JPH04202016A - Production of zirconium oxide-based fine powder - Google Patents

Production of zirconium oxide-based fine powder

Info

Publication number
JPH04202016A
JPH04202016A JP32994590A JP32994590A JPH04202016A JP H04202016 A JPH04202016 A JP H04202016A JP 32994590 A JP32994590 A JP 32994590A JP 32994590 A JP32994590 A JP 32994590A JP H04202016 A JPH04202016 A JP H04202016A
Authority
JP
Japan
Prior art keywords
precipitate
reaction
particle size
concentration
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32994590A
Other languages
Japanese (ja)
Inventor
Tsutomu Uema
上間 力
Hideo Mitsui
光井 英雄
Michiji Okai
理治 大貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP32994590A priority Critical patent/JPH04202016A/en
Publication of JPH04202016A publication Critical patent/JPH04202016A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly control compsn. and particle diameter and to improve dispersibility by maintaining a constant concn. of a precipitate and a constant pH when a mixed aq. soln. contg. salts of Zr, Y, Ca, etc., is allowed to react with an alkali soln. and Zr oxide-based fine powder is produced from the resulting precipitate. CONSTITUTION:A mixed aq. soln. contg. water-soluble salts of Zr and one or more among Y, Ca, Mg and Ce is prepd. and allowed to react with an alkali soln. to form a precipitate. At this time, a constant pH is maintained in the reaction system and the constant concn. of the precipitate in the system is maintained from the beginning of the reaction to the end. The resulting precipitate is separated, dried and fired.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、組成および粒径か均一に制御され、分散性に
優れた高純度の酸化ジルコニウム系微粉末の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing high-purity zirconium oxide-based fine powder whose composition and particle size are uniformly controlled and which has excellent dispersibility.

酸化ジルコニウム系粉末は、弱電用祠料、光学レンズ、
薄膜形成用焼結体、特殊耐火物、靭性強化体性に用いら
れている。これらの用途に使用される酸化ジルコニウム
系粉末には、■組成が均一であること、■粉体の大きさ
か微小であること。
Zirconium oxide powder is used as abrasive materials for weak electric currents, optical lenses,
Used in sintered bodies for forming thin films, special refractories, and toughness-enhancing materials. The zirconium oxide powder used for these purposes must: (1) have a uniform composition; and (2) be small in size.

■粒子径が均一であること、0粒子の分散性が良いこと
、■純度が高いこと等の諸特性か要求されている。
Various characteristics are required, such as (1) uniform particle size, good dispersibility of zero particles, and (2) high purity.

[従来の技術] 比較的粒径分布の均一な酸化ジルコニウム系微粉末を製
造することを目的とする、ないしはその効果が期待され
る方法として、所定のpH値に調整された液の準備され
た反応槽内ヘジルコニウム塩とイツトリウム、カルシウ
ム、マグネシウムの水溶性塩のうちの少なくとも1種を
含む混合水溶液とアンモニア水等のアルカリ溶液とをそ
れぞれ別々に定量的に送り、反応槽内のpHを一定の範
囲に調整しながら反応を行い、該沈殿物を生成させる方
法(特公平2−8968号公報)、この沈殿生成反応を
反応槽内の液量が一定となるように該沈殿物を含む反応
生成液を流出させながら連続的に行う方法(特開昭61
−44718号公報)などが提案されている。
[Prior Art] As a method aimed at producing zirconium oxide fine powder with a relatively uniform particle size distribution, or as a method expected to be effective, a solution adjusted to a predetermined pH value is prepared. A mixed aqueous solution containing at least one of a hezirconium salt and water-soluble salts of yttrium, calcium, and magnesium and an alkaline solution such as aqueous ammonia are each quantitatively fed into the reaction tank to maintain a constant pH in the reaction tank. (Japanese Patent Publication No. 2-8968), a method in which the reaction is carried out while adjusting the amount within the range of A method in which the product is carried out continuously while flowing out (Unexamined Japanese Patent Publication No. 1983
-44718) and the like have been proposed.

[発明が解決しようとする課題] しかしながら、本発明者らは、このように反応槽の液の
pHや供給液流量の調整たけでは、酸化ジルコニウム系
粉末の組成および粒径分布を均一なものにするには不十
分であり、かつ該粉末の純度をさらに向上させる余地の
あることを見出した。
[Problems to be Solved by the Invention] However, the present inventors have found that it is not possible to make the composition and particle size distribution of the zirconium oxide powder uniform by simply adjusting the pH of the liquid in the reaction tank and the flow rate of the feed liquid. It was found that the purity of the powder was insufficient and that there was room to further improve the purity of the powder.

本発明は、以上の問題点を解決すること、すなわち、組
成および粒径が均一に制御され、分散性に優れた高純度
の酸化ジルコニウム系微粉末を得ることを目的とするも
のである。
The present invention aims to solve the above-mentioned problems, that is, to obtain a highly purified zirconium oxide-based fine powder whose composition and particle size are uniformly controlled and which has excellent dispersibility.

[課題を解決するための手段] 本発明者らは、該中和沈殿生成反応を、反応時の沈殿物
濃度およびpHを一定に保ちながら行なうことにより、
上記目標の微粉末が得られることを見出し、本発明を完
成させるに至った。
[Means for Solving the Problems] The present inventors achieved the following by carrying out the neutralization precipitate formation reaction while keeping the precipitate concentration and pH constant during the reaction.
It was discovered that the above-mentioned target fine powder could be obtained, and the present invention was completed.

すなわち、本発明は、反応系内のpHを一定の値に維持
しつつジルコニウム塩とイツトリウム、カルシウム、マ
グネシウム、セリウムの水溶性塩のうちの少なくとも1
種を含む混合水溶液とアルカリ溶液とを反応させて沈殿
を生成させ、えられた沈殿物を分離し、乾燥し、焼成す
ることによって酸化ジルコニウム系微粉末を製造する方
法において、上記反応の開始から終了まで系の沈殿物濃
度を実質上一定に保つことによる、酸化ジルコニウム系
微粉末の製造方法、を要旨とするものである。
That is, the present invention maintains the pH within the reaction system at a constant value while at least one of a zirconium salt and a water-soluble salt of yttrium, calcium, magnesium, or cerium.
In a method for producing fine zirconium oxide powder by reacting a mixed aqueous solution containing seeds with an alkaline solution to form a precipitate, separating the resulting precipitate, drying, and firing, the method includes: The gist of this invention is a method for producing fine zirconium oxide powder by keeping the precipitate concentration in the system substantially constant throughout the process.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

ジルコニウム塩とイツトリウム、カルシウム、マグネシ
ウム、セリウムの水溶性塩のうちの少なくとも1種を含
む混合水溶液としては、塩化物、硫酸塩、硝酸塩等をあ
げることができる。また、アルカリ溶液としては、アン
モニア、水酸化ナトリウム、水酸化カリウム等の水溶液
をあげることができる。
Examples of the mixed aqueous solution containing a zirconium salt and at least one of water-soluble salts of yttrium, calcium, magnesium, and cerium include chlorides, sulfates, and nitrates. Furthermore, examples of the alkaline solution include aqueous solutions of ammonia, sodium hydroxide, potassium hydroxide, and the like.

本発明による反応は、四分式、連続式等のいずれによっ
ても行なうことができるが、工業的・経済的な観点から
連続式反応方式による操作か好ましい。また、反応槽の
型式については特別な制約はないか、沈殿物濃度が高く
なると、反応液の粘度が上昇するので、混合状態を均一
に保つことができるように攪拌機を備えた反応槽が好ま
しい。
The reaction according to the present invention can be carried out in either a four-part reaction system or a continuous reaction system, but from an industrial and economic point of view, a continuous reaction system is preferred. Also, are there any special restrictions regarding the type of reaction tank?As the viscosity of the reaction solution increases as the concentration of precipitates increases, it is preferable to use a reaction tank equipped with a stirrer to maintain a uniform mixing state. .

反応操作方法は、次のとおりである。まず反応を開始す
る前に、予め反応槽内に、所定pHの、かつ所定濃度お
よび所定組成の沈殿物と純水とからなる懸濁液を準備す
る。[このように予め反応槽内に準備される沈殿物およ
び反応槽内で生成する沈殿物は、M (OH)mSMO
(OH)m−2、MOm/2 ・nH2O(MはZr、
Y、Ca。
The reaction operation method is as follows. First, before starting the reaction, a suspension consisting of a precipitate and pure water having a predetermined pH, a predetermined concentration, and a predetermined composition is prepared in a reaction tank. [The precipitate prepared in advance in the reaction tank and the precipitate generated in the reaction tank are M(OH)mSMO
(OH)m-2, MOm/2 ・nH2O (M is Zr,
Y, Ca.

Mg、CeomはMの価数。)などで表記される物質で
あり、本明細書における「沈殿物」および「沈殿生成物
」は、いずれもこの物質を意味するコそのように調製さ
れた懸濁液に、上記のpH1沈殿物濃度および組成が維
持されるように、ジルコニウム塩とイツトリウム、カル
シウム、マグネシウム、セリウムの水溶性塩のうち少な
くとも1種を含む混合水溶液とアルカリ溶液とをそれぞ
れ別々に同時に供給する。所定の一定濃度および一定組
成のジルコニウム塩等上記混合水溶液と所定の一定濃度
のアルカリ溶液とを一定流量比で供給することによって
、反応槽内の懸濁液のpHおよび沈殿物濃度、沈殿物組
成を一定の値に維持すればよい。連続操作においては、
該沈殿物を含む生成液量が反応槽内で一定となるように
定量ポンプあるいはオーバーフロ一方式等により該沈殿
物を含む生成液を連続的に抜き出す。回分操作の場合は
、反応槽内の液が所定の量となった時点で原料液の供給
を停止する。
Mg and Ceom are the valences of M. ), and in this specification, "precipitate" and "precipitation product" both refer to this substance. A mixed aqueous solution containing a zirconium salt and at least one of water-soluble salts of yttrium, calcium, magnesium, and cerium and an alkaline solution are separately and simultaneously supplied so that the concentration and composition are maintained. The pH, precipitate concentration, and precipitate composition of the suspension in the reaction tank can be adjusted by supplying the above mixed aqueous solution such as zirconium salt with a predetermined constant concentration and constant composition and an alkaline solution with a predetermined constant concentration at a constant flow rate ratio. should be maintained at a constant value. In continuous operation,
The product solution containing the precipitate is continuously extracted using a metering pump or an overflow type so that the amount of the product solution containing the precipitate is constant in the reaction tank. In the case of batch operation, the supply of the raw material liquid is stopped when the liquid in the reaction tank reaches a predetermined amount.

このようにしてえられた沈殿物を分離し、洗浄し、乾燥
し、焼成することにより、組成および粒径分布の均一に
制御され、分散性に優れた、カチオンやアニオンの不純
物を含まない高純度の酸化ジルコニウム系微粉末かえら
れる。また、予め反応槽内に、反応時と同一の沈殿物濃
度および組成、同一のpHの慝5液を塾偏しておくこと
により、これが反応開始直後(溶液添加開始直後)に起
こりかぢの流量の若干のアンバランスより生ずる系の沈
殿物濃度およびpHの変動あるいは反応槽内の粘度の上
昇に対して緩衝作用の役目を果たして、反応開始時(溶
液添加開始直後)より濃度およびpHか実質上一定に維
持され、かつ常に均一な混合状態か保たれ、それによっ
て組成および粒径か均一に制御され、分散性に優れた高
純度の酸化ジルコニウム系微粉末か得られる。
By separating, washing, drying, and calcining the precipitate obtained in this way, the composition and particle size distribution are uniformly controlled, and the precipitate is a highly dispersible product that does not contain cationic or anionic impurities. The purity of zirconium oxide powder can be changed. In addition, by placing a solution with the same precipitate concentration, composition, and pH as in the reaction tank in advance, this can be prevented from occurring immediately after the start of the reaction (immediately after the start of adding the solution). It acts as a buffer against fluctuations in the precipitate concentration and pH of the system or increases in viscosity in the reaction tank caused by slight imbalances in the flow rate, and the concentration and pH substantially decrease from the start of the reaction (immediately after the start of solution addition). A uniform mixing state is maintained at all times, thereby controlling the composition and particle size to be uniform, resulting in a highly purified zirconium oxide-based fine powder with excellent dispersibility.

生成液中の沈殿物はろ通接水洗し、次いてこの沈殿物を
脱水乾燥し、600〜1100℃の範囲で焼成して微粉
末を得る。
The precipitate in the product solution is filtered and washed with water, then dehydrated and dried, and calcined in the range of 600 to 1100°C to obtain a fine powder.

また、予め反応槽内に準備される懸濁液の量については
、それが十分に攪拌できる状態であれば、特に制約はな
い。この予め反応槽内に準備される懸濁液としては、通
常、前の操作終了の際反応槽に残ったもの(得ようとす
る沈殿生成物と同一組成のもの)を使用すればよい。そ
のようなものがない場合は、まず純水にアルカリ性物質
を添加してT) Hを本運転におけるそれに調整し、そ
れにジルコニウム塩とイツトリウム、カルシウム、マグ
ネシウム、セリウムの水溶性塩のうち少なくとも1種を
含む混合水溶液とアルカリ溶液とを両液の組成および供
給比率が本発明のそれと同じ条件になるようにして供給
し、反応槽内の懸濁液の沈殿物濃度か実質上定常状態と
なるまでその供給を続けることによって、本発明実施の
ために準備する上記の懸濁液を調製することができる。
Furthermore, there are no particular restrictions on the amount of suspension prepared in advance in the reaction tank, as long as it can be stirred sufficiently. As the suspension prepared in advance in the reaction tank, it is usually sufficient to use the one remaining in the reaction tank at the end of the previous operation (having the same composition as the precipitated product to be obtained). If such a substance is not available, first add an alkaline substance to pure water to adjust the T)H to that used in the actual operation, and add at least one of a zirconium salt and a water-soluble salt of yttrium, calcium, magnesium, or cerium. A mixed aqueous solution containing the alkaline solution and an alkaline solution are supplied such that the composition and supply ratio of both solutions are the same as those of the present invention, until the concentration of the precipitate in the suspension in the reaction tank reaches a substantially steady state. By continuing its supply, the above-mentioned suspension prepared for carrying out the present invention can be prepared.

すなわち、本発明実施の開始の際に必要な懸濁液がない
場合も、それをこのようにして製造することかでき、−
度このようにして懸濁液を製造すれば、定期修理などで
操作を終了する場合も、その終了時の反応槽の懸濁液を
貯槽に蓄えておけばよく、それ以降は各回上記のような
本発明実施のために準備する懸濁液の製造は必要かなく
なる。
That is, even if the necessary suspension is not available at the beginning of the practice of the invention, it can be produced in this way, and -
If the suspension is manufactured in this way, even when the operation is terminated due to periodic repairs, the suspension from the reaction tank at the end of the operation can be stored in the storage tank, and from then on, each time the operation is terminated, the suspension will be The preparation of a suspension for carrying out the invention is no longer necessary.

また沈殿物の濃度は、特に制限はないが、組成および粒
径が均一に制御され、分散性に優れた高純度の微粉末を
得るには、酸化物換算で10〜300g/Ωの範囲が好
ましい。10g/ρより濃度が低い場合には、該沈殿物
乾燥物中の水分等か除去されに<<、これか原因と考え
られるが、焼成後の粉末は組成および粒径の不均一な、
分散性および純度の悪い微粉末となりがちであり、30
0g/Ωを越えると該沈殿物を含む生成液の粘度か高く
流動性か悪くなり、組成および粒径の均一な、分散性の
よい、かつ純度の高い微粉末がえにくくなる。
The concentration of the precipitate is not particularly limited, but in order to obtain a highly pure fine powder with uniform composition and particle size and excellent dispersibility, it should be in the range of 10 to 300 g/Ω in terms of oxide. preferable. If the concentration is lower than 10 g/ρ, water etc. in the dried precipitate are removed, which may be the cause, but the powder after firing has a non-uniform composition and particle size.
It tends to become a fine powder with poor dispersibility and purity, and 30
If it exceeds 0 g/Ω, the viscosity of the product solution containing the precipitate will be high and the fluidity will be poor, making it difficult to obtain a fine powder with uniform composition and particle size, good dispersibility, and high purity.

pHは、7.0〜13.0の範囲のうち、1的の沈殿生
成物の沈殿生成領域から選ぶのがよい。
The pH is preferably selected from the range of 7.0 to 13.0, which is a precipitate-forming region of one precipitate product.

pHが7より低くなると1」的の沈殿生成物を得ること
が困難となり、また13を越えると該沈殿物から水、水
酸化物等の除去が困難になり、これか原因と考えられる
が、組成および粒径の均一な、分散性のよいかつ純度の
高い微粉末を得ることが困難となる。
When the pH is lower than 7, it becomes difficult to obtain a 1" precipitated product, and when it exceeds 13, it becomes difficult to remove water, hydroxide, etc. from the precipitate, which is thought to be the cause. It becomes difficult to obtain a fine powder with uniform composition and particle size, good dispersibility, and high purity.

[作用コ 前記の反応液のp Hおよび原料液の供給流量を一定に
する従来方法においては、ジルコニウム塩とイツトリウ
ム、カルシウム、マグネシウム、セリウムの水溶性塩の
うち少なくとも1種を含む混合水溶液とアルカリ溶液と
の反応は、反応系に生成物である沈殿物が存在しない状
態で開始されるため、該中和沈殿生成反応が反応槽内に
おいて局部的に起こることにより、反応系内でpHに分
布か生じることになり、沈殿生成物かそのp Hに応じ
て生じるため組成か不均一になる。一方、反応が系内に
生成物である沈殿物か存在しない状態で開始されると、
定常状態にいたるまで反応液中の沈殿物濃度は連続的に
大きくなる。そして、生成沈殿物の粒径はこの沈殿物濃
度に依存し、したがって、上記従来方法ではこの濃度の
変化によって生成沈殿物の粒径分布が広(なり、ひいて
は目的物である酸化ジルコニウム系粉末の粒径分布を不
均一なものにすることとなるものと推定される。
[Function] In the conventional method in which the pH of the reaction solution and the supply flow rate of the raw material solution are kept constant, a mixed aqueous solution containing a zirconium salt and at least one of water-soluble salts of yttrium, calcium, magnesium, and cerium is mixed with an alkali. Since the reaction with the solution is started in the absence of a precipitate, which is a product, in the reaction system, the neutralization precipitate formation reaction occurs locally within the reaction tank, resulting in a pH distribution within the reaction system. However, since the precipitated products are generated depending on the pH, the composition becomes non-uniform. On the other hand, if the reaction is started in the absence of the product, the precipitate, in the system,
The concentration of the precipitate in the reaction solution increases continuously until it reaches a steady state. The particle size of the produced precipitate depends on this precipitate concentration. Therefore, in the conventional method described above, the particle size distribution of the produced precipitate becomes broader (and, as a result, the target zirconium oxide powder) It is estimated that this will make the particle size distribution non-uniform.

さらに、反応開始直後の濃度が薄い時点では、該中和沈
殿生成反応が反応槽内において局部的に塊状に起こるた
めに、粒径か不均一になるたけでなく、凝集が激しくな
り、その凝集の際液中の不純物アニオンおよびカチオン
がこの凝集物中に取込まれてしまい、得られる酸化ジル
コニウム系粉末の純度が悪くなる。
Furthermore, when the concentration is low immediately after the start of the reaction, the neutralization precipitate formation reaction occurs locally in lumps in the reaction tank, which not only makes the particle size uneven, but also causes severe aggregation. Impurity anions and cations in the liquid are incorporated into this aggregate, resulting in poor purity of the resulting zirconium oxide powder.

本発明では、反応開始時点から系内に沈殿物を存在させ
、反応の間該沈殿物の濃度を一定に保つので、」二記従
来方法における欠点かすべて解消されるものと推定され
る。
In the present invention, since a precipitate is allowed to exist in the system from the start of the reaction and the concentration of the precipitate is kept constant during the reaction, it is presumed that all of the drawbacks of the conventional methods described in section 2 can be overcome.

[発明の効果] 以上の説明から明らかなように本発明によれば、組成お
よび粒径が均一に制御され、粒子の分散性に優れた高純
度の酸化ジルコニウム系微粉末を得ることができる。
[Effects of the Invention] As is clear from the above description, according to the present invention, it is possible to obtain a highly pure zirconium oxide-based fine powder whose composition and particle size are uniformly controlled and which has excellent particle dispersibility.

し実施例] 以下、実施例によって本発明を具体的に説明する。Examples] Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 オーバーフロー流出管までの容積5Ωの反応槽内に、沈
殿物のZ r02十Y2O3換算濃度100g/Ω (
Y2O2として3.0モル26含有)、pH9の懸濁液
を21入れ、攪拌した。この沈殿物懸濁液攪拌下の反応
槽内に、オキシ塩化ジルコニウム1..54moρ/Ω
、塩化イツトリウム0゜10m0Ω/βの混合水溶液を
42rrl/minおよび濃度9,1wt%のアンモニ
ア水を42mΩ/ m i nの流量で定流量ポンプで
同時に供給を開始し、オーバーフロー管より反応液の一
部を原材溶液換算値で84mg/ m i nの割合で
流出させるオーバーフロ一方式により連続的に中和沈殿
生成反応を2.6時間行なった。反応槽内の液は、沈殿
物濃度がZrO2+Y2O3換算100g/Ω換算1ゴ
0 ー流出液中の沈殿物を分離し、水洗することにより塩化
アンモニウムを除去した。反応操作開始直後、反応操作
終了直前および反応操作時間中の等間隔時点の3点計5
点の沈殿物のサンプルを110℃で24時間乾燥した後
、850℃で1時間焼成して、光透過型超遠心式粒度分
布δ111定装置による平均粒径2.05〜2.12μ
m1粒径範囲1。
Example 1 In a reaction tank with a volume of 5Ω up to the overflow outflow pipe, the concentration of the precipitate Zr020 Y2O3 equivalent concentration 100g/Ω (
A suspension (containing 3.0 mol 26 of Y2O2) with a pH of 9 was added and stirred. This precipitate suspension was placed in a stirred reaction tank with 1.0% zirconium oxychloride. .. 54moρ/Ω
At the same time, a mixed aqueous solution of yttrium chloride 0°10m0Ω/β was started to be supplied at 42rrl/min and ammonia water with a concentration of 9.1wt% was started to be supplied at a flow rate of 42mΩ/min using a constant flow pump. The neutralization and precipitation reaction was carried out continuously for 2.6 hours using an overflow method in which the solution was flowed out at a rate of 84 mg/min in terms of raw material solution. The solution in the reaction tank had a precipitate concentration of 100 g/Ω in terms of ZrO2 + Y2O3 - the precipitate in the effluent was separated and washed with water to remove ammonium chloride. A total of 5 points at 3 points immediately after the start of the reaction operation, immediately before the end of the reaction operation, and at equal intervals during the reaction operation time
After drying the precipitate sample at 110°C for 24 hours, it was calcined at 850°C for 1 hour, and the average particle size was determined to be 2.05 to 2.12μ by a light transmission type ultracentrifugal particle size distribution δ111 determination device.
m1 particle size range 1.

00〜3、00μmの範囲のもの87〜90%および粒
度分布幅0,60〜4.00μm、比表面積1 6 m
 2 / gならびにZr○2+Y2O3の純度が99
.9wt%以上、Y 2 0 3 / Z r○2+Y
2O3が3.0モル%のイツトリア部分安定化ジルコニ
ア微粉末が得られた。
87-90% in the range of 0.00-3.00 μm, particle size distribution width 0.60-4.00 μm, specific surface area 16 m
2/g and the purity of Zr○2+Y2O3 is 99
.. 9wt% or more, Y203/Zr○2+Y
Itria partially stabilized zirconia fine powder containing 3.0 mol % of 2O3 was obtained.

実施例2 反応槽内に、沈殿物のZrO2+cao換算濃度50g
/ρ (CaOとして8.0モル%含有)、pH12の
懸濁液21を入れ、攪拌した。この沈殿物懸濁液攪拌下
の反応槽内に、オキシ塩化ジルコニウム0.78moΩ
/D1塩化カルシウム0。
Example 2 In the reaction tank, the concentration of the precipitate in terms of ZrO2+cao was 50 g.
/ρ (containing 8.0 mol% as CaO), pH 12 suspension 21 was added and stirred. In the reaction tank under stirring of this precipitate suspension, 0.78 moΩ of zirconium oxychloride was added.
/D1 Calcium chloride 0.

07moΩ/lの混合水溶液を42mΩ/minおよび
濃度10.2wt%のアンモニア水を42mΩ/ m 
i nの流量で定流量ポンプで同時に供給を開始し、回
分式反応方式により中和沈殿生成反応を0.6時間行な
った。反応槽内の液は、沈殿物濃度がZrO2+Ca○
換算50g/ΩにおよびpHが12に維持された。生成
した沈殿物を分離し、水洗することにより塩化アンモニ
ウムを除去した。反応操作開始直後、反応操作終了直前
および反応操作時間中の等間隔時点の3点計5点の反応
槽内の沈殿物サンプルを110℃で24時間乾燥した後
、850°Cで1時間焼成して、光透過型超遠心式粒度
分布′Al11定装置による平均粒径2。
07 moΩ/l mixed aqueous solution at 42 mΩ/min and 10.2 wt% ammonia water at 42 mΩ/m
Supply was started at the same time using a constant flow pump at a flow rate of in, and a neutralization precipitation reaction was carried out for 0.6 hours in a batch reaction system. The liquid in the reaction tank has a precipitate concentration of ZrO2+Ca○
Calculated at 50 g/Ω and pH was maintained at 12. The generated precipitate was separated and washed with water to remove ammonium chloride. The precipitate samples in the reaction tank were dried at 110°C for 24 hours at 110°C for 24 hours, and then calcined at 850°C for 1 hour. The average particle size was 2 using a light transmission type ultracentrifugal particle size distribution 'Al11 constant device.

18〜2.22μm1粒径範囲1.00〜3.00μm
の範囲のもの82〜85%および粒度分布幅0.80−
4.00μm,比表面積1 5m2/gならびにZrO
2+CaO純度が99.9wt%以上、CaO/ZrO
2+CaOか8.0モル%のカルシア部分安定化ジルコ
ニア微粉末が得られた。
18-2.22μm1 particle size range 1.00-3.00μm
range of 82-85% and particle size distribution width 0.80-
4.00μm, specific surface area 15m2/g and ZrO
2+CaO purity is 99.9wt% or more, CaO/ZrO
A calcia partially stabilized zirconia fine powder containing 2+CaO or 8.0 mol % was obtained.

実施例3 オーバーフロー流出管までの容積5gの反応槽内に、沈
殿物のZrO2+MgO換算濃度100g/Ω ( M
 g Oとして5.0モル%含有)、pH11の懸濁液
を2D入れ、攪拌した。この沈殿物懸濁液攪拌下の反応
槽内に、オキシ塩化ジルコニウム1.60mou/fl
、塩化マグネシウム0。
Example 3 In a reaction tank with a volume of 5 g up to the overflow outflow pipe, a concentration of ZrO2 + MgO of the precipitate was 100 g/Ω (M
A suspension of 5.0 mol % (containing 5.0 mol % as O) and pH 11 was added thereto and stirred. In the reaction tank under stirring of this precipitate suspension, 1.60 mou/fl of zirconium oxychloride was added.
, magnesium chloride 0.

08mof!/Ωの混合水溶液を42m.Q/minお
よび濃度9. 8wt%のアンモニア水を4 2 mρ
/ m i nの流量で定流量ポンプで同時に供給を開
始し、オーバーフロー管より反応液の一部を原料溶液換
算値で84mΩ/ m i nの割合で流出させるオー
バーフロ一方式により連続的に中和沈殿生成反応を4.
6時間行なった。反応槽内の液は、沈殿物濃度かZrO
2+Mg○換算:1.00g/f!におよびpHが11
に維持された。オーバーフロー流出液中の沈殿物を分離
し、水洗することにより塩化アンモニウムを除去した。
08mof! /Ω mixed aqueous solution at 42 m. Q/min and concentration9. 8 wt% ammonia water at 42 mρ
A constant flow pump starts supplying at a flow rate of / min at the same time, and a part of the reaction liquid flows out from the overflow tube at a rate of 84 mΩ/min in terms of raw material solution. 4. Precipitate formation reaction.
It lasted 6 hours. The liquid in the reaction tank has a precipitate concentration or ZrO
2+Mg○ conversion: 1.00g/f! and pH is 11
was maintained. The precipitate in the overflow effluent was separated and washed with water to remove ammonium chloride.

反応操作開始直後、反応操作終了直前および反応操作時
間中の等間隔時点の3点計5点の沈殿物のザンプルを1
1000で24時間乾燥した後、850°Cで1時間焼
成して、光透過型超遠心式粒度分布All+定装置によ
る平均粒径2.00〜2.04μm、粒径範囲1゜OO
〜3.00μmの範囲のもの86〜90%および粒度分
布幅0.80〜4.00μm、比表面積15m2/gな
らびにZ r O2+ M g Oの純度が99.9 
w t%以上、M g O/ Z r O2+ M g
Oが5.0モル%のマグネシウム部分安定化ジルコニア
微粉末が得られた。
One sample of the precipitate was obtained from 5 points in total, immediately after the start of the reaction operation, immediately before the end of the reaction operation, and at equal intervals during the reaction operation time.
After drying at 1000℃ for 24 hours, baking at 850℃ for 1 hour to obtain an average particle size of 2.00 to 2.04μm, particle size range of 1゜OO using a light transmission type ultracentrifugal particle size distribution All+ constant apparatus.
~3.00 μm range 86-90% and particle size distribution width 0.80-4.00 μm, specific surface area 15 m2/g and Z r O2 + M g O purity of 99.9
W t% or more, M g O/ Z r O2+ M g
Magnesium partially stabilized zirconia fine powder containing 5.0 mol % of O was obtained.

比較例] 反応槽内に、オキシ塩化ジルコニウム1.54moΩ/
Ω、塩化イツトリウム0.10moΩ/Ωの混合水溶液
を2.5Ω入れ、これに攪拌しつ 15 一 つ濃度9.1wt%のアンモニア水を2.5ρ加えて沈
殿物濃度Z r02+Y2O3換算100g/ρ (Y
2O3として3.0モル26含有)、pH9の)竪澗液
をえた。生成した沈殿物を分離し、水洗することにより
塩化アンモニウムを除去した。
Comparative Example] Zirconium oxychloride 1.54 moΩ/
Ω, 2.5Ω of a mixed aqueous solution of 0.10 moΩ/Ω of yttrium chloride was added, and while stirring, 15 2.5ρ of aqueous ammonia with a concentration of 9.1 wt% was added to give a precipitate concentration Z r02 + 100 g/ρ in terms of Y2O3 ( Y
A effluent containing 3.0 mol 26 as 2O3 and pH 9 was obtained. The generated precipitate was separated and washed with water to remove ammonium chloride.

これを110℃で24時間乾燥した後、850 ℃で1
時間焼成することにより、光透過型超遠心式粒度分布測
定装置による平均粒径4,88μm、粒径範囲4.00
〜6.00μmの範囲のもの42%および粒度分布幅]
、00〜23.oμm1比表面積9 m 2 / gな
らびにZrO2+Y2O3の純度か98.6wt%、粉
末がら無作為に5点サンプリングし組成分析した結果、
Y2O3/Zr○2+Y20Bの範囲か2.7−3.4
モル%のイツトリア部分安定化ジルコニア微粉末が得ら
れた。
After drying this at 110℃ for 24 hours, it was dried at 850℃ for 1
By baking for a time, the average particle size was 4.88 μm as measured by a light transmission type ultracentrifugal particle size distribution analyzer, and the particle size range was 4.00 μm.
~42% in the range of 6.00 μm and particle size distribution width]
, 00-23. Oμm1 specific surface area 9 m 2 / g and purity of ZrO2 + Y2O3 98.6 wt%, as a result of randomly sampling 5 points from the powder and analyzing the composition,
Y2O3/Zr○2+Y20B range or 2.7-3.4
A mole % of Ittria partially stabilized zirconia fine powder was obtained.

比較例2 反応槽内に、アンモニア水でpH12に調整した水1g
を入れ、攪拌した。この攪拌下の反応槽内に、オキシ塩
化ジルコニウム0.78moρ/−16〜 Ω、塩化カルシウム0.07moρ/ρの混合水溶液を
42mρ/minおよび濃度10.2wt%のアンモニ
ア水を42m!:I/minの流量で定流間ポンプで同
時に供給を開始し、0,8時間回分式反応方式により中
和沈殿生成反応を行った。
Comparative Example 2 In the reaction tank, 1 g of water adjusted to pH 12 with ammonia water
and stirred. Into this reaction tank under stirring, a mixed aqueous solution of 0.78 moρ/-16~Ω of zirconium oxychloride and 0.07 moρ/ρ of calcium chloride was added at 42 mρ/min, and aqueous ammonia with a concentration of 10.2 wt% was added at 42 mρ/min. Supply was started at the same time using a constant flow pump at a flow rate of 1/min, and a neutralization precipitation reaction was carried out in a batch reaction system for 0.8 hours.

反応槽内の液のp Hは12に維持され、反応終了時の
沈殿物濃度はZ r02+ca○換算40g/ρ (C
a Oとして8.0モル%含有)であった。
The pH of the liquid in the reaction tank was maintained at 12, and the precipitate concentration at the end of the reaction was 40 g/ρ (C
a content of 8.0 mol% as O).

生成した沈殿物を分離し、水洗することにより塩化アン
モニウムを除去した。これを110℃で24時間乾燥し
た後、850°Cで1時間焼成することにより、光透過
型超遠心式粒度分布測定装置による平均粒径3,57μ
mおよび粒径範囲3. 00〜5,00μmの範囲のも
の52%および粒度分布幅1.00−20.0μm、比
表面積11m2 / gならびにZ r O2十Y 2
03の純度か98゜9 w t%、粉末から無作為に5
点サンプリングし組成分析した結果、Ca O/ Z 
r O2+ Ca Oの範囲が7.7〜8.3モル96
のカルシア部分安定化ジルコニア微粉末がIJ、られた
The generated precipitate was separated and washed with water to remove ammonium chloride. By drying this at 110°C for 24 hours and then baking it at 850°C for 1 hour, the average particle size was 3.57 μm as measured by a light transmission type ultracentrifugal particle size distribution analyzer.
m and particle size range3. 52% in the range 00-5,00 μm and particle size distribution width 1.00-20.0 μm, specific surface area 11 m2/g and ZrO20Y2
03 purity or 98°9 wt%, 55% randomly from the powder
As a result of point sampling and composition analysis, CaO/Z
r O2+ Ca O range is 7.7 to 8.3 mol96
Calcia partially stabilized zirconia fine powder was prepared by IJ.

比較例3 オーバーフロー流出管までの容積5gの反応槽内に、ア
ンモニア水でpH11に調整した水2gを入れ、攪拌し
た。この攪拌下の反応槽内に、オキシ塩化ジルコニウム
1.60moρ/β、塩化マグネシウム0.08moΩ
/Ωの混合水溶液を42mg/ m i nおよび濃度
9.8wt%のアンモニア水を42mg/ m i n
の流量で定流量で同時に供給を開始し、オーバーフロー
管より反応液の一部を原料溶液換算値で84mΩ/mi
nの割合で流出させるオーバーフロ一方式により4.6
時間連続的に中和沈殿生成反応を行った。反応槽内の液
のpHは11に維持され、反応終了時の沈殿物濃度はZ
 r O2+M g O換算97.5g/ρ(M g 
Oとして5.0モル%含有)であった。オーバーフロー
流出液中の沈殿物を分離し、水洗することにより塩化ア
ンモニウムを除去した。これを110℃で24時間乾燥
した後、850℃で1時間焼成することにより光透過型
遠心式粒度分布測定装置による平均粒径4.28ttm
および粒径範囲3.00〜5.00μmの範囲のもの5
8%および粒度分布幅1.00〜22.08m1比表面
積9 m 2 / gならびにZ r O2+ M g
 Oの純度が99.0wt%、粉末から無作為に5点サ
ンプリングし組成分析した結果、M g O/ Z r
 02 +MgOの範囲が4.8〜5.3モル%のイツ
トリア部分安定化ジルコニア微粉末が得られた。
Comparative Example 3 In a reaction tank with a volume of 5 g up to the overflow pipe, 2 g of water adjusted to pH 11 with aqueous ammonia was placed and stirred. In this reaction tank under stirring, 1.60 moρ/β of zirconium oxychloride and 0.08 moΩ of magnesium chloride were added.
/Ω mixed aqueous solution at 42 mg/min and ammonia water at a concentration of 9.8 wt% at 42 mg/min.
At the same time, supply was started at a constant flow rate of
4.6 due to overflow one-way system that flows out at a rate of n
The neutralization precipitation reaction was carried out continuously over time. The pH of the liquid in the reaction tank was maintained at 11, and the precipitate concentration at the end of the reaction was Z
r O2 + M g O conversion 97.5 g/ρ (M g
The content was 5.0 mol% as O). The precipitate in the overflow effluent was separated and washed with water to remove ammonium chloride. After drying this at 110°C for 24 hours, it was baked at 850°C for 1 hour to obtain an average particle size of 4.28ttm as measured by a light transmission type centrifugal particle size distribution analyzer.
and those with a particle size range of 3.00 to 5.00 μm 5
8% and particle size distribution width 1.00-22.08 m1 specific surface area 9 m2/g and Z r O2+ M g
The purity of O is 99.0 wt%, and as a result of randomly sampling 5 points from the powder and analyzing the composition, M g O / Z r
A partially stabilized ittria-stabilized zirconia fine powder containing 4.8 to 5.3 mol% of 02+MgO was obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)反応系内のpHを一定の値に維持しつつジルコニ
ウム塩とイットリウム、カルシウム、マグネシウム、セ
リウムの水溶性塩のうちの少なくとも1種を含む混合水
溶液とアルカリ溶液とを反応させて沈殿を生成させ、え
られた沈殿物を分離し、乾燥し、焼成することによって
酸化ジルコニウム系微粉末を製造する方法において、上
記反応の開始から終了まで系の沈殿物濃度を実質上一定
に保つことを特徴とする、酸化ジルコニウム系微粉末の
製造方法。
(1) While maintaining the pH in the reaction system at a constant value, a mixed aqueous solution containing a zirconium salt and at least one of water-soluble salts of yttrium, calcium, magnesium, and cerium is reacted with an alkaline solution to precipitate. In the method for producing fine zirconium oxide powder by separating, drying, and calcining the resulting precipitate, the precipitate concentration in the system is kept substantially constant from the start to the end of the reaction. A method for producing zirconium oxide-based fine powder.
JP32994590A 1990-11-30 1990-11-30 Production of zirconium oxide-based fine powder Pending JPH04202016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32994590A JPH04202016A (en) 1990-11-30 1990-11-30 Production of zirconium oxide-based fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32994590A JPH04202016A (en) 1990-11-30 1990-11-30 Production of zirconium oxide-based fine powder

Publications (1)

Publication Number Publication Date
JPH04202016A true JPH04202016A (en) 1992-07-22

Family

ID=18227021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32994590A Pending JPH04202016A (en) 1990-11-30 1990-11-30 Production of zirconium oxide-based fine powder

Country Status (1)

Country Link
JP (1) JPH04202016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884280A1 (en) 1997-06-13 1998-12-16 Nippon Shokubai Kagaku Kogyo Co. Ltd. Zirconia powder, method for producing the same, and zirconiaceramics using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884280A1 (en) 1997-06-13 1998-12-16 Nippon Shokubai Kagaku Kogyo Co. Ltd. Zirconia powder, method for producing the same, and zirconiaceramics using the same
US6068828A (en) * 1997-06-13 2000-05-30 Nippon Shokubai Co., Ltd. Zirconia powder, method for producing the same, and zirconia ceramics using the same

Similar Documents

Publication Publication Date Title
US4851293A (en) Stabilized metallic oxides
US4985379A (en) Stabilized metallic oxides
US7431910B2 (en) Process for preparing zirconium-cerium-based mixed oxides
US5104832A (en) Sinterable zirconium oxide powder and process for its production
JPS6044577A (en) Novel serium abrasive composition and manufacture
JP3284413B2 (en) Method for producing hydrated zirconia sol and zirconia powder
EP0384728B1 (en) Preparation method for zircon powder
AU648605B2 (en) Stabilised metal oxides
JPH04202016A (en) Production of zirconium oxide-based fine powder
EP0455529B1 (en) Process for preparing dioxalates of rare earths and ammonium and their use for the preparation of rare earth oxides, dioxalates and the obtained oxides
RU2714452C1 (en) Method of producing powders of zirconium dioxide with a spheroidal shape of particles
JPH06157037A (en) Production of zirconium oxide powder
JP2001270775A (en) Method of producing yag transparent sintered body
JP3106636B2 (en) Method for producing zirconium oxide powder
JP6841817B2 (en) Manufacturing method of magnesium aluminate spinel
JPH0489319A (en) Production of zirconium oxide fine powder
JP7040838B1 (en) Basic aluminum lactate solution for ceramics formation and its manufacturing method
JPS6144718A (en) Production of fine zirconia powder
JP3497285B2 (en) Method for producing β-alumina fiber
JPS60166226A (en) Preparation of zirconium oxide powder containing rare earth element as solid solution
JPS59232920A (en) Manufacture of zirconium oxide powder containing yttrium as solid solution
JPS6016819A (en) Production of zirconium oxide powder containing yttrium as solid solution
JPS5841718A (en) Preparation of barium sulfate having large particle diameter
JPS6172626A (en) Production of zirconia fine powder
SU780412A1 (en) Method of obtaining zirconium dioxide stabilized with calcium oxide