JPS62261107A - Transformer cooling device - Google Patents

Transformer cooling device

Info

Publication number
JPS62261107A
JPS62261107A JP61106052A JP10605286A JPS62261107A JP S62261107 A JPS62261107 A JP S62261107A JP 61106052 A JP61106052 A JP 61106052A JP 10605286 A JP10605286 A JP 10605286A JP S62261107 A JPS62261107 A JP S62261107A
Authority
JP
Japan
Prior art keywords
accessories
transformer
revolutions
trouble
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61106052A
Other languages
Japanese (ja)
Inventor
Hideo Shinohara
秀雄 篠原
Mutsuo Isozumi
五十棲 睦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61106052A priority Critical patent/JPS62261107A/en
Publication of JPS62261107A publication Critical patent/JPS62261107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To drive the remaining non-trouble accessories at the number of revolution corresponding to a load current, and to contrive to economize in electric power by a method wherein the number of revolution of the accessories is computed from the detected number of nontrouble accessories and the load current, and an inverter is controlled to obtain said number of revolution. CONSTITUTION:When a part of accessories 3 and 4 are in trouble, a control part 6 detects the trouble by close-circuiting an auxiliary contact point 11c, and an inverter 7 is controlled in such a manner that the number of revolutions of the accessories is set at the value in coincidence with the curved line D indicating the number of accessories in operation. When all the accessories are normal and they are driven at the number of revolutions of the point P on the curved line C indicating the number of accessories in normal operation and also when a part of the accessories is in trouble, its operation is suspended, and the number of accessories in operation is reduced, the load factor on the curved line D moves to the point Q, and the number of revolutions of the accessories is increased. When the load factor of the transformer is changed, the number of revolutions of the accessories changes to the number of revolutions at a point on the curved line D corresponding to the load factor appropriate to the above-mentioned change. As a result, when a part of the accessories is in trouble, the number of revolutions of the non-trouble accessories is increased so that the number of revolutions of the accessories in trouble will be compensated, and the required cooling functioning can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は変圧器冷却装置に関し、更に詳述すれば強制冷
却型変圧器の補機である送油ポンプ及び冷却ファンの駆
動用誘導電動機の回転数を変圧器の負荷電流に応じて変
化させるようにしている変圧器冷却装置に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a transformer cooling device, and more specifically, to an induction motor for driving an oil pump and a cooling fan, which are auxiliary equipment of a forced cooling type transformer. The present invention relates to a transformer cooling device that changes the rotation speed according to the load current of the transformer.

〔従来技術〕[Prior art]

第3図は従来の送油風冷式変圧器における冷却装置の概
略構造を示しており、第4図は第3図の冷却装置の制御
回路を示すブロック図である。図において、lは図示し
ない鉄心、コイル及び冷却媒体である絶縁油等からなる
変圧器であり、冷却器本体2a、送油ポンプ3及び冷却
ファン4からなる冷却器2を4群並設しである。
FIG. 3 shows a schematic structure of a cooling device in a conventional oil-feeding air-cooled transformer, and FIG. 4 is a block diagram showing a control circuit of the cooling device in FIG. 3. In the figure, l is a transformer consisting of an iron core (not shown), a coil, and insulating oil as a cooling medium, and four groups of coolers 2 each consisting of a cooler body 2a, an oil pump 3, and a cooling fan 4 are arranged in parallel. be.

変圧器1内の絶縁油は、冷却器本体2aと変圧器1内と
の間で送油ポンプ3により環流させられ、冷却ファン4
は冷却器本体2aに送風して、冷却器本体2a内を通る
絶縁油を冷却することによって変圧器1が冷却されてい
る。
The insulating oil in the transformer 1 is circulated between the cooler main body 2a and the inside of the transformer 1 by an oil pump 3, and is circulated by a cooling fan 4.
The transformer 1 is cooled by blowing air into the cooler body 2a and cooling the insulating oil passing through the cooler body 2a.

これらの送油ポンプ3及び冷却ファン4は、夫々誘導電
動機(以下モータという)によって!IA!IJされて
いる。変圧器lの負荷電流はブッシング変流器等の電流
検出部5で検出しており、電流検出部5が検出した負荷
電流に応じて制御部6が送油ポンプ3及び冷却ファン4
のモータの回転数を変更するように可変電圧可変周波数
インバータ7 (以下インバータという)を制御してお
り、その制御は負荷電流に対応する送油ポンプ3及び冷
却ファン4の回転数、あるいはこの回転数に対応するイ
ンバータの出力周波数を予め記憶させた数値に基づいて
行っている。また送油ポンプ3.冷却ファン4が故障し
て停止した場合には、それに接続されている故障検出部
10が故障を検出して故障遮断器11の引き外しコイル
llaを励磁する。これにより故障遮断器の電源遮断接
点11bが開路し、補助接点11cが閉路して故障した
送油ポンプ3.冷却ファン4のみを電源8から切離す、
また制御部6は、前記補助接点11cの閉路で故障を検
出して、電源開閉器9a、 9bを開路し、その後電源
開閉器9Cを閉路する制御を行う。この制御によりイン
バータ7は電源8から切離されて、故障していない残り
の送油ポンプ3及び冷却ファン4が商用周波数の電源8
により一定した回転数で駆動される。
These oil pump 3 and cooling fan 4 are each driven by an induction motor (hereinafter referred to as a motor)! IA! IJ has been done. The load current of the transformer l is detected by a current detection unit 5 such as a bushing current transformer, and the control unit 6 controls the oil pump 3 and the cooling fan 4 according to the load current detected by the current detection unit 5.
A variable voltage variable frequency inverter 7 (hereinafter referred to as inverter) is controlled to change the rotation speed of the motor of the oil feed pump 3 and the cooling fan 4 corresponding to the load current, or This is done based on a pre-stored value of the output frequency of the inverter corresponding to the number. Also oil pump 3. When the cooling fan 4 fails and stops, a failure detection unit 10 connected thereto detects the failure and excites the tripping coil lla of the failure circuit breaker 11. As a result, the power cutoff contact 11b of the faulty circuit breaker opens, and the auxiliary contact 11c closes, causing the failed oil pump 3. Disconnect only the cooling fan 4 from the power supply 8,
The control unit 6 also performs control to detect a failure in the closing of the auxiliary contact 11c, open the power switches 9a and 9b, and then close the power switch 9C. Through this control, the inverter 7 is disconnected from the power supply 8, and the remaining oil pumps 3 and cooling fans 4 that are not broken are connected to the commercial frequency power supply 8.
It is driven at a constant rotation speed.

なお、電源開閉器9a、9cと電源8との間には過電流
遮断器12が介装されている。
Note that an overcurrent breaker 12 is interposed between the power switches 9a, 9c and the power source 8.

ところで、変圧器1内の電力損失は負荷電流の略2乗に
比1例するtr1損と、鉄心に生じる鉄tQとが主であ
って、第5図に示す如(横軸を変圧器の負荷率(定格電
流に対する負荷電流の比率)とし、縦軸を変圧器の電力
損失とした座標上で鉄損値に連なり2乗特性で示される
曲線Aの如くなる。
By the way, the power loss in the transformer 1 is mainly composed of the tr1 loss, which is proportional to the square of the load current, and the iron tQ generated in the iron core, as shown in Fig. 5 (the horizontal axis is the transformer's power loss). The load factor (ratio of the load current to the rated current) is taken as a coordinate, and the vertical axis is the power loss of the transformer, and the curve A is connected to the iron loss value and is shown as a square characteristic.

一方、冷却器2の冷却能力は絶縁油の流量の略0.8〜
1.0乗に比例し、この絶縁油の流量は送油ポンプ3の
モータの回転数に略比例して第6図に実線Bで示した冷
却特性となる。従ってこれらの特性から、変圧器1の負
荷電流に対する適正な冷却作用を得る補機の回転数は、
縦軸を補機の回転数に、横軸を変圧器の負荷率にした座
標で示した第7図の2乗特性で示される曲線Cの如く送
風を加味して設定される。
On the other hand, the cooling capacity of the cooler 2 is approximately 0.8 to the flow rate of the insulating oil.
The flow rate of this insulating oil is proportional to the 1.0th power, and the flow rate of the insulating oil is approximately proportional to the rotational speed of the motor of the oil feed pump 3, resulting in a cooling characteristic shown by a solid line B in FIG. Therefore, based on these characteristics, the rotation speed of the auxiliary equipment that achieves an appropriate cooling effect for the load current of the transformer 1 is:
It is set in consideration of air blowing, as shown by curve C shown by the square characteristic in FIG. 7, which is shown in coordinates where the vertical axis is the rotational speed of the auxiliary equipment and the horizontal axis is the load factor of the transformer.

それ故、前述したように制御部6には、この第7図の実
線Cに示す如き特性を予め記憶させており、補機はイン
バータで変換された所要周波数の電圧により駆動されて
いる。
Therefore, as described above, the control section 6 is stored in advance with the characteristics shown by the solid line C in FIG. 7, and the auxiliary equipment is driven by the voltage of the desired frequency converted by the inverter.

また、補機に供給する電圧■は補機を駆動する周波数F
に対しV/F−一定もしくはV/F” =一定となるよ
うにインバータ7内にて変換されている。
In addition, the voltage ■ supplied to the auxiliary equipment is the frequency F that drives the auxiliary equipment.
It is converted in the inverter 7 so that V/F is constant or V/F'' is constant.

このようにして補機の回転数を制御することによって、
補機への供給電力は、周波数の略2〜3乗となり、大幅
に電力を節減した運転が行われている。
By controlling the rotation speed of the auxiliary equipment in this way,
The power supplied to the auxiliary equipment is approximately the second to third power of the frequency, and operation is performed with significantly reduced power consumption.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した従来の変圧器冷却装置では、補機が故障した場
合にはそれを電源から切離して、故障していない補機の
みを商用周波数の電圧によって駆動する。そのため故障
している間は、負荷電流に関与しない一定した回転数で
補機が運転されるので、その消費電力に無駄があるとい
う問題がある。
In the conventional transformer cooling device described above, when an auxiliary machine fails, it is disconnected from the power supply and only the auxiliary machines that are not in trouble are driven by commercial frequency voltage. Therefore, while the failure occurs, the auxiliary equipment is operated at a constant rotational speed that is not related to the load current, so there is a problem that the power consumption is wasted.

本発明は補機の故障時においても、故障していない残り
の補機を負荷電流に相応した回転数で駆動し得て、常に
補機を運転するための電力の節減を図り得る変圧器冷却
装置を提供することを目的とする。
The present invention provides transformer cooling that allows the remaining non-faulty auxiliary equipment to be driven at a rotation speed commensurate with the load current even when an auxiliary equipment fails, thereby saving power for constantly operating the auxiliary equipment. The purpose is to provide equipment.

c問題点を解決するための手段〕 本発明の変圧器冷却装置は、負荷電流の電流検出部と、
補機の故障を検出する故障検出部と、故障検出部により
検出される非故障?iR機の台数と電流検出部により検
出した負荷電流とから補機の回転数を求めて、その回転
数を得るようにインバータを制御する制御部とを備える
ものである。
Means for Solving Problem c] The transformer cooling device of the present invention includes a current detection section for load current;
A failure detection unit that detects failures in auxiliary equipment and non-faults detected by the failure detection unit? The controller includes a control unit that determines the rotation speed of the auxiliary machine from the number of iR machines and the load current detected by the current detection unit, and controls the inverter to obtain the rotation speed.

〔作用〕[Effect]

補機の回転数はインバータによって制御されて、検出さ
れた負荷電流に相応して変化し、不必要な補機運転が防
止される。運転中に補機が故障した場合は、故障してい
ない補機の台数に対応した、負荷電流と補聞の回転数と
の関係により、負荷電流に応じた回転数で補機を運転す
る。したがって一部の補機が故障しても補機を運転する
ための電力は、補機が故障していない場合と同様に不必
要な補機運転が防止され補機電力が節減される。
The rotational speed of the auxiliary machine is controlled by an inverter and varies in response to the detected load current, thereby preventing unnecessary auxiliary machine operation. If an auxiliary machine breaks down during operation, the auxiliary machine is operated at a rotation speed according to the load current, based on the relationship between the load current and the rotation speed of the supplementary machine, which corresponds to the number of auxiliary machines that are not broken. Therefore, even if some of the auxiliary machines fail, unnecessary auxiliary machine operation is prevented and the auxiliary machine power is saved in the same way as when no auxiliary machines are out of order.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面によって詳述する。 The present invention will be described in detail below with reference to drawings showing embodiments thereof.

第1図は本発明に係る変圧器冷却装置を備えた送油風冷
式変圧器の概略構造図、第2図は本発明に係る変圧器冷
却回路の構成を示すブロック図である。
FIG. 1 is a schematic structural diagram of an oil-feeding air-cooled transformer equipped with a transformer cooling device according to the present invention, and FIG. 2 is a block diagram showing the configuration of a transformer cooling circuit according to the present invention.

第1図及び第2図において、1は図示しない鉄心、コイ
ル及び冷却媒体である絶縁油等からなる変圧器であり、
この変圧器1はその側方に冷却3本体2aとモータによ
り夫々駆動される?i機、つまり送油ポンプ3及び冷却
ファン4を夫々備えている冷却器2を4群並設している
。送油ポンプ3は変圧器1内の絶縁油を、冷却器本体2
aと変圧器1内との間で環流させ、冷却ファン4は冷却
器本体2aに送風して冷却器本体2a内を通流する絶縁
油を冷却して送油と風冷によって変圧器1を冷却する。
In FIGS. 1 and 2, 1 is a transformer consisting of an iron core (not shown), a coil, insulating oil as a cooling medium, etc.
This transformer 1 is driven by a cooling 3 main body 2a and a motor on its side, respectively. Four groups of coolers 2, each equipped with an oil pump 3 and a cooling fan 4, are arranged in parallel. The oil pump 3 transfers the insulating oil in the transformer 1 to the cooler body 2.
The cooling fan 4 blows air into the cooler main body 2a to cool the insulating oil flowing through the cooler main body 2a, and cools the transformer 1 by supplying the oil and cooling the transformer 1. Cooling.

5は変圧器lの負荷電流を検出するための電流検出部で
あり、検出した負荷電流は制御部6に入力されている。
5 is a current detection unit for detecting the load current of the transformer l, and the detected load current is input to the control unit 6.

制御部6には、前記第7図の実線C及び破線りで例示す
る補機の運転台数に対応した負荷電流と補機の回転数(
又はインバータの出力周波数)との関係又は負荷電流に
対応する補機の回転数を算出する関係式を記憶する記憶
手段6aを備えている。
The control unit 6 controls the load current and the rotational speed of the auxiliary equipment (
(or the output frequency of the inverter) or a relational expression for calculating the rotation speed of the auxiliary equipment corresponding to the load current.

また、制御部6は電流検出部5が検出した負荷電流と、
補機の運転台数と、記憶手段6aの記憶内容とにしたが
って補機の回転数(又はインバータの出力周波数)を算
出し、この回転数を得るようにインバータを制御するイ
ンバータ制御手段6bを備えている。
In addition, the control unit 6 uses the load current detected by the current detection unit 5,
Inverter control means 6b calculates the number of revolutions of the auxiliary machine (or output frequency of the inverter) according to the number of operating auxiliary machines and the content stored in the storage means 6a, and controls the inverter to obtain this number of revolutions. There is.

送油ポンプ3及び冷却ファン4の各通電回路には、夫々
の通電電流によりそれらの補機の故障を検出する故ll
I検出器10を夫々設けており、故障検出器10が故障
を検出した場合には、故fIi!!!断器11の引き外
しコイルllaを励磁して電源遮断接点11bを開路し
て、故障した補機を電源8から切離すと同時に、補助接
点11cを閉路するようになっている。また各故障遮断
器11における補助接点11cの開閉動作信号は夫々制
御部6に入力されている。
Each of the energizing circuits of the oil pump 3 and the cooling fan 4 has a circuit that detects failures of these auxiliary devices by the respective energizing currents.
I detectors 10 are respectively provided, and when the failure detectors 10 detect a failure, the failure fIi! ! ! The tripping coil lla of the disconnector 11 is excited to open the power cutoff contact 11b to disconnect the failed auxiliary machine from the power supply 8, and at the same time close the auxiliary contact 11c. Further, the opening/closing operation signals of the auxiliary contacts 11c in each fault circuit breaker 11 are input to the control section 6, respectively.

即ち、制御部6は複数の故障遮断器11の遮断動作を個
々に検出している。
That is, the control unit 6 individually detects the breaking operations of the plurality of faulty circuit breakers 11.

商用周波数の電源8は、過電流遮断器12と電源開閉器
9aとインバータ7と電源開閉59bとを介して各故障
遮断器11の電源遮断接点11bに夫々接続されている
。過電流遮断ri12と電源開閉器9aとの接続点と、
電源開閉器9bと電源遮断接点11cとの接続点との間
には電源開閉器9Cが接続されている。
The commercial frequency power source 8 is connected to the power cutoff contact 11b of each fault circuit breaker 11 via the overcurrent circuit breaker 12, the power switch 9a, the inverter 7, and the power switch 59b. A connection point between the overcurrent cutoff ri12 and the power switch 9a,
A power switch 9C is connected between the connection point between the power switch 9b and the power cutoff contact 11c.

このように構成された変圧器冷却装置は、制御部6が電
源開閉器9a、9bを閉路し、電源開閉器9Cを開路す
る制御を行うとともに、制御部6のインパーク制御手段
6bによりインパーク7を制御して、補機を所要の回転
数で駆動して、変圧器1を送油及び風冷により冷却する
In the transformer cooling device configured in this way, the control unit 6 controls the power switches 9a and 9b to close and the power switch 9C to open, and the impark control means 6b of the control unit 6 controls the impark. 7, the auxiliary equipment is driven at a required rotation speed, and the transformer 1 is cooled by oil supply and air cooling.

そして、補機が全て正常である場合は、第7図に実線で
示す曲線Cの如く、補機の全運転台数に対応した、負荷
電流と補機の回転数との関係にしたがって、変圧31を
その負荷に相応する冷却作用により冷却する。
When all the auxiliary machines are normal, the transformer 31 is cooled by a cooling effect corresponding to the load.

ところで、一部の補機が故障すると制御部6は補助接点
11cの閉路により故障を検知する。今残りの補機台数
について記憶手段6aが記憶している負荷率と補機の回
転数との関係が第7図に破線で示す曲線りであり、負荷
率がPN (当該台数での最大冷却能力に相当する負荷
率)で示す値以下であれば、制御部6は補機の回転数を
、この曲線りに従う値とすべくインバータ7を制御する
。これにより補機が故障する前と同様の冷却能力を維持
する。
By the way, when some of the auxiliary machines fail, the control unit 6 detects the failure by closing the auxiliary contact 11c. The relationship between the load factor and the rotational speed of the auxiliary devices currently stored in the storage means 6a for the number of remaining auxiliary devices is the curve shown by the broken line in FIG. If the rotational speed of the auxiliary machine is below the value indicated by the load factor (corresponding to the capacity), the control unit 6 controls the inverter 7 to set the rotational speed of the auxiliary machine to a value that follows this curve. This maintains the same cooling capacity as before the auxiliary equipment failed.

いま、全補機が正常であり、曲線C上の点Pの回転数で
運転されている場合に、一部の?#IJIlが故障して
運転を停止し運転台数が減じたときには、曲線り上の同
負荷率の点Qに移動して補機の回転数が高められる。そ
して変圧器の負荷率が変化した場合は、それに応じた負
荷率に相応して曲線り上の点の回転数に変化する。この
ようにして補機の一部が故障すると、故障した分の回転
数を補うように故障していない補機の回転数を高めて同
じ冷却作用を得る。また補機の故障に関係なくその回転
数は負荷率に応じて連続的に変化する。
Now, if all the auxiliary machines are normal and are being operated at the rotation speed of point P on curve C, some of them? When #IJIl fails and the operation is stopped and the number of units in operation is reduced, the number of rotations of the auxiliary equipment is increased by moving to point Q on the curve with the same load factor. When the load factor of the transformer changes, the rotation speed at a point on the curve changes in accordance with the corresponding load factor. In this manner, when a part of the auxiliary equipment breaks down, the number of rotations of the non-faulty auxiliary equipment is increased to compensate for the number of revolutions corresponding to the failure, thereby obtaining the same cooling effect. In addition, the rotational speed of the auxiliary equipment changes continuously according to the load factor, regardless of the failure of the auxiliary equipment.

したがって、一部の補機が故障した場合にも、故障して
いない非故障の補機の回転数を高めて、一部補機の故障
中も消費電力を抑制した運転ができる。
Therefore, even when some of the auxiliary machines are out of order, the rotational speed of the non-faulty auxiliary machines is increased, and operation can be performed with reduced power consumption even when some of the auxiliary machines are out of order.

なお、制御部6は電源開閉器9a、9bを開路し、電源
開閉器9cを閉路する制御も行うが、この場合には補機
を商用周波数の電源8で回転数を一定にして駆動するこ
とになる。
Note that the control unit 6 also performs control to open the power switches 9a and 9b and close the power switch 9c, but in this case, the auxiliary equipment is driven by the commercial frequency power source 8 at a constant rotation speed. become.

〔効果〕〔effect〕

以上詳述した如(本発明によれば、補機が故障してその
運転台数が減じても、故障していない補機の運転台数に
対応した、負荷電流に対する補機の回転数に変更される
。また、冷却器の故障の有無に関係なく補機は常に変圧
器の負荷電流に相応する回転数で運転されて、補機を運
転するための供給電力を常に節減できる優れた効果を奏
する。
As described in detail above (according to the present invention, even if an auxiliary machine fails and the number of auxiliary machines in operation decreases, the rotation speed of the auxiliary machine is changed to the load current corresponding to the number of operating auxiliary machines that are not in trouble). In addition, the auxiliary equipment is always operated at a rotation speed commensurate with the load current of the transformer, regardless of whether or not there is a failure in the cooler, which has the excellent effect of constantly saving the power supplied to operate the auxiliary equipment. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る変圧器冷却装置を備えた送油風冷
式変圧器の概略構造図、第2図は本発明の変圧器冷却装
置の電気回路を示すブロック図、第3図は従来の送油風
冷式変圧器の概略構造図、第4図は従来の変圧器冷却装
置の電気回路を示すプロ・ツク図、第5図は変圧器の負
荷率と電力損失との関係を示すグラフ、第6図は送油ポ
ンプの回転数と冷却能力との関係を示すグラフ、第7図
は変圧器の負荷率と?’ili機の回転数との関係を示
すグラフである。 1・・・変圧器 2・・・冷却器 3・・・送油ポンプ
(Jili機) 4・・・冷却ファン(補機) 5・・
・電流検出部6・・・制御部 7・・・可変電圧可変周
波数インバータ10・・・故障検出部 11・・・故障
遮断器なお、図中、同一符号は同一、又は相当部分を示
す。 侍 許 出願人  三菱電機株式会社 代理人 弁理士  大 岩 増 雄 外2名l・−変圧
器 ?・・冷#11! 第 1 図 第2図
FIG. 1 is a schematic structural diagram of an oil-feed air-cooled transformer equipped with a transformer cooling device according to the present invention, FIG. 2 is a block diagram showing an electric circuit of the transformer cooling device of the present invention, and FIG. A schematic structural diagram of a conventional oil-feeding air-cooled transformer, Figure 4 is a schematic diagram showing the electric circuit of a conventional transformer cooling system, and Figure 5 shows the relationship between the transformer load factor and power loss. Figure 6 is a graph showing the relationship between oil pump rotation speed and cooling capacity, and Figure 7 is a graph showing the relationship between the transformer load factor and ? It is a graph showing the relationship with the rotation speed of the 'ili machine. 1...Transformer 2...Cooler 3...Oil pump (Jili machine) 4...Cooling fan (auxiliary equipment) 5...
- Current detection section 6... Control section 7... Variable voltage variable frequency inverter 10... Fault detection section 11... Fault circuit breaker Note that in the drawings, the same reference numerals indicate the same or equivalent parts. Samurai Akira Applicant Mitsubishi Electric Co., Ltd. Agent Patent Attorney Masuo Oiwa and 2 others l・-Transformer? ...Cold #11! Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、誘導電動機にて駆動される複数の補機の回転数を、
変圧器の負荷に応じてインバータにより制御する変圧器
冷却装置において、 変圧器の負荷電流を検出する電流検出部と、前記補機の
故障を検出する故障検出部と、前記故障検出部の出力か
ら検出される非故障補機の台数と前記電流検出部により
検出される負荷電流とから必要な冷却能力に対応する補
機の回転数を求め、この回転数を得べくインバータを制
御する制御部とを備えることを特徴とする変圧器冷却装
置。
[Claims] 1. The number of rotations of a plurality of auxiliary machines driven by an induction motor,
In a transformer cooling device that is controlled by an inverter according to the load of the transformer, a current detection section that detects the load current of the transformer, a failure detection section that detects a failure of the auxiliary equipment, and an output of the failure detection section are provided. a control unit that determines the rotational speed of the auxiliary equipment corresponding to the required cooling capacity from the number of non-faulty auxiliary equipment detected and the load current detected by the current detection unit, and controls the inverter to obtain this rotational speed; A transformer cooling device characterized by comprising:
JP61106052A 1986-05-07 1986-05-07 Transformer cooling device Pending JPS62261107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61106052A JPS62261107A (en) 1986-05-07 1986-05-07 Transformer cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61106052A JPS62261107A (en) 1986-05-07 1986-05-07 Transformer cooling device

Publications (1)

Publication Number Publication Date
JPS62261107A true JPS62261107A (en) 1987-11-13

Family

ID=14423852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61106052A Pending JPS62261107A (en) 1986-05-07 1986-05-07 Transformer cooling device

Country Status (1)

Country Link
JP (1) JPS62261107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054057A (en) * 2017-09-13 2019-04-04 中国電力株式会社 Monitoring device and monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054057A (en) * 2017-09-13 2019-04-04 中国電力株式会社 Monitoring device and monitoring system

Similar Documents

Publication Publication Date Title
JP6530174B2 (en) Refrigeration cycle device
JP6491455B2 (en) Electric motor
JP4499413B2 (en) System and method for providing a ballast load for a turbine generator
KR20050111732A (en) Power supply circuit of a high speed electric motor
EP2889978A1 (en) Phase sequence switching device for three-phase power supply
EP0703653B1 (en) Power supply unit for vehicles
JP2012135157A (en) Motor drive system
JPS62261107A (en) Transformer cooling device
JPH07154976A (en) Operating method of inverter cooling fan
JP2005039890A (en) Ac motor driving device
JPS62245609A (en) Cooling apparatus for transformer
JPS5933809A (en) Transformer cooling apparatus
JPS644659B2 (en)
CN221328678U (en) Dual-power control cabinet for motor cooling fan
JP2715546B2 (en) Winding device for current conductor
JPH1189003A (en) Electric vehicle controller
JPS5933808A (en) Transformer cooling apparatus
JPH07224765A (en) Water feeder
JP6619249B2 (en) Compressor and operation method thereof
JPH0686595A (en) Motor-generator cooling apparatus
JP2512921B2 (en) Electric cooler operating device
JPS5913311A (en) Transformer cooling device
JPH11351147A (en) Control device for hydraulic driven generator
JPS59207610A (en) Driving apparatus of transformer cooler
JPS6011714Y2 (en) Forced air cooling device for current conductors