (en) Cooler for synchronous rotary electric machine
JPS62261107A (en) Transformer cooling device