JPH04196308A - Electron beam deflector - Google Patents

Electron beam deflector

Info

Publication number
JPH04196308A
JPH04196308A JP32289790A JP32289790A JPH04196308A JP H04196308 A JPH04196308 A JP H04196308A JP 32289790 A JP32289790 A JP 32289790A JP 32289790 A JP32289790 A JP 32289790A JP H04196308 A JPH04196308 A JP H04196308A
Authority
JP
Japan
Prior art keywords
electrodes
electron beam
deflector
electrode
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32289790A
Other languages
Japanese (ja)
Inventor
Shinichi Kato
慎一 加藤
Hiroyuki Ito
博之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32289790A priority Critical patent/JPH04196308A/en
Publication of JPH04196308A publication Critical patent/JPH04196308A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To make it possible to decrease the distortion of the electron beam when an deflecting operation is conducted by a method wherein a plurality of parts formed by fractionizing the electrode of a deflector are arranged, and optimized voltage is applied to the fractionized electrodes in circumferential direction against the path of an electron beam. CONSTITUTION:A linear material is mounted on a retainer 22 in order to provide a plurality of electrodes 21 which constitutes a deflector. The shape of the electrodes can be made uniform by forming the electrodes 21 using a linear material, and an adverse effect on processing accuracy can also be reduced. Also, as the electrodes 21 are linearly formed, a large number of them can be arranged on the retainer 22, and optimized voltage against the amount of deflection of an electron beam can be applied to each electrode. As a result, the electrodes 21 can be arranged in a highly precise manner, and the distortion of the beam form when deflected can be made small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子線描画装置及び、電子線応用装置におい
て用いられる偏向器に関し、特に偏向時の電子線の歪を
低減する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron beam drawing apparatus and a deflector used in an electron beam application apparatus, and particularly to a method for reducing distortion of an electron beam during deflection.

〔従来の技術〕[Conventional technology]

従来の装置における偏向器は、円筒形状の部材等を分割
することにより電極を形成し、偏向量に応じた電圧を各
電極に印加することにより動作させている。HL−70
0で採用している偏向器の従来構成を第2図に示す。円
筒を4分割して製作した電極21.保持器22.電極を
駆動する偏向制御系13にて構成される。ここで電極2
1は、素材を精度良く円筒状に加工し4等分割する。分
割された電極は治具を使用し保持器22に取付けられる
。このような構成の偏向器においては、電極の分割時及
び保持器への取付時において加工及び取付精度が低下す
る。またこの構成の偏向器は回転対称収差のみならず4
回対称収差が同時に生じ、電子線形状の歪を大きくする
要因となっている。
A deflector in a conventional device is operated by forming electrodes by dividing a cylindrical member or the like, and applying a voltage corresponding to the amount of deflection to each electrode. HL-70
The conventional configuration of the deflector used in the 0 is shown in FIG. Electrode 21 made by dividing a cylinder into four parts. Retainer 22. It is composed of a deflection control system 13 that drives the electrodes. Here electrode 2
1, the material is processed into a cylindrical shape with high precision and divided into four equal parts. The divided electrodes are attached to the holder 22 using a jig. In a deflector having such a configuration, processing and mounting accuracy decreases when dividing the electrodes and mounting them on the holder. In addition, the deflector with this configuration not only suffers from rotationally symmetrical aberrations but also
A rotational aberration also occurs, which is a factor that increases the distortion of the electron beam shape.

電子線形状の歪を小さくするため、電極数を8極以上に
分割する方法も考案されているが、電極が小さくなるた
めの加工精度の影響を受は易く、また保持器への取付け
が難しい面がある。
In order to reduce the distortion of the electron beam shape, a method of dividing the number of electrodes into 8 or more has been devised, but since the electrodes are small, they are easily affected by processing accuracy and are difficult to attach to the cage. There is a side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の装置における偏向器は、円筒等を分割して製作さ
れた電極を保持器に取付けることにより構成されており
、電極を精度良く製作配置及び電。
The deflector in a conventional device is constructed by attaching electrodes made by dividing a cylinder or the like to a holder, and the electrodes are precisely manufactured, arranged, and powered.

圧印前の方法に問題があった。There was a problem with the method before coining.

本発明の目的は、線状に精度良く形成された部材により
電極を製作配置することにより加工精度および保持精度
による性能への依存を低減させ、増加した電極により偏
向量に対する最適化された電圧印加を行うことを目的と
する。
The purpose of the present invention is to reduce the dependence of performance on processing accuracy and holding accuracy by manufacturing and arranging electrodes using members that are precisely formed in a linear shape, and to optimize voltage application for the amount of deflection by increasing the number of electrodes. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

偏向器を構成する電極を多数設けるために、線状部材を
保持器に取付けることにより形成したものである。また
電子ビームによるチャージアップを防止するためシール
ド板を設けた。
In order to provide a large number of electrodes constituting the deflector, it is formed by attaching a linear member to a holder. A shield plate was also installed to prevent charge-up due to the electron beam.

更に、電子線の偏向量に対し最適化された電圧を印加す
るために、線状電極各々に独立した電圧を印加できる電
源を有したものである。
Furthermore, in order to apply a voltage optimized for the amount of deflection of the electron beam, a power source is provided that can apply independent voltages to each of the linear electrodes.

〔作用〕[Effect]

電極を線状部材により形成することで、電極形状を均一
にすることができ、加工精度の影響を低減させることが
できる。また電極は線状であるため保持器に対し多数配
置することができ、電子線の偏向量に対しより最適化さ
れた電圧を各々の電極に印加することが可能となる。
By forming the electrode using a linear member, the shape of the electrode can be made uniform, and the influence of processing accuracy can be reduced. Further, since the electrodes are linear, a large number of electrodes can be arranged on the holder, and a voltage more optimized for the amount of deflection of the electron beam can be applied to each electrode.

〔実施例〕〔Example〕

第1図は本発明の全体構成を示す。電子銃1より放出さ
れる電子線2は絞り3、電子レンズ4により形状と電流
密度を制御されて試料に照射される。ブランカー5とプ
ランカー制御系6は電子線2のON、OFFを制御する
。試料12はステージ11上に装着されており、一方ス
テージ]1はレーザ制御系17、レーザ干渉計19によ
り精度良く位置計測される。レーザ干渉計]9は位置計
測のみならず、DCサーボモータ18、モータ制御系1
6をも制御しておリステージ11の目標位置への移動及
び位置決め制御をも支配している。
FIG. 1 shows the overall configuration of the present invention. An electron beam 2 emitted from an electron gun 1 is irradiated onto a sample with its shape and current density controlled by an aperture 3 and an electron lens 4. A blanker 5 and a plunker control system 6 control ON/OFF of the electron beam 2. A sample 12 is mounted on a stage 11, and the position of the stage 1 is precisely measured by a laser control system 17 and a laser interferometer 19. [Laser interferometer] 9 not only measures position, but also measures DC servo motor 18 and motor control system 1.
6, and controls the movement and positioning of the restage 11 to the target position.

電子I!2を試料12上への位置決めは偏向制御系13
及び偏向器8によって実行される。試料12上に形成さ
れたパターンのエツジ検出は試料12から放出される二
次電子を検出器10によって検出し、検出回路14によ
って演算処理される。装置全体の制御はコンピュータ]
5により行われる。
Electronic I! 2 onto the sample 12 using the deflection control system 13.
and deflector 8. Edge detection of the pattern formed on the sample 12 is performed by detecting secondary electrons emitted from the sample 12 by the detector 10, and arithmetic processing is performed by the detection circuit 14. Computer controls the entire device]
5.

標準マーク20は偏向系のキャリブレーション及び装置
のテストに使用される。
Standard marks 20 are used for deflection system calibration and equipment testing.

対物レンズの中には非点収差補正装W9が装着されてお
り、偏向制御系13からの指示による非点補正制御回路
7により電子線2の形状が制御される。
An astigmatism corrector W9 is installed in the objective lens, and the shape of the electron beam 2 is controlled by the astigmatism correction control circuit 7 based on instructions from the deflection control system 13.

第3図(a)に本発明による偏向器構造を示す。FIG. 3(a) shows a deflector structure according to the present invention.

線状部材から成る電極21、保持器22、電子線径路に
おける絶縁物をシールドするためのシールド板23、各
電極に対し最適化された電圧を供給する偏向制御系13
からなる。第3図(b)は電極を線材により製作した例
である。保持器22には電極を位置決めするガイドが設
けており、これによって電極を精度良く配置することが
できる。
An electrode 21 made of a linear member, a holder 22, a shield plate 23 for shielding an insulator in the electron beam path, and a deflection control system 13 that supplies an optimized voltage to each electrode.
Consisting of FIG. 3(b) shows an example in which the electrodes are made of wire. The holder 22 is provided with a guide for positioning the electrodes, which allows the electrodes to be placed with high precision.

また保持器22は、異なる材料から成り、電子線行路に
面する部材を加熱、部材等にて除去できる素材24とす
れば、電子線行路におけるチャージアップを防止するこ
とができ、シールド板23を着用することでより効果的
となる。
In addition, if the holder 22 is made of a different material and the material 24 is made of a material that can be heated and removed by heating the member facing the electron beam path, charge-up in the electron beam path can be prevented, and the shield plate 23 can be removed. It becomes more effective when worn.

また電極21を一体加工等によって個々を精度良く加工
することでも同一の効果が得られ、これらの電極素材に
形状記憶合金等を用いることで取扱い時の変形に対処で
きる。
The same effect can also be obtained by individually processing the electrodes 21 with high precision, such as by integrally processing them, and by using a shape memory alloy or the like as the electrode material, it is possible to cope with deformation during handling.

このような構造をとることにより電極を精度良く配置す
ることができ、偏向時のビーム形状の歪を小さくするこ
とができる。
By adopting such a structure, the electrodes can be arranged with high precision, and distortion of the beam shape during deflection can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、偏向器の電極を精度良く加工配置でき
るため、電子線描画装置及び電子線応用装置において、
電子ビームの偏向時に電子ビームの歪を低減させること
ができる。また電極の寸法精度が向上することがら、偏
向器を鮭動する電源の調整をWMIIlli化すること
ができる。
According to the present invention, since the electrodes of the deflector can be processed and arranged with high precision, in an electron beam lithography apparatus and an electron beam application apparatus,
Distortion of the electron beam can be reduced when the electron beam is deflected. Furthermore, since the dimensional accuracy of the electrodes is improved, the adjustment of the power source for operating the deflector can be made into a WMIIlli system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電子線応用装置の原理
図、第2図は従来偏向器の構成図、第3図(a)、(b
)は本発明による偏向器の構成図である。 1・・電子銃、2・・電子線、3・・絞り、4・・・電
子レンズ、5・・−ブランカ−56・・プランカー制御
系、7・・非点補正制御回路、8・・偏向器、9・・非
点補正装置、10・・・検出器、11・・ステージ、1
2・・試料、13・・・偏向制御系、14・・・検出回
路、15・・・コンピュータ、16・・・モータ制御系
、17・・・レーザ制御系、18・・・DCサーボモー
タ、19・・・レーザ干渉計、20・・・標準マーク、
21・・・電極、22・・・保持器、23・・・シール
ド板、24・・素材。
Figure 1 is a principle diagram of an electron beam application device showing an embodiment of the present invention, Figure 2 is a configuration diagram of a conventional deflector, and Figures 3 (a) and (b).
) is a block diagram of a deflector according to the present invention. 1... Electron gun, 2... Electron beam, 3... Aperture, 4... Electronic lens, 5...-Blanker-56... Plunker control system, 7... Astigmatism correction control circuit, 8... Deflector, 9... Stigma correction device, 10... Detector, 11... Stage, 1
2... Sample, 13... Deflection control system, 14... Detection circuit, 15... Computer, 16... Motor control system, 17... Laser control system, 18... DC servo motor, 19... Laser interferometer, 20... Standard mark,
21... Electrode, 22... Holder, 23... Shield plate, 24... Material.

Claims (1)

【特許請求の範囲】[Claims] 1、電子線描画装置等、電子線応用装置に用いられる、
電極、電極保持器、偏向器電源とから成る電子線偏向器
において、上記偏向器の電極を細く細分した部材により
多数配置することにより、電子ビーム行路に対する円周
方向に電極の数量分細く最適化された電圧を印加するよ
うにしたことを特徴とする電子線偏向器。
1. Used in electron beam application equipment such as electron beam lithography equipment,
In an electron beam deflector consisting of an electrode, an electrode holder, and a deflector power source, the electrodes of the deflector are arranged in large numbers using thinly subdivided members to optimize the number of electrodes in the circumferential direction relative to the electron beam path. An electron beam deflector, characterized in that the electron beam deflector is configured to apply a voltage of
JP32289790A 1990-11-28 1990-11-28 Electron beam deflector Pending JPH04196308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32289790A JPH04196308A (en) 1990-11-28 1990-11-28 Electron beam deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32289790A JPH04196308A (en) 1990-11-28 1990-11-28 Electron beam deflector

Publications (1)

Publication Number Publication Date
JPH04196308A true JPH04196308A (en) 1992-07-16

Family

ID=18148839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32289790A Pending JPH04196308A (en) 1990-11-28 1990-11-28 Electron beam deflector

Country Status (1)

Country Link
JP (1) JPH04196308A (en)

Similar Documents

Publication Publication Date Title
TWI691997B (en) Charged particle beam device for inspection of a specimen with an array of primary charged particle beamlets and method of imaging or illuminating a specimen with an array of primary charged particle beamlets
US8368015B2 (en) Particle-optical system
US6222195B1 (en) Charged-particle-beam exposure device and charged-particle-beam exposure method
KR100241995B1 (en) Electron beam exposing device
EP2365514B1 (en) Twin beam charged particle column and method of operating thereof
US7388214B2 (en) Charged-particle beam exposure apparatus and method
KR20020084288A (en) Multibeam exposure apparatus comprising multiaxis electron lens and method for manufacturing semiconductor device
KR100465117B1 (en) Multibeam exposure apparatus comprising multiaxis electron lens, multiaxis electron lens for focusing electron beams, and method for manufacturing semiconductor device
US5770862A (en) Charged particle exposure apparatus, and a charged particle exposure method
US6403972B1 (en) Methods and apparatus for alignment of ion beam systems using beam current sensors
KR20030028461A (en) Multibeam exposure apparatus comprising multiaxis electron lens and method for manufacturing semiconductor device
US7041988B2 (en) Electron beam exposure apparatus and electron beam processing apparatus
KR20020084290A (en) Multibeam exposure apparatus comprising multiaxis electron lens, multiaxis electron lens for focusing electron beams, and method for manufacturing semiconductor device
EP0133016A2 (en) Multi-gap magnetic image lens for charged particle beams
JP2001052642A (en) Scanning electron microscope and micro-pattern measuring method
KR20030028460A (en) Multibeam exposure apparatus comprising multiaxis electron lens, method for manufacturing multiaxis electron lens, and method for manufacturing semiconductor device
JPH04196308A (en) Electron beam deflector
US20220328278A1 (en) Charged particle beam writing apparatus
KR20020084291A (en) Multibeam exposure apparatus comprising multiaxis electron lens, multiaxis electron lens for focusing multiple electron beam, and method for manufacturing semiconductor device
JP5175713B2 (en) Multi-column electron beam exposure mask, electron beam exposure apparatus and exposure method using multi-column electron beam exposure mask
JP4535602B2 (en) Electron beam exposure apparatus and electron lens
JPH05266847A (en) Electron beam deflector
JPS5983336A (en) Device for focusing and deflecting charged particle ray
JP4095218B2 (en) Charged beam exposure method and exposure apparatus
JPH06338445A (en) Electron-beam lithography apparatus