JP4535602B2 - Electron beam exposure apparatus and electron lens - Google Patents

Electron beam exposure apparatus and electron lens Download PDF

Info

Publication number
JP4535602B2
JP4535602B2 JP2000344731A JP2000344731A JP4535602B2 JP 4535602 B2 JP4535602 B2 JP 4535602B2 JP 2000344731 A JP2000344731 A JP 2000344731A JP 2000344731 A JP2000344731 A JP 2000344731A JP 4535602 B2 JP4535602 B2 JP 4535602B2
Authority
JP
Japan
Prior art keywords
magnetic conductor
conductor portion
electron
electron beam
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000344731A
Other languages
Japanese (ja)
Other versions
JP2002150989A (en
Inventor
岳士 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2000344731A priority Critical patent/JP4535602B2/en
Publication of JP2002150989A publication Critical patent/JP2002150989A/en
Application granted granted Critical
Publication of JP4535602B2 publication Critical patent/JP4535602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子ビーム露光装置及び電子レンズに関する。特に本発明は、複数の電子ビームをそれぞれ独立に集束させることができる電子ビーム露光装置及び電子レンズに関する。
【0002】
【従来の技術】
図1は、従来の電子ビーム露光装置における多軸電子レンズ300の断面図である。多軸電子レンズ300では、1つのレンズコイル310と、複数の開口部320を有する2つの磁性導体部材330とを用いることにより、当該複数の開口部320のそれぞれにおいて複数の電子ビームをそれぞれ独立に集束させていた。
【0003】
【発明が解決しようとする課題】
しかしながら、1つのレンズコイル310によって複数の開口部320に生じる磁界340は、開口部320の中心軸に対して対称とならないため、それぞれの開口部320を通過する複数の電子ビームを同じ位置で結像させることが困難であった。
【0004】
そこで本発明は、上記の課題を解決することのできる電子ビーム露光装置及び電子レンズを提供することを目的とする。この目的は特許請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
【0005】
【課題を解決するための手段】
即ち、本発明の第1の形態によると、複数の電子ビームにより、ウェハを露光する電子ビーム露光装置であって、複数の電子ビームを発生する電子ビーム発生部と、複数の電子ビームをそれぞれ独立に集束させる電子レンズ部とを備え、電子レンズ部は、複数の電子ビームが通過する複数の第1開口部を含む第1主磁性導体部と、第1主磁性導体部に対して略平行に配置され、複数の電子ビームが通過する複数の第2開口部を含む第2主磁性導体部と、第1主磁性導体部において、第1開口部の周囲に、電子ビームの照射方向に略平行な方向に突出するように設けられた複数の第1副磁性導体部とを有する。
【0006】
電子レンズ部は、第2主磁性導体部との間隔が異なる複数の第1副磁性導体部を有してもよい。電子レンズ部は、第1主磁性導体部及び第2主磁性導体部の周囲に設けられ、磁界を発生させるコイル部をさらに有してもよい。所定の第1副磁性導体部と第2主磁性導体部との間隔は、所定の第1副磁性導体部よりコイル部から遠い位置に配置された他の第1副磁性導体部と第2主磁性導体部との間隔より大きくてもよい。
【0007】
複数の第1副磁性導体部のそれぞれと、第2主磁性導体部との間隔は、第2主磁性導体部における複数の第2開口部が設けられた領域の中心軸に対して略対称であってもよい。電子レンズ部は、第2主磁性導体部において、第2開口部の周囲に、電子ビームの照射方向に略平行な方向に突出するように設けられた複数の第2副磁性導体部をさらに有してもよい。
【0008】
所定の第1副磁性導体部と、当該所定の第1副磁性導体部に対向する所定の第2副磁性導体部との間隔は、他の第1副磁性導体部と、当該他の第1磁性導体部と対向する他の第2副磁性導体部との間隔と異なっていてもよい。所定の第1副磁性導体部と所定の第2副磁性導体部との間隔は、所定の第1副磁性導体部よりコイル部から遠い位置に配置された他の第1副磁性導体部と他の第2副磁性導体部との間隔より大きくてもよい。
【0009】
複数の第1副磁性導体部のそれぞれと、複数の第2副磁性導体部のそれぞれとの間隔は、第2主磁性導体部における複数の第2開口部が設けられた領域の中心軸に対して略対称であってもよい。
【0010】
電子レンズ部は、第1副磁性導体部と、第1副磁性導体部と略同一軸上に設けられた第2副磁性導体部との周囲に設けられた非磁性導体部をさらに有してもよい。非磁性導体部は、第1副磁性導体部と第2副磁性導体部とに挟まれてもよい。
【0011】
本発明の他の形態によると、複数の電子ビームをそれぞれ独立に集束させる電子レンズ部であって、電子レンズ部は、複数の電子ビームが通過する複数の第1開口部を含む第1主磁性導体部と、第1主磁性導体部に対して略平行に配置され、複数の電子ビームが通過する複数の第2開口部を含む第2主磁性導体部と、第1主磁性導体部において、第1開口部の周囲に、電子ビームの照射方向に略平行な方向に突出するように設けられた複数の第1副磁性導体部とを備える。
【0012】
なお上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションも又発明となりうる。
【0013】
【発明の実施の形態】
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態はクレームにかかる発明を限定するものではなく、又実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
【0014】
図2は、本発明の一実施形態に係る電子ビーム露光装置100の構成を示す。電子ビーム露光装置100は、電子ビームによりウェハ44に所定の露光処理を施す露光部150と、露光部150に含まれる各構成の動作を制御する制御系140を備える。
【0015】
露光部150は、筐体8内部において複数の電子ビームを発生し、電子ビームの断面形状を所望に成形する電子ビーム成形手段110と、複数の電子ビームをウェハ44に照射するか否かを、それぞれの電子ビームに対して独立に切替える照射切替手段112と、ウェハ44に転写されるパターンの像の向き及びサイズを調整するウェハ用投影系114を含む電子光学系を備える。また、露光部150は、パターンを露光すべきウェハ44を載置するウェハステージ46と、ウェハステージ46を駆動するウェハステージ駆動部48とを含むステージ系を備える。さらに、露光部150は、ウェハ44又はウェハステージ46に設けられるマーク部に照射された電子ビームにより、マーク部から放射された2次電子や反射電子等を検出する電子検出部40を備える。電子検出部40は、検出した反射電子の量に対応した検出信号を反射電子処理部94に出力する。
【0016】
電子ビーム成形手段110は、複数の電子ビームを発生させる電子ビーム発生部10と、電子ビームを通過させることにより、照射された電子ビームの断面形状を成形する複数の開口部を有する第1成形部材14および第2成形部材22と、複数の電子ビームをそれぞれ独立に集束し、複数の電子ビームの焦点を調整する第1多軸電子レンズ16と、第1成形部材14を通過した複数の電子ビームを独立に偏向する第1成形偏向部18および第2成形偏向部20とを有する。
【0017】
第1多軸電子レンズ16は、複数の電子ビームが通過する複数の開口部を含む第1主磁性導体部210aと、当該第1主磁性導体部210aに略平行して配置され、複数の電子ビームが通過する複数の開口部を含む第2主磁性導体部210bと、第1主磁性導体部210a及び第2主磁性導体部210bの開口部の周囲に、電子ビームの照射方向に略平行な方向に突出するように設けられた複数の副磁性導体部206を有する。なお、第2多軸電子レンズ24、第3多軸電子レンズ34、第4多軸電子レンズ36、及び第5多軸電子レンズ52も、上述した第1多軸電子レンズと同様の構成を有してもよい。
【0018】
電子ビーム発生部10は、複数の電子銃104と、電子銃104が形成される基材106とを有する。電子銃104は、熱電子を発生させるカソード12と、カソード12を囲むように形成され、カソード12で発生した熱電子を安定させるグリッド102とを有する。カソード12とグリッド102とは、電気的に絶縁されるのが望ましい。本実施例において、電子ビーム発生部10は、基材106に、複数の電子銃104を、所定の間隔に有することにより、電子銃アレイを形成する。
【0019】
照射切替手段112は、複数の電子ビームを独立に集束し、複数の電子ビームの焦点を調整する第2多軸電子レンズ24と、複数の電子ビームをそれぞれ独立に偏向させることにより、それぞれの電子ビームをウェハ44に照射するか否かを、それぞれの電子ビームに対して独立に切替えるブランキング電極アレイ26と、電子ビームを通過させる複数の開口部を含み、ブランキング電極アレイ26で偏向された電子ビームを遮蔽する電子ビーム遮蔽部材28とを有する。他の例においてブランキング電極アレイ26は、ブランキング・アパーチャ・アレイ・デバイスであってもよい。
【0020】
ウェハ用投影系114は、複数の電子ビームをそれぞれ独立に集束し、電子ビームの照射径を縮小する第3多軸電子レンズ34と、複数の電子ビームをそれぞれ独立に集束し、複数の電子ビームの焦点を調整する第4多軸電子レンズ36と、複数の電子ビームをウェハ44の所望の位置に、それぞれの電子ビームに対して独立に偏向する偏向部38と、ウェハ44に対する対物レンズとして機能し、複数の電子ビームをそれぞれ独立に集束する第5多軸電子レンズ52とを有する。
【0021】
制御系140は、統括制御部130及び個別制御部120を備える。個別制御部120は、電子ビーム制御部80と、多軸電子レンズ制御部82と、成形偏向制御部84と、ブランキング電極アレイ制御部86と、偏向制御部92と、反射電子処理部94と、ウェハステージ制御部96とを有する。統括制御部130は、例えばワークステーションであって、個別制御部120に含まれる各制御部を統括制御する。電子ビーム制御部80は、電子ビーム発生部10を制御する。多軸電子レンズ制御部82は、第1多軸電子レンズ16、第2多軸電子レンズ24、第3多軸電子レンズ34、第4多軸電子レンズ36および第5多軸電子レンズ52に供給する電流を制御する。
【0022】
成形偏向制御部84は、第1成形偏向部18および第2成形偏向部20を制御する。ブランキング電極アレイ制御部86は、ブランキング電極アレイ26に含まれる偏向電極に印加する電圧を制御する。偏向制御部92は、偏向部38に含まれる複数の偏向器が有する偏向電極に印加する電圧を制御する。反射電子処理部94は、電子検出部40から出力された検出信号に基づいて反射電子の量を検出し、統括制御部130に通知する。ウェハステージ制御部96は、ウェハステージ駆動部48を制御し、ウェハステージ46を所定の位置に移動させる。
【0023】
本実施形態に係る電子ビーム露光装置100の動作について説明する。まず、電子ビーム発生部10は、複数の電子ビームを生成する。第1成形部材14は、電子ビーム発生部10により発生し、第1成形部材14に照射された複数の電子ビームを、第1成形部材14に設けられた複数の開口部を通過させることにより成形する。他の例においては、電子ビーム発生部10において発生した電子ビームを複数の電子ビームに分割する手段を更に有することにより、複数の電子ビームを生成してもよい。
【0024】
第1多軸電子レンズ16は、矩形に成形された複数の電子ビームを独立に集束し、第2成形部材22に対する電子ビームの焦点を、電子ビーム毎に独立に調整する。第1成形偏向部18は、第1成形部材14において矩形形状に成形された複数の電子ビームを、第2成形部材における所望の位置に照射するように、それぞれ独立に偏向する。
【0025】
第2成形偏向部20は、第1成形偏向部18で偏向された複数の電子ビームを、第2成形部材22に対して略垂直な方向にそれぞれ偏向し、第2成形部材22に照射する。そして矩形形状を有する複数の開口部を含む第2成形部材22は、第2成形部材22に照射された矩形の断面形状を有する複数の電子ビームを、ウェハ44に照射すべき所望の断面形状を有する電子ビームにさらに成形する。
【0026】
第2多軸電子レンズ24は、複数の電子ビームを独立に集束して、ブランキング電極アレイ26に対する電子ビームの焦点を、それぞれ独立に調整する。そして、第2多軸電子レンズ24により焦点がそれぞれ調整された複数の電子ビームは、ブランキング電極アレイ26に含まれる複数のアパーチャを通過する。
【0027】
ブランキング電極アレイ制御部86は、ブランキング電極アレイ26における各アパーチャの近傍に設けられた偏向電極に電圧を印加するか否かを制御する。ブランキング電極アレイ26は、偏向電極に印加される電圧に基づいて、電子ビームをウェハ44に照射させるか否かを切替える。
【0028】
ブランキング電極アレイに26により偏向されない電子ビームは、第3多軸電子レンズ34を通過する。そして第3多軸電子レンズ34は、第3多軸電子レンズ34を通過する電子ビームの電子ビーム径を縮小する。縮小された電子ビームは、電子ビーム遮蔽部材28に含まれる開口部を通過する。また、電子ビーム遮蔽部材28は、ブランキング電極アレイ26により偏向された電子ビームを遮蔽する。電子ビーム遮蔽部材28を通過した電子ビームは、第4多軸電子レンズ36に入射される。そして第4多軸電子レンズ36は、入射された電子ビームをそれぞれ独立に集束し、偏向部38に対する電子ビームの焦点をそれぞれ調整する。第4多軸電子レンズ36により焦点が調整された電子ビームは、偏向部38に入射される。
【0029】
偏向制御部92は、偏向部38に含まれる複数の偏向器を制御し、偏向部38に入射されたそれぞれの電子ビームを、ウェハ44に対して照射すべき位置にそれぞれ独立に偏向する。第5多軸電子レンズ52は、第5多軸電子レンズ52を通過するそれぞれの電子ビームのウェハ44に対する焦点を調整する。そしてウェハ44に照射すべき断面形状を有するそれぞれの電子ビームは、ウェハ44に対して照射すべき所望の位置に照射される。
【0030】
露光処理中、ウェハステージ駆動部48は、ウェハステージ制御部96からの指示に基づき、一定方向にウェハステージ46を連続移動させるのが好ましい。そして、ウェハ44の移動に合わせて、電子ビームの断面形状をウェハ44に照射すべき形状に成形し、ウェハ44に照射すべき電子ビームを通過させるアパーチャを定め、さらに偏向部38によりそれぞれの電子ビームをウェハ44に対して照射すべき位置に偏向させることにより、ウェハ44に所望の回路パターンを露光することができる。
【0031】
図3は、本発明の一実施形態に係る第1多軸電子レンズ16の上面図を示す。なお、電子ビーム露光装置100に含まれる第2多軸電子レンズ24、第3多軸電子レンズ34、第4多軸電子レンズ36、及び第5多軸電子レンズ52も、第1多軸電子レンズ16と同様の構成を有してよく、以下において、多軸電子レンズの構成に関して、代表して第1多軸電子レンズ16の構成に基づいて説明する。
【0032】
第1多軸電子レンズ16は、レンズ部202およびレンズ部202の周囲に設けられ磁界を発生するコイル部200を備える。レンズ部202は、電子ビームが通過するレンズ開口部204、およびレンズ開口部204に設けられた副磁性導体部206を有する。各電子ビームが通過するレンズ開口部204は、ブランキング電極アレイ26に含まれる複数のアパーチャ、及び偏向部38に含まれる複数の偏向器の位置に対応して配置されるのが好ましい。本例において、レンズ開口部204、アパーチャ、及び偏向器は、実質的に同一軸上に配置される。
【0033】
図4は、本発明の一実施形態に係る第1多軸電子レンズ16の断面図を示す。第2多軸電子レンズ24、第3多軸電子レンズ34、第4多軸電子レンズ36、及び第5多軸電子レンズ52も、第1多軸電子レンズ16と同様の構成を有してよく、以下において、多軸電子レンズの構成に関して、代表して第1多軸電子レンズ16の構成に基づいて説明する。
【0034】
図4(a)に示すように、コイル部200は、磁性導体部材であるコイル部磁性導体部材212、および磁界を発生するコイル214を有する。また、レンズ部202は、複数の電子ビームが通過する複数の第1開口部204aを含む第1主磁性導体部210a、及び第1主磁性導体部210aに対して略平行に配置され複数の電子ビームが通過する複数の第2開口部204bを含む第2主磁性導体部210bを有する主磁性導体部材210と、第1開口部204aの周囲に電子ビームの照射方向に略平行な方向に突出するように設けられた複数の第1副磁性導体部206aと、第2開口部204bの周囲に電子ビームの照射方向に略平行な方向に突出するように設けられた複数の第2副磁性導体部206bとを有する。
【0035】
第1主磁性導体部210aと第2主磁性導体部210bとは、実質的に等しい形状及び大きさであることが好ましい。また、第1副磁性導体部206a及び第2副磁性導体部206bは、円筒形状であることが好ましい。本例においては、第1開口部204aの内側に第1副磁性導体部206aが設けられ、また、第2開口部204bの内側に第2副磁性導体部206bが設けられる。第1副磁性導体部206の開口部及び第2副磁性導体部206bの開口部が、電子ビームを通過させるレンズ開口部204を形成する。レンズ開口部204において、第1副磁性導体部206a及び第2副磁性導体部206bにより磁界が形成される。レンズ開口部204に入射した電子ビームは、第1副磁性導体部206aと第2副磁性導体部206bとの間において発生する磁界の影響を受けて、それぞれ独立に集束される。
【0036】
所定の第1副磁性導体部206aと、当該所定の第1副磁性導体部206aと対向する第2副磁性導体部206bとの間隔は、他の第1副磁性導体部206aと、当該他の第1副磁性導体部206aと対向する第2副磁性導体部206bとの間隔と異なってもよい。図4(b)に示すように、主磁性導体部210は、間隔が異なる第1副磁性導体部206aと第2副磁性導体部206bとを有することにより、各レンズ開口部204に形成される磁界220の強度を調整することができる。即ち、各レンズ開口部204に形成される磁界200の強度を均一にすることができる。また、各レンズ開口部204に形成されるレンズ軸を、電子ビームの照射方向に略平行な方向に向けることができる。さらに、各レンズ開口部204を通過する複数の電子ビームを略等しい面で集束させることができる。
【0037】
例えば、レンズ開口部204に形成される磁界強度が、主磁性導体部210の中心部より外周部の方が強い場合には、所定の第1副磁性導体部206aと、当該所定の第1副磁性導体部206aと対向する第2副磁性導体部206bとの間隔は、当該所定の第1副磁性導体部206aよりコイル部200から遠い位置に設けられた他の第1副磁性導体部206aと、当該他の第1副磁性導体部206aと対向する第2副磁性導体部206bとの間隔より大きいことが好ましい。さらに、第1副磁性導体部206aのそれぞれと、第2副磁性導体部206bのそれぞれとの間隔は、第2主磁性導体部210bにおける複数の第2開口部204bが設けられた領域の中心軸に対して略対称であることが好ましい
【0038】
図5は、本発明の一実施形態に係る第1多軸電子レンズ16の他の例の断面図を示す。図5(a)に示すように、第1多軸電子レンズ16は、第1副磁性導体部206aと、当該第1副磁性導体部206aと略同一軸上に設けられた第2副磁性導体部206bとの周囲に設けられた非磁性導体部208を有してもよい。非磁性導体部208を第1副磁性導体部206a及び第2副磁性導体部206bの周囲に設けることにより、第1副磁性導体部206aと第2副磁性導体部206bとの同軸度を精度よく制御することができる。また、非磁性導体部208は、第1副磁性導体部206aと第2副磁性導体部206bとに挟まれるように設けられることが望ましい。非磁性導体部208を第1副磁性導体部206aと第2副磁性導体部206bとに挟まれるように設けることにより、第1副磁性導体部206aと第2副磁性導体部206bとの間隔を精度よく制御することができる。また、非磁性導体部208は、第1主磁性導体部210aと第2主磁性導体部210bとに挟まれるように設けられてもよい。非磁性導体部208を第1主磁性導体部210aと第2主磁性導体部210bとに挟まれるように設けることにより、非磁性導体部208は、第1主磁性導体部210aと第2主磁性導体部210bとのスペーサとしての機能を有する。
【0039】
図5(b)に示すように、レンズ部202は、第1の主磁性導体部210a及び第2主磁性導体部210bの少なくとも一方に副磁性導体部206が設けられてもよい。本実施例においてレンズ部202は、複数の電子ビームが通過する複数の第1開口部204aを含む第1主磁性導体部210a、及び第1主磁性導体部210aに対して略平行に配置され複数の電子ビームが通過する複数の第2開口部204bを含む第2主磁性導体部210bを有する主磁性導体部材210と、第2開口部204bの周囲に電子ビームの照射方向に略平行な方向に突出するように設けられた複数の第2副磁性導体部206bとを有する。このとき、第1主磁性導体部210aの第1開口部204a及び第2副磁性導体部206bの開口部が、電子ビームを通過させるレンズ開口部204を形成する。また、第1主磁性導体部210aの第1開口部204aと第2副磁性導体部206bの開口部とは、略等しい大きさであることが好ましい。
【0040】
また、レンズ部202は、第1主磁性導体部210aとの間隔が異なる複数の第2副磁性導体部206bを有してもよい。第1主磁性導体部210aとの間隔が異なる複数の第2副磁性導体部206bが、第2主磁性導体部210bに設けられることにより、各レンズ開口部204に形成される磁界の強度を調整することができる。即ち、各レンズ開口部204に形成される磁界の強度を均一にすることができる。また、各レンズ開口部204に形成される磁場を、レンズ開口部204の中心軸に対して略対称に分布させることができる。さらに、各レンズ開口部204を通過する複数の電子ビームを略等しい面で集束させることができる。
【0041】
例えば、レンズ開口部204に形成される磁界強度が、主磁性導体部210の中心部より外周部の方が強い場合には、所定の第2副磁性導体部206bと、第2主磁性導体部210aとの間隔は、当該所定の第2副磁性導体部206bよりコイル部200から遠い位置に設けられた他の第2副磁性導体部206bと、第1主磁性導体部210aとの間隔より大きいことが好ましい。さらに、第2副磁性導体部206bのそれぞれと、第1主磁性導体部210aとの間隔は、第1主磁性導体部210aにおける複数の第1開口部204aが設けられた領域の中心軸に対して略対称であることが好ましい。
【0042】
図5(c)に示すように、第1副磁性導体部206aは、第1主磁性導体部210aにおける第2主磁性導体部210bと対向する面に設けられ、第2副磁性導体部206bは、第2主磁性導体部210bにおける第1主磁性導体部210aと対向する面に設けられてもよい。このとき、第1副磁性導体部206a及び第2副磁性導体部210bの開口部は、第1主磁性導体部210aの第1開口部204a及び第2主磁性導体部210bの第2開口部204bと略等しいことが好ましい。第1副磁性導体部206aの開口部、第2副磁性導体部206bの開口部、及び非磁性導体部208の開口部が、電子ビームを通過させるレンズ開口部204を形成する。
【0043】
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることができる。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
【0044】
【発明の効果】
上記説明から明らかなように、本発明によれば、複数の電子ビームをそれぞれ独立に精度よく集束させることができる電子ビーム露光装置及び電子レンズを提供することができる。
【図面の簡単な説明】
【図1】従来の電子ビーム露光装置における多軸電子レンズ300の断面図である。
【図2】本発明の一実施形態に係る電子ビーム露光装置100の構成を示す図である。
【図3】本発明の一実施形態に係る第1多軸電子レンズ16の上面図である。
【図4】本発明の一実施形態に係る第1多軸電子レンズ16の断面図である。
【図5】本発明の一実施形態に係る第1多軸電子レンズ16の他の例の断面図である。
【符号の説明】
8・・筐体、10・・電子ビーム発生部、14・・第1成形部材、16・・第1多軸電子レンズ、18・・第1成形偏向部、20・・第2成形偏向部、22・・第2成形部材、24・・第2多軸電子レンズ、26・・ブランキング電極アレイ、28・・電子ビーム遮蔽部材、34・・第3多軸電子レンズ、36・・第4多軸電子レンズ、38・・偏向部、40・・電子検出部、44・・ウェハ、46・・ウェハステージ、48・・ウェハステージ駆動部、52・・第5多軸電子レンズ、80・・電子ビーム制御部、82・・多軸電子レンズ制御部、84・・成形偏向制御部、86・・ブランキング電極アレイ制御部、92・・偏向制御部、94・・反射電子処理部、96・・ウェハステージ制御部、100・・電子ビーム露光装置、104・・電子銃、110・・電子ビーム成形手段、112・・照射切替手段、114・・ウェハ用投影系、120・・個別制御系、130・・統括制御部、140・・制御系、150・・露光部、200・・コイル部、202・・レンズ部、204・・レンズ開口部、204a・・第1開口部、204b・・第2開口部、206・・副磁性導体部、206a・・第1副磁性導体部、206b・・第2副磁性導体部、208・・非磁性導体部、210・・主磁性導体部、210a・・第1主磁性導体部、210b・・第2主磁性導体部、212・・コイル部磁性導体部材、214・・コイル、220・・磁界
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electron beam exposure apparatus and an electron lens. In particular, the present invention relates to an electron beam exposure apparatus and an electron lens that can individually focus a plurality of electron beams.
[0002]
[Prior art]
FIG. 1 is a cross-sectional view of a multi-axis electron lens 300 in a conventional electron beam exposure apparatus. In the multi-axis electron lens 300, by using one lens coil 310 and two magnetic conductor members 330 having a plurality of openings 320, a plurality of electron beams can be independently emitted from each of the plurality of openings 320. It was focused.
[0003]
[Problems to be solved by the invention]
However, since the magnetic field 340 generated in the plurality of openings 320 by one lens coil 310 is not symmetric with respect to the central axis of the opening 320, a plurality of electron beams passing through the openings 320 are combined at the same position. It was difficult to image.
[0004]
Therefore, an object of the present invention is to provide an electron beam exposure apparatus and an electron lens that can solve the above-described problems. This object is achieved by a combination of features described in the independent claims. The dependent claims define further advantageous specific examples of the present invention.
[0005]
[Means for Solving the Problems]
That is, according to the first aspect of the present invention, an electron beam exposure apparatus that exposes a wafer with a plurality of electron beams, wherein the electron beam generating unit that generates the plurality of electron beams and the plurality of electron beams are independent of each other. And an electron lens portion that is focused in parallel to the first main magnetic conductor portion including a plurality of first openings through which a plurality of electron beams pass, and the first main magnetic conductor portion. A second main magnetic conductor portion that includes a plurality of second openings that are disposed and through which a plurality of electron beams pass, and a first main magnetic conductor portion that is substantially parallel to the electron beam irradiation direction around the first openings. And a plurality of first submagnetic conductor portions provided so as to protrude in various directions.
[0006]
The electron lens unit may have a plurality of first sub-magnetic conductor parts having different intervals from the second main magnetic conductor part. The electron lens unit may further include a coil unit that is provided around the first main magnetic conductor unit and the second main magnetic conductor unit and generates a magnetic field. The interval between the predetermined first submagnetic conductor portion and the second main magnetic conductor portion is different from the other first submagnetic conductor portion and the second main magnetic conductor disposed at a position farther from the coil portion than the predetermined first submagnetic conductor portion. It may be larger than the interval with the magnetic conductor portion.
[0007]
The distance between each of the plurality of first sub-magnetic conductor portions and the second main magnetic conductor portion is substantially symmetric with respect to the central axis of the region where the plurality of second openings are provided in the second main magnetic conductor portion. There may be. The electron lens portion further includes a plurality of second sub magnetic conductor portions provided in the second main magnetic conductor portion so as to protrude in a direction substantially parallel to the electron beam irradiation direction around the second opening. May be.
[0008]
The distance between the predetermined first submagnetic conductor portion and the predetermined second submagnetic conductor portion facing the predetermined first submagnetic conductor portion is different from that of the other first submagnetic conductor portion and the other first submagnetic conductor portion. It may be different from the distance between the magnetic conductor portion and another second sub magnetic conductor portion facing the magnetic conductor portion. The distance between the predetermined first submagnetic conductor portion and the predetermined second submagnetic conductor portion is different from that of the other first submagnetic conductor portion disposed at a position farther from the coil portion than the predetermined first submagnetic conductor portion. It may be larger than the distance from the second submagnetic conductor.
[0009]
The distance between each of the plurality of first sub magnetic conductor portions and each of the plurality of second sub magnetic conductor portions is relative to the central axis of the region where the plurality of second openings are provided in the second main magnetic conductor portion. May be substantially symmetrical.
[0010]
The electron lens portion further includes a non-magnetic conductor portion provided around the first sub-magnetic conductor portion and a second sub-magnetic conductor portion provided on substantially the same axis as the first sub-magnetic conductor portion. Also good. The nonmagnetic conductor portion may be sandwiched between the first submagnetic conductor portion and the second submagnetic conductor portion.
[0011]
According to another aspect of the invention, an electron lens unit that focuses a plurality of electron beams independently, the electron lens unit including a plurality of first openings through which the plurality of electron beams pass. In the first main magnetic conductor portion, the conductor portion, the second main magnetic conductor portion that is disposed substantially parallel to the first main magnetic conductor portion and includes a plurality of second openings through which a plurality of electron beams pass, A plurality of first submagnetic conductor portions provided so as to protrude in a direction substantially parallel to the electron beam irradiation direction are provided around the first opening.
[0012]
The above summary of the invention does not enumerate all the necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the claimed invention, and all combinations of features described in the embodiments are solutions of the invention. It is not always essential to the means.
[0014]
FIG. 2 shows a configuration of an electron beam exposure apparatus 100 according to an embodiment of the present invention. The electron beam exposure apparatus 100 includes an exposure unit 150 that performs a predetermined exposure process on the wafer 44 using an electron beam, and a control system 140 that controls the operation of each component included in the exposure unit 150.
[0015]
The exposure unit 150 generates a plurality of electron beams inside the housing 8 and forms an electron beam cross-sectional shape as desired, and whether to irradiate the wafer 44 with the plurality of electron beams. There is provided an electron optical system including an irradiation switching means 112 that switches independently for each electron beam, and a wafer projection system 114 that adjusts the direction and size of the pattern image transferred to the wafer 44. The exposure unit 150 includes a stage system including a wafer stage 46 on which a wafer 44 whose pattern is to be exposed is placed, and a wafer stage drive unit 48 that drives the wafer stage 46. Further, the exposure unit 150 includes an electron detection unit 40 that detects secondary electrons, reflected electrons, and the like emitted from the mark unit by an electron beam applied to the mark unit provided on the wafer 44 or the wafer stage 46. The electron detection unit 40 outputs a detection signal corresponding to the detected amount of reflected electrons to the reflected electron processing unit 94.
[0016]
The electron beam shaping means 110 includes a first shaping member that has a plurality of electron beam generating portions 10 that generate a plurality of electron beams and a plurality of openings that shape the cross-sectional shape of the irradiated electron beams by passing the electron beams. 14 and the second shaping member 22, the first multi-axis electron lens 16 for individually focusing the plurality of electron beams and adjusting the focal points of the plurality of electron beams, and the plurality of electron beams having passed through the first shaping member 14. The first shaping deflection section 18 and the second shaping deflection section 20 that independently deflect each other.
[0017]
The first multi-axis electron lens 16 includes a first main magnetic conductor portion 210a including a plurality of openings through which a plurality of electron beams pass, and is disposed substantially parallel to the first main magnetic conductor portion 210a. The second main magnetic conductor portion 210b including a plurality of openings through which the beam passes, and the openings of the first main magnetic conductor portion 210a and the second main magnetic conductor portion 210b are substantially parallel to the irradiation direction of the electron beam. It has a plurality of secondary magnetic conductor portions 206 provided so as to protrude in the direction. The second multi-axis electron lens 24, the third multi-axis electron lens 34, the fourth multi-axis electron lens 36, and the fifth multi-axis electron lens 52 have the same configuration as the first multi-axis electron lens described above. May be.
[0018]
The electron beam generator 10 includes a plurality of electron guns 104 and a base material 106 on which the electron guns 104 are formed. The electron gun 104 includes a cathode 12 that generates thermoelectrons and a grid 102 that is formed so as to surround the cathode 12 and stabilizes the thermoelectrons generated at the cathode 12. It is desirable that the cathode 12 and the grid 102 be electrically insulated. In this embodiment, the electron beam generator 10 forms an electron gun array by having a plurality of electron guns 104 on a base material 106 at a predetermined interval.
[0019]
The irradiation switching unit 112 focuses the plurality of electron beams independently, and adjusts the focus of the plurality of electron beams, and deflects each of the plurality of electron beams independently to each other. A blanking electrode array 26 that switches whether or not the beam 44 is irradiated to each electron beam independently and a plurality of openings that allow the electron beam to pass therethrough are deflected by the blanking electrode array 26. An electron beam shielding member 28 for shielding the electron beam. In other examples, the blanking electrode array 26 may be a blanking aperture array device.
[0020]
The wafer projection system 114 focuses the plurality of electron beams independently, a third multi-axis electron lens 34 for reducing the irradiation diameter of the electron beam, and the plurality of electron beams independently focuss the plurality of electron beams. A fourth multi-axis electron lens 36 that adjusts the focal point of the light beam, a deflection unit 38 that deflects a plurality of electron beams to desired positions on the wafer 44 independently of each electron beam, and an objective lens for the wafer 44 And a fifth multi-axis electron lens 52 that focuses a plurality of electron beams independently.
[0021]
The control system 140 includes an overall control unit 130 and an individual control unit 120. The individual control unit 120 includes an electron beam control unit 80, a multi-axis electron lens control unit 82, a shaping deflection control unit 84, a blanking electrode array control unit 86, a deflection control unit 92, and a reflected electron processing unit 94. And a wafer stage control unit 96. The overall control unit 130 is a workstation, for example, and performs overall control of each control unit included in the individual control unit 120. The electron beam control unit 80 controls the electron beam generation unit 10. The multi-axis electron lens control unit 82 supplies the first multi-axis electron lens 16, the second multi-axis electron lens 24, the third multi-axis electron lens 34, the fourth multi-axis electron lens 36, and the fifth multi-axis electron lens 52. To control the current.
[0022]
The shaping deflection control unit 84 controls the first shaping deflection unit 18 and the second shaping deflection unit 20. The blanking electrode array control unit 86 controls the voltage applied to the deflection electrodes included in the blanking electrode array 26. The deflection control unit 92 controls the voltage applied to the deflection electrodes included in the plurality of deflectors included in the deflection unit 38. The backscattered electron processing unit 94 detects the amount of backscattered electrons based on the detection signal output from the electron detection unit 40 and notifies the overall control unit 130 of it. The wafer stage control unit 96 controls the wafer stage driving unit 48 to move the wafer stage 46 to a predetermined position.
[0023]
An operation of the electron beam exposure apparatus 100 according to the present embodiment will be described. First, the electron beam generator 10 generates a plurality of electron beams. The first forming member 14 is formed by passing a plurality of electron beams generated by the electron beam generating unit 10 and applied to the first forming member 14 through a plurality of openings provided in the first forming member 14. To do. In another example, a plurality of electron beams may be generated by further including means for dividing the electron beam generated by the electron beam generator 10 into a plurality of electron beams.
[0024]
The first multi-axis electron lens 16 independently focuses a plurality of rectangular shaped electron beams, and independently adjusts the focus of the electron beam with respect to the second shaping member 22 for each electron beam. The 1st shaping | molding deflection | deviation part 18 deflects each independently so that the several position formed in the rectangular shape in the 1st shaping | molding member 14 may be irradiated to the desired position in a 2nd shaping | molding member.
[0025]
The second shaping deflection unit 20 deflects the plurality of electron beams deflected by the first shaping deflection unit 18 in directions substantially perpendicular to the second shaping member 22 and irradiates the second shaping member 22. The second molding member 22 including a plurality of openings having a rectangular shape has a desired cross-sectional shape to be irradiated on the wafer 44 with a plurality of electron beams having a rectangular cross-sectional shape irradiated on the second molding member 22. Further shaping into an electron beam.
[0026]
The second multi-axis electron lens 24 focuses a plurality of electron beams independently, and independently adjusts the focus of the electron beam with respect to the blanking electrode array 26. The plurality of electron beams whose focal points are adjusted by the second multi-axis electron lens 24 pass through the plurality of apertures included in the blanking electrode array 26.
[0027]
The blanking electrode array control unit 86 controls whether or not to apply a voltage to the deflection electrodes provided in the vicinity of each aperture in the blanking electrode array 26. The blanking electrode array 26 switches whether to irradiate the wafer 44 with the electron beam based on the voltage applied to the deflection electrode.
[0028]
The electron beam that is not deflected by the blanking electrode array 26 passes through the third multi-axis electron lens 34. The third multi-axis electron lens 34 reduces the electron beam diameter of the electron beam that passes through the third multi-axis electron lens 34. The reduced electron beam passes through an opening included in the electron beam shielding member 28. The electron beam shielding member 28 shields the electron beam deflected by the blanking electrode array 26. The electron beam that has passed through the electron beam shielding member 28 is incident on the fourth multi-axis electron lens 36. The fourth multi-axis electron lens 36 individually focuses the incident electron beams and adjusts the focus of the electron beams with respect to the deflecting unit 38. The electron beam whose focus is adjusted by the fourth multi-axis electron lens 36 is incident on the deflecting unit 38.
[0029]
The deflection control unit 92 controls a plurality of deflectors included in the deflection unit 38 and independently deflects each electron beam incident on the deflection unit 38 to a position where the wafer 44 is to be irradiated. The fifth multi-axis electron lens 52 adjusts the focal point of each electron beam passing through the fifth multi-axis electron lens 52 with respect to the wafer 44. Each electron beam having a cross-sectional shape to be irradiated to the wafer 44 is irradiated to a desired position to be irradiated to the wafer 44.
[0030]
During the exposure process, the wafer stage drive unit 48 preferably continuously moves the wafer stage 46 in a certain direction based on an instruction from the wafer stage control unit 96. Then, in accordance with the movement of the wafer 44, the cross-sectional shape of the electron beam is formed into a shape to be irradiated onto the wafer 44, an aperture through which the electron beam to be irradiated onto the wafer 44 is passed, and each electron is deflected by the deflection unit 38. By deflecting the beam to a position to be irradiated on the wafer 44, a desired circuit pattern can be exposed on the wafer 44.
[0031]
FIG. 3 shows a top view of the first multi-axis electron lens 16 according to an embodiment of the present invention. The second multi-axis electron lens 24, the third multi-axis electron lens 34, the fourth multi-axis electron lens 36, and the fifth multi-axis electron lens 52 included in the electron beam exposure apparatus 100 are also the first multi-axis electron lens. The configuration of the multi-axis electron lens will be described below based on the configuration of the first multi-axis electron lens 16 as a representative.
[0032]
The first multi-axis electron lens 16 includes a lens unit 202 and a coil unit 200 that is provided around the lens unit 202 and generates a magnetic field. The lens unit 202 includes a lens opening 204 through which an electron beam passes, and a sub magnetic conductor 206 provided in the lens opening 204. The lens openings 204 through which each electron beam passes are preferably arranged corresponding to the positions of the plurality of apertures included in the blanking electrode array 26 and the plurality of deflectors included in the deflection unit 38. In this example, the lens opening 204, the aperture, and the deflector are arranged on substantially the same axis.
[0033]
FIG. 4 shows a cross-sectional view of the first multi-axis electron lens 16 according to an embodiment of the present invention. The second multi-axis electron lens 24, the third multi-axis electron lens 34, the fourth multi-axis electron lens 36, and the fifth multi-axis electron lens 52 may have the same configuration as the first multi-axis electron lens 16. Hereinafter, the configuration of the multi-axis electron lens will be described based on the configuration of the first multi-axis electron lens 16 as a representative.
[0034]
As shown in FIG. 4A, the coil unit 200 includes a coil unit magnetic conductor member 212 that is a magnetic conductor member, and a coil 214 that generates a magnetic field. The lens unit 202 includes a plurality of first main magnetic conductor portions 210a including a plurality of first openings 204a through which a plurality of electron beams pass, and a plurality of electrons arranged substantially parallel to the first main magnetic conductor portions 210a. A main magnetic conductor member 210 having a second main magnetic conductor 210b including a plurality of second openings 204b through which the beam passes, and the first opening 204a project in a direction substantially parallel to the electron beam irradiation direction. The plurality of first sub magnetic conductor portions 206a provided in this manner and the plurality of second sub magnetic conductor portions provided so as to protrude in a direction substantially parallel to the electron beam irradiation direction around the second opening 204b 206b.
[0035]
It is preferable that the first main magnetic conductor portion 210a and the second main magnetic conductor portion 210b have substantially the same shape and size. Moreover, it is preferable that the 1st submagnetic conductor part 206a and the 2nd submagnetic conductor part 206b are cylindrical shapes. In the present example, the first secondary magnetic conductor portion 206a is provided inside the first opening 204a, and the second secondary magnetic conductor portion 206b is provided inside the second opening 204b. The opening of the first sub magnetic conductor 206 and the opening of the second sub magnetic conductor 206b form a lens opening 204 through which the electron beam passes. In the lens opening 204, a magnetic field is formed by the first secondary magnetic conductor portion 206a and the second secondary magnetic conductor portion 206b. The electron beam incident on the lens opening 204 is focused independently under the influence of a magnetic field generated between the first sub magnetic conductor portion 206a and the second sub magnetic conductor portion 206b.
[0036]
The distance between the predetermined first sub magnetic conductor portion 206a and the second sub magnetic conductor portion 206b facing the predetermined first sub magnetic conductor portion 206a is different from that of the other first sub magnetic conductor portion 206a. The distance between the first sub magnetic conductor portion 206a and the second sub magnetic conductor portion 206b facing the first sub magnetic conductor portion 206a may be different. As shown in FIG. 4B, the main magnetic conductor portion 210 is formed in each lens opening 204 by having a first sub magnetic conductor portion 206a and a second sub magnetic conductor portion 206b having different intervals. The strength of the magnetic field 220 can be adjusted. That is, the intensity of the magnetic field 200 formed in each lens opening 204 can be made uniform. Further, the lens axis formed in each lens opening 204 can be oriented in a direction substantially parallel to the electron beam irradiation direction. Furthermore, a plurality of electron beams passing through each lens opening 204 can be focused on substantially the same surface.
[0037]
For example, when the magnetic field strength formed in the lens opening 204 is stronger at the outer periphery than at the center of the main magnetic conductor 210, the predetermined first sub-magnetic conductor 206a and the predetermined first sub-conductor The distance between the magnetic conductor portion 206a and the second secondary magnetic conductor portion 206b facing the other first secondary magnetic conductor portion 206a provided farther from the coil portion 200 than the predetermined first secondary magnetic conductor portion 206a. It is preferable that the distance is larger than the distance between the second sub magnetic conductor portion 206b facing the other first sub magnetic conductor portion 206a. Further, the distance between each of the first sub magnetic conductor portions 206a and each of the second sub magnetic conductor portions 206b is the central axis of the region where the plurality of second openings 204b are provided in the second main magnetic conductor portion 210b. Is preferably substantially symmetric with respect to
FIG. 5 shows a cross-sectional view of another example of the first multi-axis electron lens 16 according to an embodiment of the present invention. As shown in FIG. 5A, the first multi-axis electron lens 16 includes a first sub-magnetic conductor portion 206a and a second sub-magnetic conductor provided on substantially the same axis as the first sub-magnetic conductor portion 206a. You may have the nonmagnetic conductor part 208 provided in the circumference | surroundings with the part 206b. By providing the nonmagnetic conductor portion 208 around the first submagnetic conductor portion 206a and the second submagnetic conductor portion 206b, the coaxiality between the first submagnetic conductor portion 206a and the second submagnetic conductor portion 206b can be accurately adjusted. Can be controlled. Further, it is desirable that the nonmagnetic conductor portion 208 is provided so as to be sandwiched between the first submagnetic conductor portion 206a and the second submagnetic conductor portion 206b. By providing the nonmagnetic conductor portion 208 so as to be sandwiched between the first submagnetic conductor portion 206a and the second submagnetic conductor portion 206b, the distance between the first submagnetic conductor portion 206a and the second submagnetic conductor portion 206b is increased. It can be controlled with high accuracy. Further, the nonmagnetic conductor portion 208 may be provided so as to be sandwiched between the first main magnetic conductor portion 210a and the second main magnetic conductor portion 210b. By providing the nonmagnetic conductor portion 208 so as to be sandwiched between the first main magnetic conductor portion 210a and the second main magnetic conductor portion 210b, the nonmagnetic conductor portion 208 has the first main magnetic conductor portion 210a and the second main magnetic conductor portion. It has a function as a spacer with the conductor part 210b.
[0039]
As shown in FIG. 5B, the lens unit 202 may be provided with a sub magnetic conductor 206 on at least one of the first main magnetic conductor 210a and the second main magnetic conductor 210b. In the present embodiment, the lens unit 202 includes a plurality of first main magnetic conductor portions 210a including a plurality of first openings 204a through which a plurality of electron beams pass, and a plurality of lens portions 202 are arranged substantially parallel to the first main magnetic conductor portions 210a. A main magnetic conductor member 210 having a second main magnetic conductor portion 210b including a plurality of second openings 204b through which the electron beam passes, and a direction substantially parallel to the irradiation direction of the electron beam around the second opening 204b. And a plurality of second sub-magnetic conductor portions 206b provided so as to protrude. At this time, the first opening 204a of the first main magnetic conductor 210a and the opening of the second sub magnetic conductor 206b form a lens opening 204 through which the electron beam passes. Moreover, it is preferable that the 1st opening part 204a of the 1st main magnetic conductor part 210a and the opening part of the 2nd submagnetic conductor part 206b are substantially equal magnitude | sizes.
[0040]
Further, the lens unit 202 may include a plurality of second sub magnetic conductor portions 206b having different intervals from the first main magnetic conductor portion 210a. A plurality of second sub magnetic conductor portions 206b having different intervals from the first main magnetic conductor portion 210a are provided in the second main magnetic conductor portion 210b, thereby adjusting the strength of the magnetic field formed in each lens opening 204. can do. That is, the intensity of the magnetic field formed in each lens opening 204 can be made uniform. Further, the magnetic field formed in each lens opening 204 can be distributed substantially symmetrically with respect to the central axis of the lens opening 204. Furthermore, a plurality of electron beams passing through each lens opening 204 can be focused on substantially the same surface.
[0041]
For example, when the magnetic field strength formed in the lens opening 204 is stronger in the outer peripheral portion than in the central portion of the main magnetic conductor portion 210, the predetermined second sub magnetic conductor portion 206b and the second main magnetic conductor portion The distance from 210a is larger than the distance between the second main magnetic conductor part 210a and the other second sub magnetic conductor part 206b provided farther from the coil part 200 than the predetermined second sub magnetic conductor part 206b. It is preferable. Further, the distance between each of the second secondary magnetic conductor portions 206b and the first main magnetic conductor portion 210a is relative to the central axis of the region where the plurality of first openings 204a are provided in the first main magnetic conductor portion 210a. Are preferably substantially symmetrical.
[0042]
As shown in FIG. 5C, the first sub magnetic conductor portion 206a is provided on the surface of the first main magnetic conductor portion 210a facing the second main magnetic conductor portion 210b, and the second sub magnetic conductor portion 206b is The second main magnetic conductor portion 210b may be provided on the surface facing the first main magnetic conductor portion 210a. At this time, the openings of the first sub-magnetic conductor portion 206a and the second sub-magnetic conductor portion 210b correspond to the first opening portion 204a of the first main magnetic conductor portion 210a and the second opening portion 204b of the second main magnetic conductor portion 210b. Is preferably approximately equal to The opening of the first submagnetic conductor 206a, the opening of the second submagnetic conductor 206b, and the opening of the nonmagnetic conductor 208 form a lens opening 204 through which the electron beam passes.
[0043]
As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. Various changes or improvements can be added to the above embodiment. It is apparent from the description of the scope of claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.
[0044]
【The invention's effect】
As is apparent from the above description, according to the present invention, it is possible to provide an electron beam exposure apparatus and an electron lens capable of focusing a plurality of electron beams independently and accurately.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a multi-axis electron lens 300 in a conventional electron beam exposure apparatus.
FIG. 2 is a view showing a configuration of an electron beam exposure apparatus 100 according to an embodiment of the present invention.
FIG. 3 is a top view of a first multi-axis electron lens 16 according to an embodiment of the present invention.
4 is a cross-sectional view of a first multi-axis electron lens 16 according to an embodiment of the present invention. FIG.
FIG. 5 is a cross-sectional view of another example of the first multi-axis electron lens 16 according to an embodiment of the present invention.
[Explanation of symbols]
8 .. Casing 10... Electron beam generating section 14... First molding member 16... First multi-axis electron lens 18... First molding deflection section 20. 22 .. Second molded member 24.. Second multi-axis electron lens 26.. Blanking electrode array 28.. Electron beam shielding member 34.. Third multi-axis electron lens 36. Axis electron lens, 38 ... deflection unit, 40 ... electron detector, 44 ... wafer, 46 ... wafer stage, 48 ... wafer stage drive unit, 52 ... fifth multi-axis electron lens, 80 ... electron Beam control unit, 82 .. Multi-axis electron lens control unit, 84 .. Shaping deflection control unit, 86 .. Blanking electrode array control unit, 92 .. Deflection control unit, 94 .. Reflected electron processing unit, 96. Wafer stage controller, 100 ... Electron beam exposure device, 104 Electron gun, 110 ... Electron beam shaping means, 112 ... Irradiation switching means, 114 ... Wafer projection system, 120 ... Individual control system, 130 ... Control unit, 140 ... Control system, 150 ... Exposure , 200 ·· coil portion, 202 · · lens portion, 204 · · lens opening portion, 204a · · first opening portion, 204b · · second opening portion, 206 · · auxiliary magnetic conductor portion, 206a · · · first Sub magnetic conductor part 206b ··· Second sub magnetic conductor part 208 · · Non magnetic conductor part 210 · · Main magnetic conductor part 210a · · · First main magnetic conductor part 210b · · · Second main magnetic conductor part , 212 .. Coil part magnetic conductor member, 214 .. Coil, 220 .. Magnetic field

Claims (12)

複数の電子ビームにより、ウェハを露光する電子ビーム露光装置であって、
前記複数の電子ビームを発生する電子ビーム発生部と、
前記複数の電子ビームをそれぞれ独立に集束させる電子レンズ部と
を備え、
前記電子レンズ部は、
前記複数の電子ビームが通過する複数の第1開口部を含む第1主磁性導体部と、
前記第1主磁性導体部に対して平行に配置され、前記複数の電子ビームが通過する複数の第2開口部を含む第2主磁性導体部と、
前記第1主磁性導体部において、前記第1開口部の周囲に、前記電子ビームの照射方向に平行な方向に突出するように設けられた複数の第1副磁性導体部と
を有することを特徴とする電子ビーム露光装置。
An electron beam exposure apparatus that exposes a wafer with a plurality of electron beams,
An electron beam generator for generating the plurality of electron beams;
An electron lens unit that focuses each of the plurality of electron beams independently;
The electron lens unit is
A first main magnetic conductor portion including a plurality of first openings through which the plurality of electron beams pass;
Disposed flat row with respect to the first main magnetic conductor portion, a second main magnetic conductor section including a second opening plurality of said plurality of electron beams pass,
In the first main magnetic conductor portion, around the first opening, that having said electron beam first sub magnetic conductor portions plurality of which are provided so as to project flat row direction to the irradiation direction of the A featured electron beam exposure apparatus.
前記電子レンズ部は、前記第2主磁性導体部との間隔が異なる前記複数の第1副磁性導体部を有することを特徴とする請求項1に記載の電子ビーム露光装置。  2. The electron beam exposure apparatus according to claim 1, wherein the electron lens portion includes the plurality of first sub magnetic conductor portions having different intervals from the second main magnetic conductor portion. 前記電子レンズ部は、前記第1主磁性導体部及び前記第2主磁性導体部の周囲に設けられ、磁界を発生させるコイル部をさらに有することを特徴とする請求項2に記載の電子ビーム露光装置。  3. The electron beam exposure according to claim 2, wherein the electron lens portion further includes a coil portion provided around the first main magnetic conductor portion and the second main magnetic conductor portion to generate a magnetic field. apparatus. 所定の前記第1副磁性導体部と前記第2主磁性導体部との間隔は、前記所定の第1副磁性導体部より前記コイル部から遠い位置に配置された他の前記第1副磁性導体部と前記第2主磁性導体部との間隔より大きいことを特徴とする請求項3に記載の電子ビーム露光装置。  The distance between the predetermined first sub magnetic conductor portion and the second main magnetic conductor portion is another first sub magnetic conductor disposed at a position farther from the coil portion than the predetermined first sub magnetic conductor portion. 4. The electron beam exposure apparatus according to claim 3, wherein a distance between the first main magnetic conductor and the second main magnetic conductor is larger. 前記電子レンズ部は、前記第2主磁性導体部において、前記第2開口部の周囲に、前記電子ビームの照射方向に平行な方向に突出するように設けられた複数の第2副磁性導体部をさらに有することを特徴とする請求項1に記載の電子ビーム露光装置。The electron lens unit, in the second main magnetic conductor portion, wherein the periphery of the second opening, the electron beam plurality of second sub-magnetic conductor arranged so as to project flat row direction to the irradiation direction of the The electron beam exposure apparatus according to claim 1, further comprising a unit. 所定の前記第1副磁性導体部と、当該所定の前記第1副磁性導体部に対向する所定の前記第2副磁性導体部との間隔は、他の前記第1副磁性導体部と、当該他の前記第1磁性導体部と対向する他の前記第2副磁性導体部との間隔と異なることを特徴とする請求項5に記載の電子ビーム露光装置。An interval between the predetermined first submagnetic conductor portion and the predetermined second submagnetic conductor portion facing the predetermined first submagnetic conductor portion is different from the other first submagnetic conductor portions, 6. The electron beam exposure apparatus according to claim 5, wherein the distance is different from the distance between the other second sub-magnetic conductor portion facing the other first magnetic conductor portion. 前記所定の第1副磁性導体部と前記所定の第2副磁性導体部との間隔は、前記所定の第1副磁性導体部より前記コイル部から遠い位置に配置された前記他の第1副磁性導体部と前記他の第2副磁性導体部との間隔より大きいことを特徴とする請求項6に記載の電子ビーム露光装置。An interval between the predetermined first sub magnetic conductor portion and the predetermined second sub magnetic conductor portion is the other first sub magnetic conductor disposed at a position farther from the coil portion than the predetermined first sub magnetic conductor portion. 7. The electron beam exposure apparatus according to claim 6, wherein a distance between the magnetic conductor portion and the other second sub magnetic conductor portion is larger. 前記電子レンズ部は、前記第1副磁性導体部と、前記第1副磁性導体部と同一軸上に設けられた前記第2副磁性導体部との周囲に設けられた非磁性導体部をさらに有することを特徴とする請求項5に記載の電子ビーム露光装置。The electron lens portion further includes a nonmagnetic conductor portion provided around the first submagnetic conductor portion and the second submagnetic conductor portion provided on the same axis as the first submagnetic conductor portion. 6. The electron beam exposure apparatus according to claim 5, further comprising: 前記非磁性導体部は、前記第1副磁性導体部と前記第2副磁性導体部とに挟まれることを特徴とする請求項8に記載の電子ビーム露光装置。9. The electron beam exposure apparatus according to claim 8, wherein the nonmagnetic conductor portion is sandwiched between the first submagnetic conductor portion and the second submagnetic conductor portion. 複数の電子ビームをそれぞれ独立に集束させる電子レンズであって、
前記複数の電子ビームが通過する複数の第1開口部を含む第1主磁性導体部と、
前記第1主磁性導体部に対して平行に配置され、前記複数の電子ビームが通過する複数の第2開口部を含む第2主磁性導体部と、
前記第1主磁性導体部において、前記第1開口部の周囲に、前記電子ビームの照射方向に平行な方向に突出するように設けられた複数の第1副磁性導体部と
を備えることを特徴とする電子レンズ。
An electronic lens for focusing a plurality of electron beams independently,
A first main magnetic conductor portion including a plurality of first openings through which the plurality of electron beams pass;
Disposed flat row with respect to the first main magnetic conductor portion, a second main magnetic conductor section including a second opening plurality of said plurality of electron beams pass,
In the first main magnetic conductor portion, around the first opening, in that it comprises a said electron beam first sub magnetic conductor portions plurality of which are provided so as to project flat row direction to the irradiation direction of the Features an electronic lens.
前記第2主磁性導体部との間隔が異なる前記複数の第1副磁性導体部を備えることを特徴とする請求項10に記載の電子レンズ。  11. The electron lens according to claim 10, comprising the plurality of first sub-magnetic conductor parts having different intervals from the second main magnetic conductor part. 前記第2主磁性導体部において、前記第2開口部の周囲に、前記電子ビームの照射方向に平行な方向に突出するように設けられた複数の第2副磁性導体部  In the second main magnetic conductor portion, a plurality of second sub magnetic conductor portions provided around the second opening portion so as to protrude in a direction parallel to the irradiation direction of the electron beam.
をさらに備えることを特徴とする請求項10に記載の電子レンズ。The electron lens according to claim 10, further comprising:
JP2000344731A 2000-11-13 2000-11-13 Electron beam exposure apparatus and electron lens Expired - Fee Related JP4535602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000344731A JP4535602B2 (en) 2000-11-13 2000-11-13 Electron beam exposure apparatus and electron lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000344731A JP4535602B2 (en) 2000-11-13 2000-11-13 Electron beam exposure apparatus and electron lens

Publications (2)

Publication Number Publication Date
JP2002150989A JP2002150989A (en) 2002-05-24
JP4535602B2 true JP4535602B2 (en) 2010-09-01

Family

ID=18818882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000344731A Expired - Fee Related JP4535602B2 (en) 2000-11-13 2000-11-13 Electron beam exposure apparatus and electron lens

Country Status (1)

Country Link
JP (1) JP4535602B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60236302D1 (en) * 2002-12-17 2010-06-17 Integrated Circuit Testing Multi-axis compound lens, blasting device and method of using this combined lens
JP5087318B2 (en) 2007-05-30 2012-12-05 株式会社ニューフレアテクノロジー Charged particle beam drawing apparatus and charged particle beam drawing method
US8003953B2 (en) * 2009-12-11 2011-08-23 Hermes Microvision, Inc. Multi-axis magnetic lens
US8445862B2 (en) * 2010-12-14 2013-05-21 Hermes Microvision, Inc. Apparatus of plural charged particle beams with multi-axis magnetic lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423476A (en) * 1977-07-25 1979-02-22 Akashi Seisakusho Kk Composite electron lens
JPS614143A (en) * 1984-06-19 1986-01-10 Jeol Ltd Objective lens in transparent electron microscope
WO2001075946A1 (en) * 2000-04-04 2001-10-11 Advantest Corporation Multibeam exposure apparatus comprising multiaxis electron lens, multiaxis electron lens for focusing multiple electron beam, and method for manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423476A (en) * 1977-07-25 1979-02-22 Akashi Seisakusho Kk Composite electron lens
JPS614143A (en) * 1984-06-19 1986-01-10 Jeol Ltd Objective lens in transparent electron microscope
WO2001075946A1 (en) * 2000-04-04 2001-10-11 Advantest Corporation Multibeam exposure apparatus comprising multiaxis electron lens, multiaxis electron lens for focusing multiple electron beam, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2002150989A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
US4209702A (en) Multiple electron lens
JP4246401B2 (en) Electron beam exposure apparatus and electron beam deflection apparatus
JP4401614B2 (en) Multi-beam exposure apparatus using multi-axis electron lens, multi-axis electron lens for focusing a plurality of electron beams, and semiconductor device manufacturing method
JP4878501B2 (en) Charged particle beam application equipment
US6903337B2 (en) Examining system for the particle-optical imaging of an object, deflector for charged particles as well as method for the operation of the same
JP4451042B2 (en) Multi-beam exposure apparatus using multi-axis electron lens and semiconductor element manufacturing method
US6787780B2 (en) Multi-beam exposure apparatus using a multi-axis electron lens, fabrication method of a semiconductor device
US20010028038A1 (en) Multi-beam exposure apparatus using a multi-axis electron lens, fabrication method a semiconductor device
JP4092280B2 (en) Charged beam apparatus and charged particle detection method
US6703624B2 (en) Multi-beam exposure apparatus using a multi-axis electron lens, electron lens convergencing a plurality of electron beam and fabrication method of a semiconductor device
US7041988B2 (en) Electron beam exposure apparatus and electron beam processing apparatus
US7135677B2 (en) Beam guiding arrangement, imaging method, electron microscopy system and electron lithography system
JP2004134388A (en) Particle optical device, electron microscope system, and electronic lithography system
JP4301724B2 (en) Electron beam exposure apparatus and electron lens
US20010028043A1 (en) Multi-beam exposure apparatus using a multi-axis electron lens, fabrication method of a multi-axis electron lens and fabrication method of a semiconductor device
JP4535602B2 (en) Electron beam exposure apparatus and electron lens
JP4451041B2 (en) Multi-beam exposure apparatus using multi-axis electron lens, multi-axis electron lens for focusing a plurality of electron beams, and semiconductor device manufacturing method
JP2004134380A (en) Device operated by charged particle beam
JP3800343B2 (en) Charged particle beam exposure system
JP4112791B2 (en) Electron beam correction method and electron beam exposure apparatus
JP4246374B2 (en) Electron beam exposure apparatus, irradiation position detection method, and electron detection apparatus
JP4558240B2 (en) Electron beam exposure system
JP4199425B2 (en) Electron beam exposure apparatus and exposure method
JP2006012524A (en) Electron lens member and electron beam application apparatus
JP2003323858A (en) Electron beam treatment device and measurement method of electron beam shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees