JPH04202018A - Production of thin lithium niobate film - Google Patents

Production of thin lithium niobate film

Info

Publication number
JPH04202018A
JPH04202018A JP2329685A JP32968590A JPH04202018A JP H04202018 A JPH04202018 A JP H04202018A JP 2329685 A JP2329685 A JP 2329685A JP 32968590 A JP32968590 A JP 32968590A JP H04202018 A JPH04202018 A JP H04202018A
Authority
JP
Japan
Prior art keywords
lithium niobate
alcohol
substrate
precursor
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2329685A
Other languages
Japanese (ja)
Inventor
Seiji Takahashi
誠治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2329685A priority Critical patent/JPH04202018A/en
Publication of JPH04202018A publication Critical patent/JPH04202018A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance crystallinity by hydrolyzing a multiple ethoxide consisting of ethoxy lithium and pentaethoxy niobium, adding polyhydric alcohol or its deriv., concentrating them, coating a substrate with the resulting precursor, calcining this precursor and repeating the coating and firing. CONSTITUTION:Ethoxy lithium is mixed with pentaethoxy niobium in 1:1 molar ratio in an N2 atmosphere and the mixture is dissolved in alcohol such as ethanol to prepare multiple ethoxide. This ethoxide is hydrolyzed by adding water, the prescribed amt. of polyhydric alcohol having a low vapor pressure and not forming an azeotrope with alcohol, e.g. ethylene glycol is added and they are concentrated to obtain the soln. of a precursor of lithium niobate. This soln. is dropped on a substrate of Al2O3, etc., dried by rotation at a constant speed, heated in a gaseous O2-steam mixed atmosphere and further heated to >=400 deg.C in dry air. These coating, drying and heating process are repeated to obtain a thin crystalline lithium niobate film subjected to C-axis orientation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はニオブ酸リチウム薄膜の製造方法に関し、特に
高純度で組成か化学量論比に制御され、低温で焼成可能
なニオブ酸リチウム薄膜の製造方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a lithium niobate thin film, and in particular to a method for producing a lithium niobate thin film with high purity, composition controlled to a stoichiometric ratio, and sinterable at low temperatures. This relates to a manufacturing method.

[従来の技術] ニオブ酸リチウムは圧電性、焦電性をもつため、その単
結晶はSAWデバイス、赤外線センサとして応用されて
いる。ニオブ酸リチウムは化学量論組成付近に固溶領域
をもら、調和融液組成は化学量論組成とは異なるため、
組成を制御した化学量論組成の均質なニオブ酸リチウム
単結晶の育成は困難であった。また、単結晶製造の際に
は、1000 ℃以上の高温か必要であるために、その
製造装置は大型なものとなっていた。
[Prior Art] Lithium niobate has piezoelectricity and pyroelectricity, so its single crystals are used as SAW devices and infrared sensors. Lithium niobate has a solid solution region near the stoichiometric composition, and the harmonic melt composition differs from the stoichiometric composition.
It has been difficult to grow a homogeneous lithium niobate single crystal with a controlled stoichiometric composition. Furthermore, since single crystal manufacturing requires high temperatures of 1000° C. or higher, the manufacturing equipment is large.

そのためニオブ酸リチウムの緻密で不純物を含まない結
晶性の高い焼結体の薄膜を作成し、焼結の際に分極する
等の方法によって単結晶の代わりにSAWデバイスや赤
外線センサとして用いる試みがなされてきた。その方法
の一つとして、粉粒体状のニオブ酸リチウムを均一に分
散させた溶液を基板上に塗布し焼結する方法がおるか、
緻密でクラックやピンホールのない膜を作成することは
困難であった。また、焼結を行うには1000°C以上
の高温か必要なため、基板の材料も限られ、製造装置も
大型なものとなってしまっていた。
Therefore, attempts have been made to create thin films of highly crystalline sintered bodies of lithium niobate that are dense and free of impurities, and to use them as SAW devices and infrared sensors instead of single crystals by polarizing them during sintering. It's here. One method is to apply a solution in which powdered lithium niobate is uniformly dispersed onto the substrate and sinter it.
It has been difficult to create a dense film without cracks or pinholes. Furthermore, since sintering requires a high temperature of 1000° C. or higher, the materials for the substrate are limited and the manufacturing equipment becomes large.

この他、ニオブ酸リチウム膜の製造方法として、スパッ
タリング法、真空蒸着法、気相反応法等が検討されてい
るか、これらの方法においては緻密なものは得難く、化
学量論比の制御が極めて困難であるため優れたニオブ酸
リチウム薄膜は得られていない。
Other methods for producing lithium niobate films, such as sputtering, vacuum evaporation, and gas phase reaction methods, are being considered, but with these methods, it is difficult to obtain a dense film and it is extremely difficult to control the stoichiometric ratio. Due to the difficulty, excellent lithium niobate thin films have not been obtained.

一方、化学量論比のニオブ酸リチウム薄膜は以下の方法
で得られることがすでに知られている。
On the other hand, it is already known that a stoichiometric lithium niobate thin film can be obtained by the following method.

即ら、エトキシリチウムとペンタエトキシニオブのモル
比か1:1となるように混合して複合アルコキシドを作
成し、得られた溶液を濃縮し、該前駆体溶液に基板を浸
漬し、乾燥して400 ℃以上の温度で加熱焼成する工
程を少なくとも1回以上繰り返して、当該基板上にニオ
ブ酸リチウム薄膜を作成することができる(特願昭62
−102422号)。
That is, a composite alkoxide is prepared by mixing ethoxylithium and pentaethoxyniobium at a molar ratio of 1:1, the resulting solution is concentrated, a substrate is immersed in the precursor solution, and it is dried. A lithium niobate thin film can be created on the substrate by repeating the step of heating and baking at a temperature of 400° C. or more at least once (Patent Application No. 1983).
-102422).

[発明か解決しようとする課題] 従来の方法では前駆体溶液中に当該基板を浸漬するデイ
ツプコーティングという塗布工程を行っていたが、必要
な溶液量か多いことや基板の両面に塗布してしまうとい
う問題点があった。これに対し、スピンコーティングと
いう片面に前駆体溶液を必要量だけ滴下し、基板の回転
によって基板上に均一膜を作成する方法があり、この方
法によれば前駆体溶液の必要量か少なく、片面にのみ塗
布することかできるという利点がある。しかし、従来方
法では前駆体溶液の溶媒かアルコールであり、室温での
蒸気圧か高いため、溶液滴下直後に乾燥し、良質の薄膜
を得ることは困難であった。
[Problem to be solved by the invention] In the conventional method, a coating process called dip coating was performed in which the substrate was immersed in a precursor solution, but the amount of solution required was large and it was difficult to coat both sides of the substrate. There was a problem with it being put away. On the other hand, there is a method called spin coating in which the required amount of the precursor solution is dropped onto one side and a uniform film is created on the substrate by rotating the substrate. It has the advantage that it can be applied only to However, in the conventional method, the solvent for the precursor solution is alcohol, and the vapor pressure at room temperature is high, so the solution dries immediately after dropping, making it difficult to obtain a high-quality thin film.

本発明の目的は、上記の問題点を解決して、塗布工程を
スピンコーティングで行うことかでき、高純度で組成が
化学量論比に制御された低温で焼成できるニオブ酸リチ
ウム薄膜の製造方法を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems, and to produce a lithium niobate thin film that can be performed by spin coating in the coating process, has high purity, and can be fired at low temperatures with a composition controlled to a stoichiometric ratio. Our goal is to provide the following.

[課題を解決するための手段] 本発明は、エトキシリチウムとペンタエトキシニオブの
モル比か1:1となるようにアルコール中で混合溶解し
て複合アルコキシドを作成し、冑られた溶液またはその
加水分解溶液に、飽和蒸気圧か低く、かつ前記アルコー
ルと共沸混合物を作らない多価アルコールあるいはその
誘導体を添加して濃縮し、該前駆体溶液を基板上に塗イ
ri シて400℃以上の温度で加熱焼成する工程を少
なくとも1回以上繰り返し、該基板上にニオブ酸リチウ
ム薄膜を形成せしめることを特徴とするニオブ酸リチウ
ム薄膜の製造方法である。
[Means for Solving the Problems] The present invention involves preparing a composite alkoxide by mixing and dissolving ethoxylithium and pentaethoxyniobium in alcohol at a molar ratio of 1:1, and then preparing a composite alkoxide, which is then dissolved in a diluted solution or its hydrated solution. A polyhydric alcohol or its derivative which has a low saturated vapor pressure and does not form an azeotrope with the alcohol is added to the decomposition solution, concentrated, and the precursor solution is applied onto a substrate and heated at 400°C or higher. This method of producing a lithium niobate thin film is characterized in that the process of heating and baking at a temperature is repeated at least once or more to form a lithium niobate thin film on the substrate.

本発明の方法を詳述すると次の通りである。出発原料と
してリチウムのアルコキシドとニオブのアルコキシドを
用い、これらのモル比が1:1となるように、脱水・精
製したアルコールに混合・溶解する。アルコールは常温
で液体でおればよく、好ましくはエタノールを用いる。
The method of the present invention will be detailed as follows. Lithium alkoxide and niobium alkoxide are used as starting materials, and are mixed and dissolved in dehydrated and purified alcohol so that the molar ratio thereof is 1:1. The alcohol only needs to be liquid at room temperature, and ethanol is preferably used.

この溶液を22時間以上攪拌、還流しながら反応させる
ことによって、複合アルコキシドを生成させる。これら
の操作は、金属アルコキシドが空気中の水分で容易に加
水分解するため、乾燥した窒素雰囲気中で行う。
A composite alkoxide is produced by reacting this solution while stirring and refluxing for 22 hours or more. These operations are performed in a dry nitrogen atmosphere because metal alkoxides are easily hydrolyzed by moisture in the air.

このように調製された溶液を直接、または加水−へ  
− 分解した後、前駆体溶液として用い基板上に滴下する。
The solution prepared in this way can be directly or added to water.
- After decomposition, use it as a precursor solution and drop it onto the substrate.

加水分解を行う場合は、上記調製溶液に複合金属アルコ
キシドを加水分解するのに必要なモル数以上の水を脱炭
酸水の形で、好ましくは溶媒のアルコールにて希釈した
形で滴下する。この後、攪拌、還流を続は反応を完結さ
せ、LiNbO3の前駆体が得られる。得られたLiN
bO3の前駆体溶液に多価アルコールあるいはその誘導
体溶媒を目的濃度となる量を添加後、アルコール溶媒を
すべて蒸発濃縮して前駆体溶液を得る。
When hydrolysis is carried out, water in an amount equal to or greater than the number of moles required to hydrolyze the composite metal alkoxide is added dropwise to the prepared solution in the form of decarbonated water, preferably diluted with alcohol as a solvent. After that, stirring and refluxing are continued to complete the reaction, and a LiNbO3 precursor is obtained. Obtained LiN
After adding an amount of polyhydric alcohol or its derivative solvent to the desired concentration to the bO3 precursor solution, all the alcohol solvent is evaporated and concentrated to obtain a precursor solution.

この溶液を基板上に滴下し、一定速度で基板を回転させ
ることにより、基板表面に]−ティング膜を形成する。
This solution is dropped onto the substrate and the substrate is rotated at a constant speed to form a coating film on the surface of the substrate.

数分間乾燥させた後、酸素と水蒸気の混合気流中で、次
いで乾燥酸素気流中で加熱処理することによって、ニオ
ブ酸リチウム単相の薄膜を得ることができる。この後、
塗布1回転。
After drying for several minutes, a single-phase lithium niobate thin film can be obtained by heat treatment in a mixed stream of oxygen and water vapor and then in a stream of dry oxygen. After this,
1 rotation of application.

乾燥、加熱処理の工程を数回繰り返すことにより、所望
の厚さのニオブ酸リチウム薄膜を得ることかできる。ニ
オブ酸リチウム薄膜の膜厚は数100オングストローム
ないし数μmの範囲で変化させる− 〇 − ことかできる。
By repeating the drying and heat treatment steps several times, a lithium niobate thin film with a desired thickness can be obtained. The thickness of the lithium niobate thin film can be varied in the range of several hundred angstroms to several micrometers.

本発明において、多価アルコールあるいはその誘導体は
、飽和蒸気圧が低く、かつ複合アルコキシドの形成に用
いたアルコールと共沸混合物を作らない、常温で液体の
ものであればよく、例えばエチレングリコールや、セロ
ソルブ系、カルビ]〜−ル系の多価アルコールまたはそ
の誘導体が挙げられる。
In the present invention, the polyhydric alcohol or its derivative may be one that is liquid at room temperature and has a low saturated vapor pressure and does not form an azeotrope with the alcohol used to form the complex alkoxide, such as ethylene glycol, Examples include cellosolve-based, carbide-based polyhydric alcohols, and derivatives thereof.

U作用J 本発明では、濃縮時に多価アルコールあるいはその誘導
体溶媒を添加することにより、前駆体溶液の飽和蒸気圧
を下げることができ、スピンコーティング時に溶液を基
板上に滴下したときにすぐには乾燥けすに基板を回転す
ることにより厚さの均一なコーテイング膜を得ることが
できる。1さらに、本発明で用いる多価アル」−ルある
いはその誘導体はアルコール溶媒とほとんど共沸混合物
を作らないので、濃縮時にアルコール溶媒だけを蒸発さ
せることができ、計算量の多価アルコールあるいはその
誘導体を添加することにより、正確に前駆体溶液濃度を
制御できる。さらには前駆体の溶解度がアルコール溶媒
中よりも多価アルコールあるいはその誘導体溶媒中の方
が高いので、より高濃麿の前駆体溶液を得ることができ
、デイツプコーティング、スピンコーティングどららの
場合にも、より厚い膜を1工程で形成することができる
U Effect J In the present invention, by adding a polyhydric alcohol or its derivative solvent during concentration, the saturated vapor pressure of the precursor solution can be lowered, and when the solution is dropped onto the substrate during spin coating, By rotating the substrate in a drying rack, a coating film of uniform thickness can be obtained. 1 Furthermore, since the polyhydric alcohol or its derivative used in the present invention hardly forms an azeotrope with the alcohol solvent, only the alcohol solvent can be evaporated during concentration, and the calculated amount of the polyhydric alcohol or its derivative can be evaporated during concentration. By adding , the concentration of the precursor solution can be accurately controlled. Furthermore, since the solubility of the precursor is higher in a polyhydric alcohol or its derivative solvent than in an alcohol solvent, a highly concentrated precursor solution can be obtained, and in the case of dip coating and spin coating Dorara. Even thicker films can be formed in one step.

[実施例] 以下、本発明を実施例によりさらに詳細に説明する。た
だし、本発明の範囲は下記実施例により何等限定される
ものではない。
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the scope of the present invention is not limited in any way by the following examples.

ニオブおよびリチウムの複合アルコキシド溶液のエトキ
シリチウム: L i O02H5とペンタエトキシニ
オフ゛: N b (OC9H5) 5をLi:Nbの
比か1:1となるようにそれぞれ秤取し、脱水・精製し
たエタノール中に混合・溶解した。
A composite alkoxide solution of niobium and lithium, ethoxylithium: LiO02H5 and pentaethoxyniobium: Nb (OC9H5) 5, were weighed out at a Li:Nb ratio of 1:1, and placed in dehydrated and purified ethanol. mixed and dissolved.

この溶液を24時間、攪拌、還流した。これらの操作は
、各原料アルコキシドか空気中の水分により容易に加水
分解されるため、乾燥した窒素雰囲気中で行った。
This solution was stirred and refluxed for 24 hours. These operations were performed in a dry nitrogen atmosphere because each raw material alkoxide was easily hydrolyzed by moisture in the air.

ニオブ酸すチ「ツム前駆体の調製 得られた複合アルコキシドに、エタノールで希釈した脱
炭酸水を滴下して加水分解を行った。さらに、攪拌、還
流を24時間続り、反応を完結させた。この後、エチレ
ングリコールを所定量添加し、エタノールを蒸発させ、
ニオブ酸リチウムの前駆体濃度か1.0 mol/ l
である溶液を作成した。
Preparation of Niobium Acid Tsum Precursor Decarbonated water diluted with ethanol was added dropwise to the obtained composite alkoxide to perform hydrolysis. Further, stirring and reflux were continued for 24 hours to complete the reaction. After this, a predetermined amount of ethylene glycol is added, ethanol is evaporated,
Precursor concentration of lithium niobate: 1.0 mol/l
A solution was created.

二Aブ酸リチウム前駆体の基板への塗イ「および加熱処
理 得られたニオブ酸リチウムの前駆体濃度か1,0m01
/lの)層線溶液をa −A I 203  (001
)基板上に滴下し、一定の回転速度で回転し、乾燥させ
た。この後得られたニオブ酸リチウムの前駆体のコーテ
イング膜を350℃,400℃。
Coating a lithium dibutate precursor onto a substrate and heating the resulting lithium niobate precursor concentration to 1.0m01
/l) layer line solution a -A I 203 (001
) was dropped onto the substrate, rotated at a constant rotation speed, and dried. Thereafter, the coating film of the lithium niobate precursor obtained was heated at 350°C and 400°C.

450°Cの3種類の温度条件下で酸素と水蒸気の混合
雰囲気中で1時間、次いで乾燥空気中で1時間保持し、
加熱処理を行った。この塗布2回転。
held in a mixed atmosphere of oxygen and water vapor for 1 hour and then in dry air for 1 hour under three different temperature conditions of 450 ° C;
Heat treatment was performed. Apply this twice.

乾燥、加熱処理(350℃,400℃,450℃)の工
程を繰り返して、緻密なC軸配向した結晶性のLiNb
O3薄膜を合成することかできた。これらの得られた薄
膜を粉末X線回折法により調べた結果、350°C加熱
処理では結晶化はみられなかったものの、400℃加熱
処理で(006)配向結晶化かみられ、450℃加熱処
理ではほぼ完全に近い配向膜となっていることが確認さ
れた。
By repeating the process of drying and heat treatment (350°C, 400°C, 450°C), crystalline LiNb with dense C-axis orientation is obtained.
We were able to synthesize an O3 thin film. As a result of examining these obtained thin films by powder X-ray diffraction, it was found that although no crystallization was observed in the 350°C heat treatment, (006)-oriented crystallization was observed in the 400°C heat treatment. It was confirmed that the film had an almost perfect orientation.

た。Ta.

第1図は実施例にて加熱処理温度を変えて最終的に得ら
れた薄膜のX線回折図を示したものである。第1図の図
中において○印をつけたものは1iNbo3薄膜の(0
06)回折線のピークを、Δ印をつけたものは基板のα
−AI203(006)回折線のピークをそれぞれ示す
ものでおる。
FIG. 1 shows X-ray diffraction patterns of thin films finally obtained by changing the heat treatment temperature in Examples. In the diagram of Fig. 1, the parts marked with a circle are (0) of the 1iNbo3 thin film.
06) The peak of the diffraction line marked with Δ is the α of the substrate.
-AI203 (006) diffraction line peaks are shown.

[発明の効果] このように、本発明の方法にJ、れば配向した結晶性の
高いニオブ酸すヂウム薄膜を従来の方法では困難であっ
たスピンコーティング法によって製造することかできる
。従って、この発明はニオブ酸リチウムを用いた圧電素
子、焦電素子等の種々の応用にその活用か期待されるも
のである。
[Effects of the Invention] As described above, by using the method of the present invention, it is possible to produce a thin film of oriented sodium niobate with high crystallinity by the spin coating method, which is difficult to do with conventional methods. Therefore, this invention is expected to be utilized in various applications such as piezoelectric elements and pyroelectric elements using lithium niobate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例において得られた1−1Nb
○3薄膜のX線回折図である。
Figure 1 shows the 1-1Nb obtained in one embodiment of the present invention.
○3 It is an X-ray diffraction diagram of the thin film.

Claims (1)

【特許請求の範囲】[Claims] (1)エトキシリチウムとペンタエトキシニオブのモル
比が1:1となるようにアルコール中で混合溶解して複
合アルコキシドを作成し、得られた溶液またはその加水
分解溶液に、飽和蒸気圧が低く、かつ前記アルコールと
共沸混合物を作らない多価アルコールあるいはその誘導
体を添加して濃縮し、該前駆体溶液を基板上に塗布して
400℃以上の温度で加熱焼成する工程を少なくとも1
回以上繰り返し、該基板上にニオブ酸リチウム薄膜を形
成せしめることを特徴とするニオブ酸リチウム薄膜の製
造方法。
(1) Create a composite alkoxide by mixing and dissolving ethoxylithium and pentaethoxyniobium in alcohol at a molar ratio of 1:1, and the resulting solution or its hydrolyzed solution has a low saturated vapor pressure. and at least one step of adding and concentrating a polyhydric alcohol or a derivative thereof that does not form an azeotrope with the alcohol, applying the precursor solution on a substrate, and heating and baking it at a temperature of 400° C. or higher.
A method for producing a lithium niobate thin film, comprising forming a lithium niobate thin film on the substrate by repeating the process several times or more.
JP2329685A 1990-11-30 1990-11-30 Production of thin lithium niobate film Pending JPH04202018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2329685A JPH04202018A (en) 1990-11-30 1990-11-30 Production of thin lithium niobate film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2329685A JPH04202018A (en) 1990-11-30 1990-11-30 Production of thin lithium niobate film

Publications (1)

Publication Number Publication Date
JPH04202018A true JPH04202018A (en) 1992-07-22

Family

ID=18224129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2329685A Pending JPH04202018A (en) 1990-11-30 1990-11-30 Production of thin lithium niobate film

Country Status (1)

Country Link
JP (1) JPH04202018A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193425A (en) * 1987-03-25 1989-04-12 Nec Corp Production of lithium niobate powder
JPH01290533A (en) * 1988-05-19 1989-11-22 Toray Ind Inc Formation of thin film of lithium-containing double oxides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193425A (en) * 1987-03-25 1989-04-12 Nec Corp Production of lithium niobate powder
JPH01290533A (en) * 1988-05-19 1989-11-22 Toray Ind Inc Formation of thin film of lithium-containing double oxides

Similar Documents

Publication Publication Date Title
JPH04259380A (en) Method for controlling crystalline orientation property of pzt ferroelectric body thin film
Lu et al. Preparation of potassium tantalate niobate through sol–gel processing
KR100936199B1 (en) Method for preparing a stable lead zircon-titanate sol and method for preparing films based on same
Kuang et al. Preparation of KTa0. 65Nb0. 35O3 thin films by a sol-gel process
Swartz et al. Ferroelectric thin films by sol-gel processing
JP3164849B2 (en) Method for producing lead zirconate titanate thin film
JPH04202018A (en) Production of thin lithium niobate film
JPS63270397A (en) Highly oriented lithium niobate thin film and production thereof
JP3026871B2 (en) Method for producing potassium niobate tantalate thin film
JP2594555B2 (en) Method for producing lithium niobate powder
JP3985887B2 (en) Metal oxide precursor solution
JP3359436B2 (en) Method for producing PbTiO3 alignment film
Chen Crystallization characteristics of LiNbO 3 derived from sol-gel
Sakamoto et al. Preparation and properties of K (Sr0. 75Ba0. 25) 2Nb5O15 thin films by chemical solution deposition method
JPH049873B2 (en)
JP2856599B2 (en) Method for producing lead zirconate titanate thin film
Prasadarao et al. Fabrication of La2Ti2O7 thin films by a sol-gel technique
JP3066834B2 (en) Manufacturing method of ferroelectric thin film
JP3013411B2 (en) Manufacturing method of ferroelectric thin film
JPH0419911A (en) Manufacture of thin ferroelectric film forming precursor solution and manufacture of thin ferroelectric film
Yogo et al. Synthesis of Ba2NaNb5O15 powders and thin films using metal alkoxides
JPS6227482B2 (en)
Parola et al. New sol-gel route for processing of PMN thin films
Ravichandran et al. Sol-gel derived Pb (Sc0. 5Ta0. 5) O3 powders
JP3168299B2 (en) Dielectric thin film and method of manufacturing the same