JPH04201548A - Manufacture of fiber reinforced resin pipe - Google Patents

Manufacture of fiber reinforced resin pipe

Info

Publication number
JPH04201548A
JPH04201548A JP2338441A JP33844190A JPH04201548A JP H04201548 A JPH04201548 A JP H04201548A JP 2338441 A JP2338441 A JP 2338441A JP 33844190 A JP33844190 A JP 33844190A JP H04201548 A JPH04201548 A JP H04201548A
Authority
JP
Japan
Prior art keywords
layer
reinforcing
pipe
reinforcing layer
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2338441A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugawara
宏 菅原
Kiyoyasu Fujii
藤井 清康
Hitoshi Hayashi
仁司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2338441A priority Critical patent/JPH04201548A/en
Publication of JPH04201548A publication Critical patent/JPH04201548A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent ease of separation on the interface of each layer, while the linear expansion of a pipe is suppressed and the amount of thermal shrinkage is reduced by arranging continuous reinforcing fibers on a first reinforcing layer in the axial direction of the pipe. CONSTITUTION:A tubular object A2 is continuously formed of the sheetlike fiber composite A1 for a first reinforcing layer made by holding thermoplastic resin on the continuous reinforcing fiber arranged in longitudinal direction. Next after a molten resin layer B2 has been formed on the inner surface of said tubular object A2, the temperature of the molten resin layer B2 is lowered to at most the softening temperature thereof, and the thermoplastic resin inner layer B3 which has the first reinforcing layer 3 in which reinforcing fiber is arranged in axial direction, is formed as the pipe of two layers. While the fiber composite C1 for a second reinforcing layer made by holding thermoplastic resin on the continuous reinforcing fiber arranged in longitudinal direction, is spirally wound on the outer periphery of the pipe of two layers, it is welded to the first reinforcing layer A3, and a second reinforcing layer C2 in which reinforcing fiber is arranged almost in peripheral direction, is formed on the outer surface of the first reinforcing layer A3 as the pipe of three layers, thereby obtaining a desired fiber reinforced resin pipe E.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、繊維強化樹脂管の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a fiber-reinforced resin pipe.

〔従来の技術〕[Conventional technology]

合成樹脂管は、金属管と比較して軽量でかつ鯖びないと
いう優れた特性を有しているため、従来より広く用いら
れている。しかしながら・合成樹脂管は、金属管より耐
圧性及び耐衝撃性において劣っている。そこでこの問題
を解決す、 るため、熱可塑性樹脂管の外面に連続強化
繊維が管の長手方向に配されている熱硬化性樹脂強化層
を形成した複°合管及び同外面に連続強化繊維が管の略
周方向配されている熱硬化性樹脂強化層を形成した複合
管が提案されている(特公開62−773号公報、特開
昭57−100030号公報及び特開昭59−4812
0号公報参照)。
Synthetic resin pipes have been widely used since they have superior properties such as being lighter and less rusty than metal pipes. However, synthetic resin pipes are inferior to metal pipes in pressure resistance and impact resistance. Therefore, in order to solve this problem, we developed a composite tube with a thermosetting resin reinforcing layer in which continuous reinforcing fibers are arranged in the longitudinal direction of the tube on the outer surface of the thermoplastic resin tube, and a composite tube with continuous reinforcing fibers on the outer surface of the thermoplastic resin tube. A composite pipe has been proposed in which a thermosetting resin reinforced layer is formed which is arranged approximately in the circumferential direction of the pipe (Japanese Patent Publication No. 62-773, Japanese Patent Application Publication No. 57-100030, and Japanese Patent Application Publication No. 59-4812).
(See Publication No. 0).

上記複合管は、耐圧性及び耐衝撃性に優れている。とく
に連続強化繊維が管軸方向に配されているものは、管の
熱収縮が小さく、配管ラインの管の熱収縮によるトラブ
ルが少ないという4 利点を有している。
The above composite pipe has excellent pressure resistance and impact resistance. In particular, pipes in which continuous reinforcing fibers are arranged in the axial direction of the pipe have four advantages in that the heat shrinkage of the pipe is small and there are fewer troubles caused by heat shrinkage of the pipe in the piping line.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記複合管は、しかしながら、強化層が熱硬化性樹脂で
あるために内層の熱可塑性樹脂層との接着力が弱く、複
合管に温水を流したり高温下で使用した場合、熱可塑性
樹脂層と強化層との線膨張率の差により、熱可塑性樹脂
層と強化層との界面に剥離が発生し易いという問題があ
った。
However, since the reinforcing layer of the above composite pipe is made of thermosetting resin, its adhesion to the inner thermoplastic resin layer is weak, and when hot water is poured into the composite pipe or used at high temperatures, the thermoplastic resin layer may There has been a problem in that peeling is likely to occur at the interface between the thermoplastic resin layer and the reinforcing layer due to the difference in linear expansion coefficient with the reinforcing layer.

この発明の目的は、耐圧性及び耐衝撃性に優れ、しかも
温水を流したり高温下で使用した場合にも全く問題がな
い繊維強化樹脂管を容易かつ連続的にうろことができる
製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing fiber-reinforced resin pipes that have excellent pressure resistance and impact resistance, and can be easily and continuously rolled without causing any problems even when running hot water or using them at high temperatures. It's about doing.

〔課題を解決するための手段〕 この発明による繊維強化樹脂管の製造方法は、上記の目
的を達成するために、長手方向に配された連続強化繊維
に熱可塑性樹脂が保持されてなる第1強化層用シート状
繊維複合体から、管状体を連続成形する工程と、順次成
形されてくる管状体を前進させつつその内面にそって内
層用熱可塑性樹脂を溶融状態で押出し、管状体の内面に
溶融樹脂層を形成した後、溶融樹脂層をその軟化温度以
下に冷却し、強化繊維が軸方向に配された第1強化層を
有する熱可塑性樹脂内層を形成することにより2層管と
なす工程と、2層管をそのまま前進させつつその外周に
、長手方向に配された連続強化繊維に熱可塑性樹脂が保
持されてなる第2強化層用テープ状またはひも状繊維複
合体をスパイラル状に巻付けるとともに、これを第1強
化層に融着し、第1強化層の外面に強化繊維が略周方向
配された第2強化層を形成することにより3層管となす
工程とを含むことを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing a fiber reinforced resin pipe according to the present invention provides a method for manufacturing a fiber reinforced resin pipe in which a thermoplastic resin is held in continuous reinforcing fibers arranged in the longitudinal direction. A process of continuously molding a tubular body from a sheet-like fiber composite for the reinforcing layer, and extruding the thermoplastic resin for the inner layer in a molten state along the inner surface of the tubular body while advancing the tubular body that is sequentially molded. After forming a molten resin layer, the molten resin layer is cooled below its softening temperature to form a thermoplastic resin inner layer having a first reinforcing layer in which reinforcing fibers are arranged in the axial direction, thereby forming a two-layer pipe. The second reinforcing layer tape-like or string-like fiber composite, in which thermoplastic resin is held by continuous reinforcing fibers arranged in the longitudinal direction, is spirally formed around the outer periphery of the two-layer pipe while advancing as it is. Wrapping and fusing this to the first reinforcing layer to form a second reinforcing layer in which reinforcing fibers are arranged approximately circumferentially on the outer surface of the first reinforcing layer to form a three-layer pipe. It is characterized by:

第1および第2強化層に用いられる強化繊維としては、
熱可塑性樹脂の強化用として使用可能な連続繊維のすべ
てが用いられる。具体的には、ガラス繊維、炭素繊維、
シリコン・チタン・炭素繊維、ボロン繊維、微細な金属
繊維などの無機繊維、アラミド繊維、ビニロン繊維、エ
コノール繊維、ポリエステル繊維、ポリアミド繊維など
の有機繊維をあげることができる。
The reinforcing fibers used in the first and second reinforcing layers include:
All continuous fibers available for reinforcing thermoplastics may be used. Specifically, glass fiber, carbon fiber,
Examples include inorganic fibers such as silicone, titanium, carbon fibers, boron fibers, and fine metal fibers, and organic fibers such as aramid fibers, vinylon fibers, econol fibers, polyester fibers, and polyamide fibers.

そして、この連続強化繊維は、直径1〜数10μmの連
続フィラメントよりなるロービング状またはストランド
状のものが用いられる。第1強化層用の強化繊維と第2
強化層用の強化繊維とは、同じ種類および異なる種類の
いずれでもよい。
The continuous reinforcing fibers used are roving-like or strand-like continuous filaments having a diameter of 1 to several tens of micrometers. The reinforcing fiber for the first reinforcing layer and the second reinforcing fiber
The reinforcing fibers for the reinforcing layer may be of the same type or different types.

また連続強化繊維は、側繊維複合体ともにそれぞれ長手
方向に配されるが、これの外に第1強化層用シート状繊
維複合体の場合、長手方向に配された連続強化繊維と直
交ないし交差する連続強化繊維または有限長さの繊維を
配してもよいし、有限長さの繊維からなるクロス状繊維
材やネット状繊維材を配することも可能である。
In addition, the continuous reinforcing fibers are arranged in the longitudinal direction of both the side fiber composites, but in the case of the sheet-like fiber composite for the first reinforcing layer, the continuous reinforcing fibers are arranged at right angles or intersecting with the continuous reinforcing fibers arranged in the longitudinal direction. Continuous reinforcing fibers or fibers of finite length may be arranged, or cross-like fibers or net-like fibers made of fibers of finite length may be arranged.

第2強化層用テープ状繊維複合体の場合は、長手方向に
配された連続強化繊維に加えて上記同様の有限長さの繊
維を含ませてもよい。
In the case of the tape-shaped fiber composite for the second reinforcing layer, in addition to the continuous reinforcing fibers arranged in the longitudinal direction, the same finite length fibers as described above may be included.

内層用熱可塑性樹脂としては、管状に押出し成形可能な
ものであればとくに限定されないが、具体的には、ポリ
塩化ビニル、塩素化ポリ塩化ビニル、ポリエチレン、ポ
リプロピレン、ポリスチレン、ポリアミド、ポリカーボ
ネート、ポリフェニレンサルファイド、ポリスルホン、
ポリエーテルエーテルケトンなどがあげられる。
The thermoplastic resin for the inner layer is not particularly limited as long as it can be extruded into a tubular shape, but specific examples include polyvinyl chloride, chlorinated polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyamide, polycarbonate, and polyphenylene sulfide. , polysulfone,
Examples include polyetheretherketone.

これらの熱可塑性樹脂は、管の使用目的に応じて単独で
または複数の混合物として用いることができる。そして
前記熱可塑性樹脂には、熱安定剤、可塑剤、滑剤、酸化
防止剤、紫外線吸収剤、顔料、強化繊維のような添加剤
、無機充填材、加工助剤、改質剤などを配合し、でもよ
い。
These thermoplastic resins can be used alone or in a mixture depending on the intended use of the pipe. The thermoplastic resin is blended with additives such as heat stabilizers, plasticizers, lubricants, antioxidants, ultraviolet absorbers, pigments, reinforcing fibers, inorganic fillers, processing aids, modifiers, etc. , but that's fine.

第1及び第2強化層用の熱可塑性樹脂は、内層用熱可塑
性樹脂と同一である必要性は格別になく、融着性のよい
熱可塑性樹脂であればよい。
The thermoplastic resin for the first and second reinforcing layers does not necessarily have to be the same as the thermoplastic resin for the inner layer, and any thermoplastic resin with good fusion properties may be used.

しかしながら、第2強化層の熱可塑性樹脂を、内層用熱
可塑性樹脂に対する融着性よりも直接に接する第1強化
層用熱可塑性樹脂に対する融着性の方が大きいものとす
る方が好ましく、このようにすれば第1強化層と第2強
化層の層間接着性が高くなり、優れた繊維強化樹脂管が
得られる。なお、ここにいう融着性とは、双方の樹脂を
溶融状態になるまで加熱したうえで圧着し、冷却後融着
した界面が容易に破断しないことをいう。
However, it is preferable that the thermoplastic resin of the second reinforcing layer has a greater fusing property with the thermoplastic resin for the first reinforcing layer, which is in direct contact with it, than with the thermoplastic resin for the inner layer. By doing so, the interlayer adhesion between the first reinforcing layer and the second reinforcing layer becomes high, and an excellent fiber-reinforced resin pipe can be obtained. Note that the fusion property here refers to the fact that both resins are heated until they are in a molten state and then pressed together, and that the fused interface does not easily break after cooling.

第1強化層用シ゛−ト状繊維複合体の幅は、これより成
形せられる管状体の外周長さと略等しく、また厚みは第
1強化層の所望厚みによ1り決められるが、通常は0.
1n+m〜3■である。またシート状繊維複合体中の繊
維量は、5〜70容量%である。5容量%未満では充分
な補強効果が得られず、70容量%を超えると熱可塑性
樹脂内層と第2強化層との融着性か低下し充分に界面が
融着しない。
The width of the sheet-like fiber composite for the first reinforcing layer is approximately equal to the outer circumferential length of the tubular body formed from it, and the thickness is determined depending on the desired thickness of the first reinforcing layer, but usually 0.
1n+m to 3■. Further, the amount of fibers in the sheet-like fiber composite is 5 to 70% by volume. If it is less than 5% by volume, a sufficient reinforcing effect cannot be obtained, and if it exceeds 70% by volume, the fusion properties between the thermoplastic resin inner layer and the second reinforcing layer will decrease and the interface will not be sufficiently fused.

第2強化層用繊維複合体の幅及び厚みはとくに限定され
ないが、テープ状の繊維複合体の場合には、幅10〜1
00 l1ls厚み0,11〜3Iのものが用いられる
。またひも状の場合には、直径0.5〜5m11程度の
ものが用いられる。
The width and thickness of the fiber composite for the second reinforcing layer are not particularly limited, but in the case of a tape-shaped fiber composite, the width is 10 to 1
00 l1ls Thickness of 0.11 to 3I is used. Moreover, in the case of a string shape, one having a diameter of about 0.5 to 5 m11 is used.

第1強化層に第2強化層用テープ状またはひも状繊維複
合体を融着するには、これを1本または複数本加熱しな
がら第1強化層に巻付けるか、または巻付けた後にこれ
を第1強化層とともに加熱し、両者の熱可塑性樹脂を互
いに融着する。テープ状またはひも状繊維複合体を複数
本用いる場合には、すべてを同一方向に巻付けてもよい
し、巻角度をそれぞれ変えて巻付けてもよく、さらには
巻方向をそれぞれ変えてもよい。
In order to fuse the tape-like or string-like fiber composite for the second reinforcing layer to the first reinforcing layer, one or more tape-like or string-like fiber composites for the second reinforcing layer can be heated and wound around the first reinforcing layer, or after being wrapped, is heated together with the first reinforcing layer to fuse both thermoplastic resins together. When using multiple tape-shaped or string-shaped fiber composites, they may all be wound in the same direction, each wrapped at a different winding angle, or even the winding direction may be changed. .

連続強化繊維に熱可塑性樹脂を保持させる方法は、多数
のフィラメントよりなるロービング状またはストランド
状の束状連続強化繊維を、(i)粉体状熱可塑性樹脂の
流動床中を通過させる方法、(i i)粉体状熱可塑性
樹脂を分散した液体の槽中を通過させて粉体状熱可塑性
樹脂をフィラメント間に含浸させ、続いて溶融温度以上
に加熱して繊維と樹脂を一体化せしめるか、または樹脂
を含浸させた後いったん乾燥し、つぎに溶融温度以上に
加熱して繊維と樹脂を一体化せしめ、その後シート状、
テープ状またはひも状に成形する方法が採用される。な
お、溶融粘度が低い樹脂の場合には、上記束状連続強化
繊維を溶融樹脂の槽中に浸漬してこれに樹脂を含浸させ
る方法も可能である。
The method for retaining thermoplastic resin in continuous reinforcing fibers is to (i) pass continuous reinforcing fibers in the form of a roving or strand bundle consisting of a large number of filaments through a fluidized bed of powdered thermoplastic resin; i i) Impregnating the filaments with the powdered thermoplastic resin by passing it through a bath of liquid in which the powdered thermoplastic resin is dispersed, and then heating it above the melting temperature to integrate the fiber and resin. , or after impregnating with resin, dry it, then heat it above the melting temperature to integrate the fiber and resin, and then form a sheet,
A method of forming it into a tape or string shape is adopted. In the case of a resin having a low melt viscosity, it is also possible to immerse the bundled continuous reinforcing fibers in a bath of molten resin to impregnate it with the resin.

第2強化層の外面にさらに熱可塑性樹脂外層を設けても
よい。この場合外層に用いる熱可塑性樹脂には、とくに
制限はなくすべての熱可塑性樹脂を用いることができる
か、もちろん第2強化層に用いられている熱可塑性樹脂
と融着性のよい熱可塑性樹脂を用いるのが好ましい。
A thermoplastic resin outer layer may be further provided on the outer surface of the second reinforcing layer. In this case, there are no particular restrictions on the thermoplastic resin used for the outer layer, and any thermoplastic resin can be used, or of course, a thermoplastic resin that has good fusion properties with the thermoplastic resin used for the second reinforcing layer may be used. It is preferable to use

〔作  用〕 この発明による繊維強化樹脂管の製造方法は、長手方向
に配された連続強化繊維に熱可塑性樹脂が保持されてな
る第1強化層用シート状繊維複合体から、管状体を連続
成形し、順次成形されてくる管状体を前進させつつその
内面にそって内層用熱可塑性樹脂を溶融状態で押出し、
管状体の内面に溶融樹脂層を形成した後、溶融樹脂層を
その軟化温度以下に冷却し、強化繊維が軸方向に配され
た第1強化層を有する熱可塑性樹脂内層を形成すること
により2層管となし、2層管をそのまま前進させつつそ
の外周に、長手方向に配された連続強化繊維に熱可塑性
樹脂が保持されてなる第2強化層用テープ状またはひも
状繊維複合体をスパイラル状に巻付けるとともに、これ
を第1強化層に融着し、第1強化層の外面に強化繊維が
略周方向配された第2強化層を形成することにより3層
管となすものであるから、内層、第1強化層及び第2強
化層の境界においてそれぞれ熱可塑性樹脂が順次連続的
に融着一体化する。しかも上述のように、管状体の内面
にそって内層用熱可塑性樹脂を溶融状態で押出しするこ
とにより形成された溶融樹脂層をその軟化温度以下にい
ったん冷却した後、2層管の外周に第2強化層用テープ
状またはひも状繊維複合体をスパイラル状に巻付けると
ともに、これを第1強化層に融着するものであるから、
管厚に厚みむらが生じない。
[Function] The method for manufacturing a fiber-reinforced resin pipe according to the present invention involves continuously forming a tubular body from a sheet-like fiber composite for a first reinforcing layer in which a thermoplastic resin is held in continuous reinforcing fibers arranged in the longitudinal direction. The thermoplastic resin for the inner layer is extruded in a molten state along the inner surface of the tubular body as it is molded and the tubular body is successively molded.
After forming a molten resin layer on the inner surface of the tubular body, the molten resin layer is cooled to a temperature below its softening temperature to form a thermoplastic resin inner layer having a first reinforcing layer in which reinforcing fibers are arranged in the axial direction. While the two-layer pipe is advanced as it is, a tape-like or string-like fiber composite for the second reinforcing layer, in which thermoplastic resin is held by continuous reinforcing fibers arranged in the longitudinal direction, is spirally attached to the outer periphery of the two-layer pipe. A three-layer pipe is formed by winding the reinforcing layer into a shape, fusing it to the first reinforcing layer, and forming a second reinforcing layer in which reinforcing fibers are arranged approximately in the circumferential direction on the outer surface of the first reinforcing layer. From there, the thermoplastic resin is sequentially and continuously fused and integrated at the boundaries of the inner layer, the first reinforcing layer, and the second reinforcing layer. Moreover, as mentioned above, after the molten resin layer formed by extruding the thermoplastic resin for the inner layer in a molten state along the inner surface of the tubular body is cooled to below its softening temperature, a layer is formed on the outer periphery of the two-layer tube. Since the tape-like or string-like fiber composite for the second reinforcing layer is wound in a spiral shape and is fused to the first reinforcing layer,
No unevenness in pipe thickness.

〔実 施 例〕〔Example〕

まず、この発明の実施に使用する装置につき、図面を参
照して説明する。以下の説明において、・前とは第1図
の右方向をいうものとする。
First, an apparatus used to carry out the present invention will be explained with reference to the drawings. In the following description, the term "front" refers to the right direction in FIG.

第1図ないし第3図に示す繊維強化樹脂管の製造装置は
、第1強化層用シート状繊維複合体(A1)が巻回され
ている巻戻しロール(1)と、その前方に配置されかつ
先端部が前向き直角に折曲げられ、その外周部が横断面
円形の内金型(2)となされた内層熱可塑性樹脂押出し
用第1押出機(3)と、第1押出機(3)の後部−側方
に配置された加熱手段(4)と、内金型(2)を両側か
ら挾んでいる一対の鼓状賦形ロール(5)と、第1押出
機(3)の先端部の軸心に設けられかつ内金型(2)よ
り前方に突き出した突出部(6a)を有するコア(6)
と、内金型(2)の先端部分からコア(6)の突出部(
6a)の先端近くまでのびている外金型(7)と、外金
型(7)の前方でかつこれと同心状に断熱材(8)を介
して配置された冷却金型(9)と、冷却金型(9)の前
方に配置されたテープ状繊維複合体(C1)の巻付機(
10)と、その巻付は位置の一側方に配された加熱手段
(11)と、加熱手段(11)の前方に配置された外層
熱可塑性樹脂押出し用第2押出機(12)と、第2押出
機(12)の先端に冷却金型(9)と同心状に設けられ
た被覆金型(13)と、被覆金型(13)の前方に配置
された冷却装置(14)と、冷却装置(14)の前方に
配置せられた引取機(15)とを備えているものである
The apparatus for manufacturing a fiber-reinforced resin pipe shown in FIGS. 1 to 3 includes an unwinding roll (1) around which a sheet-like fiber composite for a first reinforcing layer (A1) is wound, and an unwinding roll (1) disposed in front of the unwinding roll (1). and a first extruder (3) for extruding an inner layer thermoplastic resin, the tip of which is bent forward at a right angle and whose outer periphery is an inner mold (2) with a circular cross section; a heating means (4) disposed on the rear side of the body, a pair of drum-shaped forming rolls (5) sandwiching the inner mold (2) from both sides, and the tip of the first extruder (3). A core (6) having a protrusion (6a) provided at the axis of the inner mold (2) and protruding forward from the inner mold (2).
and the protrusion of the core (6) from the tip of the inner mold (2) (
6a); and a cooling mold (9) placed in front of and concentrically with the outer mold (7) via a heat insulating material (8). A winding machine for the tape-shaped fiber composite (C1) is placed in front of the cooling mold (9)
10), a heating means (11) disposed on one side of the wrapping position, a second extruder (12) for extruding the outer layer thermoplastic resin disposed in front of the heating means (11), a covering mold (13) provided concentrically with the cooling mold (9) at the tip of the second extruder (12); a cooling device (14) disposed in front of the covering mold (13); It is equipped with a take-up machine (15) placed in front of the cooling device (14).

内金型(2)と一対の鼓状賦形ロール(5)との間には
、成形すべき管状体(A2)の厚み分の間隙か設けられ
ている。コア(6)の内金型内部分(6b)は小径であ
り、内金型(2)の先端近くから逆円錐状に太くなって
突出部(6a)では大径の円柱状となっている。この突
出部(6a)と管状体くA2)との間には、第1押8機
(3)から押出されてくる溶融樹脂(Bl)により形成
せられる管状溶融樹脂層(B2)の厚み分の間隙が設け
られている。
A gap corresponding to the thickness of the tubular body (A2) to be formed is provided between the inner mold (2) and the pair of drum-shaped forming rolls (5). The inner mold inner part (6b) of the core (6) has a small diameter, becomes thicker in an inverted conical shape near the tip of the inner mold (2), and becomes a large diameter columnar shape at the protrusion (6a). . Between this protruding part (6a) and the tubular body A2), there is a thickness of the tubular molten resin layer (B2) formed by the molten resin (Bl) extruded from the first presser 8 (3). A gap is provided.

第4図は、シート状繊維複合体(A1)から管状体くA
2)を形成するため、一対の賦形ロール(5)を用いる
代わりに、外金型(27)を、上記外金型(7)より後
方に延長して内金型(2)の全体を覆うようにした変形
例を示す。
Figure 4 shows how the sheet fiber composite (A1) is separated from the tubular body A.
2), instead of using a pair of shaping rolls (5), the outer mold (27) is extended rearward from the outer mold (7) to form the entire inner mold (2). A modification example in which it is covered is shown.

上記シート状繊維複合体(A1)及びテープ状繊維複合
体(C1)は、第5図に示す流動床装置(16)を用い
て製造する。
The sheet-like fiber composite (A1) and tape-like fiber composite (C1) are manufactured using a fluidized bed apparatus (16) shown in FIG. 5.

この流動床装置(IB)の槽底は多孔板(17)で形成
せられており、気体供給路から送られてきた空気や窒素
などの気体(G)が多孔板(17)の下方からこれの多
数の孔を通って上方に噴出せしめられる。その結果、流
動床装置(16)の槽内に入れられた粉体状熱可塑性樹
脂は、噴出気体(G)によって流動化状態となり流動床
(1?)が形成される。流動床装置(16)の槽内及び
その前後壁上端には、束状強化繊維を案内するためのガ
イド・ロール(18)が設けられている。
The tank bottom of this fluidized bed apparatus (IB) is formed by a perforated plate (17), and gas (G) such as air or nitrogen sent from the gas supply path is passed through from below the perforated plate (17). It is forced to eject upward through numerous holes. As a result, the powdered thermoplastic resin placed in the tank of the fluidized bed device (16) is brought into a fluidized state by the ejected gas (G), and a fluidized bed (1?) is formed. Guide rolls (18) for guiding bundled reinforcing fibers are provided in the tank of the fluidized bed device (16) and at the upper ends of its front and rear walls.

上記流動床装置(16)を用い、巻戻しロール(■9)
から多数の連続フィラメントよりなる束状強化繊維(P
I)10本を、巻取りロール(20)によりひねりが生
じないようにしながら巻戻し、粉体状熱可塑性樹脂の流
動床(R)中を通過させ、束状強化繊維(Fl)の各フ
ィラメントに粉体状樹脂を付着させる。粉体状熱可塑性
樹脂としては、酢酸ビニル−塩化ビニル共重合体(酢酸
ビニル量8%、平均粒径250μm)を用い、強化繊維
としては直径23μmのフィラメントよりなるロービン
グ状ガラス繊維(4400tex)を用いた。
Using the above fluidized bed device (16), unwind roll (■9)
Bundled reinforcing fibers (P
I) The 10 fibers are rewound using a winding roll (20) while being careful not to twist, and passed through a fluidized bed (R) of powdered thermoplastic resin to separate each filament of the bundled reinforcing fibers (Fl). Attach powdered resin to. As the powdered thermoplastic resin, vinyl acetate-vinyl chloride copolymer (8% vinyl acetate amount, average particle size 250 μm) was used, and as the reinforcing fiber, roving glass fiber (4400 tex) consisting of filaments with a diameter of 23 μm was used. Using.

粉体状熱可塑性樹脂付着強化繊維(F2)を約180℃
に加熱された1対の加熱ロール(21)を通過させて加
熱・加圧し、熱可塑性樹脂を溶融させてこれを強化繊維
と一体化せしめ、厚み0゜6■の繊維複合体(F3〉を
得、これを巻取りロール(20)に巻取った。この繊維
複合体(F3)の熱可塑性樹脂と強化繊維との容量割合
は、熱可塑性樹脂75%、強化繊維25%であった。
Powdered thermoplastic resin-adhered reinforcing fiber (F2) at approximately 180℃
The thermoplastic resin is heated and pressurized by passing through a pair of heating rolls (21) heated to The fiber composite (F3) had a volume ratio of thermoplastic resin and reinforcing fibers of 75% thermoplastic resin and 25% reinforcing fibers.

上記繊維複合体くB3)を切断し、連続強化繊維が長手
方向に配された幅911111%厚み0.6mmのシー
ト状繊維複合体(A1)を、また連続強化繊維か長さ方
向に配された幅23.5III11.厚み0゜61のテ
ープ状繊維複合体(C1)をそれぞれ得た。
The above fiber composite (B3) was cut to obtain a sheet-like fiber composite (A1) with a width of 911111% and a thickness of 0.6 mm, in which continuous reinforcing fibers were arranged in the longitudinal direction. width 23.5III11. A tape-shaped fiber composite (C1) having a thickness of 0°61 was obtained.

上記のようにして製造された第1強化層用シート状繊維
複合体(A1)を第1図の巻戻しロール′(1)に移し
、これを巻戻しつつ加熱手段(4)である熱風発生機に
より熱風を吹付けて加熱し、つぎに第1強化層用シート
状繊維複合体(A1)の両縁部を突合わせて賦形ロール
(5)と内金型(2)とにより外径2゛9■、厚み0,
6■の管状体(A2)に連続成形する。
The sheet-like fiber composite for the first reinforcing layer (A1) produced as described above is transferred to the unwinding roll' (1) shown in FIG. The sheet-like fiber composite for the first reinforcing layer (A1) is heated by blowing hot air using a machine, and then both edges of the sheet-like fiber composite for the first reinforcing layer (A1) are brought together and the outer diameter is 2゛9■, thickness 0,
Continuously mold into a 6-inch tubular body (A2).

上記管状体(A2)を内金型(2)及びコア(6)の突
出部(6a)と、外金型(7)との間の環状間隙に導き
入れる。このさい内金型(2)、コア(6)及び外金型
(7)は200℃に加熱されている。
The tubular body (A2) is introduced into the annular gap between the inner mold (2) and the protrusion (6a) of the core (6) and the outer mold (7). The inner mold (2), core (6) and outer mold (7) are heated to 200°C.

順次成形されてくる管状体(A2)を前進させつつその
内面にそって第1押出機(3)より内層用熱可塑性樹脂
(B1)を溶融状態で押出し、管状体(A2)の内面に
溶融樹脂層(B2)を形成した後、これを79℃の冷却
金型(9)に導き、溶融樹脂層(B2)をその軟化温度
である79℃まで冷却し、強化繊維が軸方向に配された
第1強化層(八3)を有する厚み1.5層1mの熱可塑
性樹脂内層(B3)を形成することにより外径29■の
2層管となす。
The thermoplastic resin for the inner layer (B1) is extruded in a molten state from the first extruder (3) along the inner surface of the tubular body (A2) that is being formed sequentially, and is melted onto the inner surface of the tubular body (A2). After forming the resin layer (B2), it is introduced into a cooling mold (9) at 79°C, and the molten resin layer (B2) is cooled to its softening temperature of 79°C, so that reinforcing fibers are arranged in the axial direction. By forming a thermoplastic resin inner layer (B3) with a thickness of 1.5 layers and 1 m having a first reinforcing layer (83), a two-layer pipe with an outer diameter of 29 cm was obtained.

内層用熱可塑性樹脂(B1)としては、塩素化ポリ塩化
ビニル(塩素化度64重量%)を用いた。
As the thermoplastic resin for the inner layer (B1), chlorinated polyvinyl chloride (degree of chlorination: 64% by weight) was used.

2層管をそのまま前進させつつその外周に、巻付機(l
O)により第2強化層用テープ状繊維複合体(C1)を
軸方向に対して75″の角度でスパイラル状に巻付ける
とともに、加熱手段(11)である赤外線ヒータにより
、2層管及びテープ状繊維複合体(C1)を加熱し、後
者を第1強化層(八3)に融着して第1強化層(A3)
の外面に強化繊維か略周方向配された第2強化層(C2
)を形成することにより3層管となす。
While the two-layer pipe is being moved forward, a winding machine (l
O), the tape-shaped fiber composite for the second reinforcing layer (C1) is wound in a spiral shape at an angle of 75'' to the axial direction, and the infrared heater serving as the heating means (11) is used to wrap the two-layer tube and the tape. The shaped fiber composite (C1) is heated and the latter is fused to the first reinforcing layer (83) to form the first reinforcing layer (A3).
A second reinforcing layer (C2
) to form a three-layer pipe.

3層管を被覆金型(13)に導き、第2押出機(12)
により溶融可塑化された外層用熱可塑性樹脂を第2強化
層(C2)の外周に押出してこれを被覆し、厚みlll
l11の熱可塑性樹脂外層(D)を形成した後、冷却装
置(14)で冷却サイジングを施し、4層管となす。外
層用熱可塑性樹脂としてはポリ塩化ビニルを用いた。上
記一連の工程を引取機(15)で引き取りつつ行ない、
第6図に示すような4層の複合管よりなる内径24.8
+nm、外径32.2mmの繊維強化樹脂管(E)を連
続的に製造した。
The three-layer tube is guided into the coating mold (13), and the second extruder (12)
The thermoplastic resin for the outer layer, which has been melted and plasticized by
After forming the thermoplastic resin outer layer (D) of l11, it is cooled and sized using a cooling device (14) to form a four-layer tube. Polyvinyl chloride was used as the thermoplastic resin for the outer layer. The above series of steps are carried out while being picked up by a picking machine (15),
Internal diameter 24.8 made of 4-layer composite pipe as shown in Figure 6
Fiber-reinforced resin pipes (E) with a diameter of +nm and an outer diameter of 32.2 mm were continuously manufactured.

上記において、加熱手段(4)を配する代わりに、一対
の賦形ロール(5)にヒータを内蔵せしめ、これをシー
ト状繊維複合体(A1)の軟化温度以上に加熱するよう
にしてもよい。
In the above, instead of providing the heating means (4), a heater may be built into the pair of shaping rolls (5) and heated to a temperature higher than the softening temperature of the sheet-like fiber composite (A1). .

また2層管の外周にテープ状繊維複合体(C1)を巻付
けるさい、2層管が変形するのを防止するため、コア(
6)の突出部(6a)をその巻付は位置まで突出させて
もよいし、あるいはコア(6)の先端より2層管の内部
に冷却空気を吹込み2層管の内面を冷却しつつテープ状
繊維複合体(C1)を巻付けてもよい。
In addition, when wrapping the tape-like fiber composite (C1) around the outer periphery of the two-layer pipe, in order to prevent the two-layer pipe from deforming, the core (
The protrusion (6a) of 6) may be made to protrude as far as the winding position, or cooling air may be blown into the inside of the two-layer tube from the tip of the core (6) while cooling the inner surface of the two-layer tube. A tape-shaped fiber composite (C1) may be wound around it.

また冷却金型(9)の代わりに冷風ブロアを用いてもよ
い。
Moreover, a cold air blower may be used instead of the cooling mold (9).

また冷却サイジングを行なう冷却装置(14)としては
水槽が一般的であるが、これに限られるものではない。
Further, although a water tank is generally used as a cooling device (14) for performing cooling sizing, it is not limited to this.

なお、加熱手段(4)の位置は図示の場所に限定されな
いし、場合によってはこれを省くこともてきる。
Note that the position of the heating means (4) is not limited to the location shown in the figure, and it may be omitted depending on the case.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、内層、第1強化層及び第2強化層の
各境界においてそれぞれ熱可塑性樹脂か順次連続的に融
着一体化し、しかも厚みむらのない繊維強化樹脂管を容
易かつ連続的にうろことができる。
According to this invention, the thermoplastic resin is sequentially and continuously fused and integrated at each boundary of the inner layer, the first reinforcing layer, and the second reinforcing layer, and a fiber-reinforced resin pipe with an even thickness can be easily and continuously formed. You can wander around.

そして得られた繊維強化樹脂管の第1強化層には、管の
軸方向に連続強化繊維か配されているので、管の線膨張
が抑制され、その結果、熱収縮量が少なくなって各層の
界面での剥離か発生しにくくなる。また第2強化層には
、管の略周方向に連続強化繊維が配されているので、第
2の強化層により管の耐圧性及び耐衝撃性か向上する。
Since the first reinforcing layer of the obtained fiber-reinforced resin pipe has continuous reinforcing fibers arranged in the axial direction of the pipe, the linear expansion of the pipe is suppressed, and as a result, the amount of thermal contraction is reduced and each layer Peeling at the interface is less likely to occur. Further, since the second reinforcing layer includes continuous reinforcing fibers arranged approximately in the circumferential direction of the tube, the second reinforcing layer improves the pressure resistance and impact resistance of the tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施に用いられる繊維強化樹脂管の
製造装置の一部切欠平面図、第2図及び第3図はそれぞ
れ第1図の■−■線及び■−■線にそう断面図、第4図
は管状体成形部分の変形例を示す一部を切欠いた部分平
面図、第・ 5図は流動床装置の垂直断面図、第6図は
この発明により得られた繊維強化樹脂管の部分斜視図で
、外層、第2強化層及び第1強化層が順次一部切欠かれ
ている。 (A1)・・・第1強化層用シート状繊維複合体、(A
2)・・・管状体、(A3)・・・第1強化層、(B1
)・・・内層用熱可塑性樹脂、(B2)・・・溶融樹脂
層、(B3)・・・熱可塑性樹脂内層、(C1)・・・
第2強化層用テープ状繊維複合体、(C2)・・・第2
強化層。 以上 特許出願人  積水化学工業株式会社
FIG. 1 is a partially cutaway plan view of a manufacturing apparatus for fiber reinforced resin pipes used in carrying out the present invention, and FIGS. 2 and 3 are cross-sectional views taken along the lines 4 is a partially cutaway plan view showing a modified example of the tubular body molded part, FIGS. 5 and 5 are vertical sectional views of the fluidized bed apparatus, and FIG. FIG. 3 is a partial perspective view of the tube in which the outer layer, the second reinforcing layer and the first reinforcing layer are successively cut away. (A1)...Sheet-like fiber composite for first reinforcing layer, (A
2)... Tubular body, (A3)... First reinforcing layer, (B1
)...Thermoplastic resin for inner layer, (B2)... Molten resin layer, (B3)... Thermoplastic resin inner layer, (C1)...
Tape-shaped fiber composite for second reinforcing layer, (C2)...second
reinforcement layer. Patent applicant: Sekisui Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 a)長手方向に配された連続強化繊維に熱可塑性樹脂が
保持されてなる第1強化層用シート状繊維複合体(A1
)から、管状体(A2)を連続成形する工程と、 b)順次成形されてくる管状体(A2)を前進させつつ
その内面にそって内層用熱可塑性樹脂(B1)を溶融状
態で押出し、管状体(A2)の内面に溶融樹脂層(B2
)を形成した後、溶融樹脂層(B2)をその軟化温度以
下に冷却し、強化繊維が軸方向に配された第1強化層(
A3)を有する熱可塑性樹脂内層(B3)を形成するこ
とにより2層管となす工程と、 c)2層管をそのまま前進させつつその外周に、長手方
向に配された連続強化繊維に熱可塑性樹脂が保持されて
なる第2強化層用テープ状またはひも状繊維複合体(C
1)をスパイラル状に巻付けるとともに、これを第1強
化層(A3)に融着し、第1強化層(A3)の外面に強
化繊維が略周方向配された第2強化層(C2)を形成す
ることにより3層管となす工程 とを含む繊維強化樹脂管の製造方法。
[Scope of Claims] a) A sheet-like fiber composite for the first reinforcing layer (A1
b) extruding the thermoplastic resin for the inner layer (B1) in a molten state along the inner surface of the tubular body (A2) while advancing the tubular body (A2) that has been sequentially molded; A molten resin layer (B2) is formed on the inner surface of the tubular body (A2).
), the molten resin layer (B2) is cooled to below its softening temperature to form a first reinforcing layer (B2) in which reinforcing fibers are arranged in the axial direction.
A3) forming a two-layer tube by forming a thermoplastic resin inner layer (B3) having A tape-like or string-like fiber composite for the second reinforcing layer in which resin is retained (C
1) is spirally wound and fused to the first reinforcing layer (A3) to form a second reinforcing layer (C2) in which reinforcing fibers are arranged approximately circumferentially on the outer surface of the first reinforcing layer (A3). A method for manufacturing a fiber-reinforced resin pipe, comprising the step of forming a three-layer pipe by forming a three-layer pipe.
JP2338441A 1990-11-30 1990-11-30 Manufacture of fiber reinforced resin pipe Pending JPH04201548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2338441A JPH04201548A (en) 1990-11-30 1990-11-30 Manufacture of fiber reinforced resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2338441A JPH04201548A (en) 1990-11-30 1990-11-30 Manufacture of fiber reinforced resin pipe

Publications (1)

Publication Number Publication Date
JPH04201548A true JPH04201548A (en) 1992-07-22

Family

ID=18318189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2338441A Pending JPH04201548A (en) 1990-11-30 1990-11-30 Manufacture of fiber reinforced resin pipe

Country Status (1)

Country Link
JP (1) JPH04201548A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9609793B2 (en) 2013-07-03 2017-03-28 Shin-Etsu Polymer Co., Ltd. Electromagnetic shielding film, flexible printed wiring board with electromagnetic shielding film, electronic device and method for forming the same
KR20190114950A (en) * 2017-02-13 2019-10-10 타츠타 전선 주식회사 Manufacturing method of ground member, shielded printed wiring board and shielded printed wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9609793B2 (en) 2013-07-03 2017-03-28 Shin-Etsu Polymer Co., Ltd. Electromagnetic shielding film, flexible printed wiring board with electromagnetic shielding film, electronic device and method for forming the same
KR20190114950A (en) * 2017-02-13 2019-10-10 타츠타 전선 주식회사 Manufacturing method of ground member, shielded printed wiring board and shielded printed wiring board
KR20200019796A (en) * 2017-02-13 2020-02-24 타츠타 전선 주식회사 Ground member, shielded printed circuit board, and method for manufacturing shielded printed circuit board

Similar Documents

Publication Publication Date Title
US4308895A (en) Flame bonded hose
JP3117492B2 (en) Method for producing fiber reinforced thermoplastic resin tube
JPH0911355A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH04201548A (en) Manufacture of fiber reinforced resin pipe
JPH0584847A (en) Production of fiber reinforced thermoplastic resin pipe
JP2674844B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH04201547A (en) Manufacture of fiber reinforced resin pipe
JPH044132A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH0531782A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH03243333A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH04201549A (en) Manufacture of fiber reinforced resin pipe
JPH07290591A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JPH03149485A (en) Multiple-unit tube
JPH07256779A (en) Manufacture of fiber reinforced thermoplastic resin composite tube
JP2726123B2 (en) Manufacturing method of fiber reinforced resin pipe
JPH0460292A (en) Manufacture of fiber reinforced resin pipe
JPH04201550A (en) Manufacture of fiber reinforced resin pipe
JPH086847B2 (en) Composite pipe and manufacturing method thereof
JP3214892B2 (en) Method for producing hollow cross-section shaped body
JPH0692127B2 (en) Method for producing fiber reinforced thermoplastic resin pipe
JPH048983A (en) Manufacture of fiber reinforced thermoplastic resin pipe
JPH05154936A (en) Method and apparatus for manufacturing fiber reinforced thermoplastic resin pipe
JPH07132565A (en) Preparation of fiber-reinforced thermoplastic resin composite pipe
JPH03146326A (en) Manufacture of fiber-reinforced thermoplastic resin pipe
JPH05138758A (en) Production of fiber reinforced thermoplastic resin pipe