JPH04194610A - Measuring device for wall thickness of tube-shaped material - Google Patents

Measuring device for wall thickness of tube-shaped material

Info

Publication number
JPH04194610A
JPH04194610A JP32459890A JP32459890A JPH04194610A JP H04194610 A JPH04194610 A JP H04194610A JP 32459890 A JP32459890 A JP 32459890A JP 32459890 A JP32459890 A JP 32459890A JP H04194610 A JPH04194610 A JP H04194610A
Authority
JP
Japan
Prior art keywords
wall thickness
tubular material
radiation
pair
calculation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32459890A
Other languages
Japanese (ja)
Other versions
JPH0774732B2 (en
Inventor
Naoya Fushimi
直哉 伏見
Hiroshi Sawada
沢田 宏
Katsumi Sakurai
桜井 克己
Hiromochi Sakura
弘持 佐倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2324598A priority Critical patent/JPH0774732B2/en
Publication of JPH04194610A publication Critical patent/JPH04194610A/en
Publication of JPH0774732B2 publication Critical patent/JPH0774732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To measure the wall thickness of a tube-shaped material by providing a pair of optical detectors, a distance-calculating means, a wall thickness compensation coefficient calculation means, and a compensation wall thickness calculation means. CONSTITUTION:A pair of linear beams 12 are emitted to a tube-shaped material 22 at a position of both side surfaces of a section of the tube-shaped material 22 for obtaining a value of a deviation X. Namely, a value of the deviation (x) is obtained as x=¦A-B¦/2 from linear beam light-receiving widths A and B which are detected by a pair of optical detectors 4. Then, the obtained deviation (x) is calculated by a distance calculation means 5 and a wall thickness compensation coefficient is calculated by a wall thickness compensation coefficient means 6 by using a target wall thickness of the wall thickness measuring tube-shaped material 22 and external diameter dimensions which are preset based on this x. Then, the compensated wall thickness is calculated by a compensated wall thickness calculation means 7 based on a wall thickness signal from a wall thickness detector 2 and the calculated wall thickness compensation coefficient, thus enabling an accurate wall thickness of the tube-shaped material to be measured.

Description

【発明の詳細な説明】 「産業上の利用分野コ この発明は、管状材の肉厚測定装置に関する。[Detailed description of the invention] “Industrial Application Area The present invention relates to a wall thickness measuring device for a tubular material.

[従来の技術] 管状材の肉厚は、管状材に大なり小なりの芯、9<わか
あるので、放射線を1ビーム使用して測定しようとして
も、放射線をとの方向に照射すればよいかが分からない
ので、正確に把握することが困難である。そのため、従
来から第3図に示す放射線のビーム21を管状材22を
貫通するように平行に複数#I源23から照射し、それ
ぞれのビームの透過減衰量を検出器24で検出して肉厚
を求めるパラレルビーム方法や、第4図に示す放射線の
ビーム31を管状#22を貫通するように3方向から線
源33により照射し、それぞれのビームの透過減衰量を
検出器34で検出して肉厚を求めるマルチビーム方法等
が採用されている。
[Prior art] The wall thickness of a tubular material is determined by the thickness of the core, which is more or less large or small, so even if you try to measure it using one beam of radiation, it is only necessary to irradiate the radiation in the direction. Since we don't know how, it is difficult to grasp accurately. Therefore, conventionally, a plurality of #I sources 23 irradiate radiation beams 21 shown in FIG. A parallel beam method is used to obtain the radiation beam 31 shown in FIG. A multi-beam method is used to determine wall thickness.

[発明が解決しようとする課題] しかしながら、上述した従来の管状材の肉厚を測定する
方法に使用する測定装置は、いずれも機構が複雑となり
、高価なものとなるという問題点があった。
[Problems to be Solved by the Invention] However, all of the measuring devices used in the above-described conventional method for measuring the wall thickness of a tubular material have a problem in that the mechanism is complicated and expensive.

この発明は、従来技術の上記のような問題点を解消し、
簡単な検出機構により管状材の肉厚が測定できる管状材
の肉厚測定装置を提供することを目的としている。
This invention solves the above-mentioned problems of the prior art,
It is an object of the present invention to provide a wall thickness measuring device for a tubular material that can measure the wall thickness of a tubular material using a simple detection mechanism.

[課題を解決するための手段] この発明に係る管状材の肉厚測定装置は、管状材に放射
線をその外方から貫通するように照射する放射線照射手
段と、貫通した該放射線の透過減衰量を測定して前記管
状材の透過部における肉厚を求める肉厚検出器と、前記
放射線照射手段の両側にあって放射線と平行な方向に前
記管状材にリニアビームを照射する!対のリニアビーム
照射手段と、それぞれのリニアビーム照射手段から照射
されたリニアビームを光学的に検出する1対の光学的検
出器と、この1対の光学的検出器からの信号により前記
管状材の軸芯から前記放射線が照射された位置までの距
離を演算する距離演算手段と、この距離演算手段からの
距離信号とあらかじめ設定されている管状材の目標肉厚
および外径寸法とから肉厚補正係数を演算する肉厚補正
係数演算手段と、演算された肉厚補正係数と前記肉厚検
出器からの肉厚信号とから管状材の補正された肉厚を演
算する補正肉厚演算手段とから構成される管状材の肉厚
測定装置である。
[Means for Solving the Problems] A wall thickness measuring device for a tubular material according to the present invention includes a radiation irradiation means for irradiating radiation to penetrate the tubular material from the outside, and a transmission attenuation of the radiation that has passed through the tubular material. A wall thickness detector is provided on both sides of the radiation irradiation means and irradiates the tubular material with a linear beam in a direction parallel to the radiation! a pair of linear beam irradiation means; a pair of optical detectors for optically detecting the linear beams irradiated from the respective linear beam irradiation means; a distance calculation means for calculating the distance from the axis of the tube to the position irradiated with the radiation, and a wall thickness calculated from the distance signal from the distance calculation means and the preset target wall thickness and outer diameter of the tubular material. a wall thickness correction coefficient calculating means for calculating a correction coefficient; a corrected wall thickness calculating means for calculating a corrected wall thickness of the tubular material from the calculated wall thickness correction coefficient and the wall thickness signal from the wall thickness detector; This is a wall thickness measuring device for tubular materials made of.

[作用] この発明に係る管状材の肉厚測定装置は、管状材に放射
線をその外方から貫通するように照射する放射線照射手
段と、貫通した該放射線の透過減衰量を測定して前記管
状材の透過部における肉厚を求める肉厚検出器と、前記
放射線照射手段の両側にあって放射線と平行な方向に前
記管状材にリニアビームを照射する1対のリニアビーム
照射手段と、それぞれのリニアビーム照射手段から照射
されたりニアビームを光学的に検出する1対の光学的検
出器と、この1対の光学的検出器からの信号により前記
管状材の軸芯から前記放射線が照射された位置までの距
離を演算する距離演算手段と、この距離演算手段からの
距離信号とあらかじめ設定されている管状材の目標肉厚
および外径寸法とから肉厚補正係数を演算する肉厚補正
係数演算手段と、演算された肉厚補正係数と前記肉厚検
出器からの肉厚信号とから管状材の補正された肉厚を演
算する補正肉厚演算手段とから構成されている。
[Function] The device for measuring the wall thickness of a tubular material according to the present invention includes a radiation irradiation means that irradiates the tubular material with radiation so as to penetrate the tubular material from the outside, and measures the transmission attenuation of the penetrating radiation to measure the thickness of the tubular material. a wall thickness detector for determining the wall thickness in the transparent portion of the material; a pair of linear beam irradiation means located on both sides of the radiation irradiation means for irradiating the tubular material with a linear beam in a direction parallel to the radiation; a pair of optical detectors for optically detecting the near beam irradiated from the linear beam irradiation means; and a position irradiated with the radiation from the axis of the tubular material based on signals from the pair of optical detectors; distance calculation means for calculating the distance to the end of the pipe; and wall thickness correction coefficient calculation means for calculating a wall thickness correction coefficient from the distance signal from the distance calculation means and the preset target wall thickness and outer diameter of the tubular material. and a corrected wall thickness calculating means for calculating the corrected wall thickness of the tubular material from the calculated wall thickness correction coefficient and the wall thickness signal from the wall thickness detector.

そして、第5図に示すように放射線21の照射位置は、
1対のリニアビーム照射手段23から等距離位置となる
ように設定されている。したがって、管状材22の軸芯
0がこの放射#21上にあれば、放射線21によって正
しい肉厚tが測定される。
As shown in FIG. 5, the irradiation position of the radiation 21 is
The positions are set to be equidistant from the pair of linear beam irradiation means 23. Therefore, if the axis 0 of the tubular material 22 is on this radiation #21, the correct wall thickness t can be measured by the radiation 21.

しかしながら、管状材22の軸芯0が軸芯0をとおる水
平軸X上を左方向にXだけずれているとすると、放射線
21によって測定される肉厚は(yt  yりであり、
正しい肉厚ではない。しかし、本発明においては、軸芯
からはずれた位置の肉厚を測定した場合でも、次のよう
にして正しい肉厚を得るようにしたのである。
However, if the axis 0 of the tubular material 22 is shifted by X to the left on the horizontal axis X passing through the axis 0, the wall thickness measured by the radiation 21 is (yt
It's not the correct thickness. However, in the present invention, even when measuring the wall thickness at a position off the axis, the correct wall thickness can be obtained in the following manner.

すなわち、(yt −yt )は、管状材22の外径の
1/2をaとすると、第5図の関係から次のようになる
That is, (yt - yt) is as follows from the relationship shown in FIG. 5, where a is 1/2 of the outer diameter of the tubular material 22.

)’+ = (a’  x! ) I/l      
・・・(1)yt=((a  t)−X!)I/″ ・
・・(2)(1)式と(2)式から、 y 、 −y 、 =(a *  x ! ) I /
 ! −((a−1)” −X! ) I/1・・・(
3)この(3)式で求められる(yt −yt )と正
しい肉厚tとの比をαとすると、 α= t/ (yt  )’t ) = t/ [(a7−x曹) I/鵞−((a−t)’
 −x” ) ”” ] ・ (4)(4)式で求まる
αは、肉厚測定をする管状材22の肉厚が目標肉厚tで
はなくてtoとなっていた場合の、(yt−y、)に対
応する(yl−y、°)の補正係数として使用すること
ができる(ylはロールの設定により一義的に定まるほ
ぼ不変のものといえる)。
)'+ = (a' x!) I/l
...(1)yt=((at)-X!)I/''・
...(2) From equations (1) and (2), y, -y, = (a * x!) I /
! -((a-1)" -X!) I/1...(
3) Let α be the ratio of (yt - yt ) obtained by this formula (3) and the correct wall thickness t, then α = t/ (yt )'t ) = t/ [(a7-x) I/ goose-((a-t)'
−x” ) ”” ] ・(4) α determined by equation (4) is (yt− It can be used as a correction coefficient for (yl-y,°) corresponding to y, ) (yl can be said to be an almost unchangeable value that is uniquely determined by the roll setting).

すなわち、第6図において、 a>t、t’ 、t>t’ −t とすると、線分A、B、、線分A*Btおよび線分A 
s B *は、それぞれ平行であることが近似的に成立
する。したがって、 t/l’ = (yt−yt)/ (yt−y*’)パ
・t’ =t (yビyt’)/ (yt−yt)=α
(y+yズ°)     ・・・(5)補正係数αを求
めるためには、Xの値を把握しなければならない。そこ
で、この発明においては、1対のリニアビーム24aお
よび24bが、管状材によりどのように遮られているが
、すなわち受光器25(例えばリニアアレイCCDカメ
ラ)により受光されている輻AおよびBを求め、距離演
算手段により、x=IA−Bl/2としてχを求めるよ
うにしている。
That is, in FIG. 6, if a>t, t' and t>t' -t, line segments A, B, , line segment A*Bt and line segment A
s B * are approximately parallel to each other. Therefore, t/l' = (yt-yt)/ (yt-y*') pa・t' = t (ybyt')/ (yt-yt)=α
(y+y degree) (5) In order to find the correction coefficient α, the value of X must be known. Therefore, in the present invention, the pair of linear beams 24a and 24b are blocked by the tubular material, but in other words, the radiations A and B received by the light receiver 25 (for example, a linear array CCD camera) are The distance calculation means calculates χ by setting x=IA-Bl/2.

そして、このXを基に、肉厚補正係数演算手段により、
肉厚補正係数αを演算し、この肉厚補正係数αと、肉厚
検出器からの肉厚信号とから、管状材の長手方向の肉厚
かバラついていても、811r面での肉厚を補正肉厚演
算手段により演算することができる。
Then, based on this X, the wall thickness correction coefficient calculating means calculates
A wall thickness correction coefficient α is calculated, and from this wall thickness correction coefficient α and the wall thickness signal from the wall thickness detector, even if the wall thickness in the longitudinal direction of the tubular material varies, the wall thickness at the 811r plane can be calculated. It can be calculated by the corrected wall thickness calculation means.

[実施例] 本発明の1実施例の管状材の肉厚測定装置を、第1図に
より説明する。第1図は、本発明の1実施例の管状材の
肉厚測定装置の構成を示すブロック図である。本発明の
1実施例の管状材の肉厚測定装置は、管状材22に放射
線11をその外方から貫通するように照射する放射線照
射手段lと、貫通した該放射線11の透過減衰量を測定
して前記管状材22の透過部における肉厚を求める肉厚
検出器2と、前記放射線照射手段1の両側にあって放射
線11と平行な方向に前記管状材22にリニアビーム1
2を照射する1対のリニアビーム照射手段3と、それぞ
れのリニアビーム照射手段3から照射されたリニアビー
ム12を光学的に検出する1対の光学的検出器4と、こ
の1対の光学的検出器4からの信号により前記管状材2
2の軸芯から前記放射線11が照射された位置までの距
離を演算する距離演算手段5と、この距離演算手段5か
らの距離信号とあらかじめ設定されている管状材22の
目標肉厚および外径寸法とから肉厚補正係数を演算する
肉厚補正係数演算手段6と、演算された肉厚補正係数と
前記肉厚検出器2からの肉厚信号とから管状材22の補
正された肉厚を演算する補正肉厚演算手段7とから構成
されている。
[Example] An apparatus for measuring the wall thickness of a tubular material according to an example of the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing the configuration of a wall thickness measuring device for a tubular material according to an embodiment of the present invention. A wall thickness measuring device for a tubular material according to an embodiment of the present invention includes a radiation irradiation means l that irradiates the tubular material 22 with radiation 11 so as to penetrate from the outside, and measures the amount of transmission attenuation of the radiation 11 that penetrates the tubular material 22. A wall thickness detector 2 detects the wall thickness of the transparent portion of the tubular material 22, and a linear beam 1 is provided on both sides of the radiation irradiation means 1 to the tubular material 22 in a direction parallel to the radiation 11.
2, a pair of optical detectors 4 that optically detect the linear beams 12 irradiated from the respective linear beam irradiation means 3; The signal from the detector 4 causes the tubular material 2 to
a distance calculation means 5 for calculating the distance from the axis of the tube 2 to the position irradiated with the radiation 11; and a distance signal from the distance calculation means 5 and a preset target thickness and outer diameter of the tubular material 22. A wall thickness correction coefficient calculating means 6 calculates a wall thickness correction coefficient from the dimensions, and calculates the corrected wall thickness of the tubular material 22 from the calculated wall thickness correction coefficient and the wall thickness signal from the wall thickness detector 2. It is composed of a correction wall thickness calculating means 7 for calculating.

上述した本発明の1実施例の管状材の肉厚測定装置にお
いては、放射$11は1対のリニアビーム12から等距
離の位置において、リニアビーム12と平行に管状材2
2に照射されている。そして、管状材22の肉厚を測定
するときには、管状材22の軸芯0がこの放射線IIの
位置に来るように、管状材22をセットするようにして
いる。
In the apparatus for measuring the wall thickness of a tubular material according to one embodiment of the present invention described above, the radiation $11 is emitted from the tubular material 2 in parallel to the linear beams 12 at a position equidistant from the pair of linear beams 12.
2 is irradiated. When measuring the wall thickness of the tubular material 22, the tubular material 22 is set so that the axis 0 of the tubular material 22 is located at the radiation line II.

しかしながら、実際には第1図に示すように、Xだけず
れている可能性が大きい。そこで、本発明の1実施例の
管状材の肉厚測定装置においては、管状材22断面の両
側面の位置をI対のリニアビーム!2を管状材22に照
射して、前記Xの値を求めるようにしている。すなわち
、1対の光学的検出器4で検出したリニアビーム受光幅
AおよびBから、x=lA−Bl/2として、Xの値を
求めている。このようにしてXが求まるのは、次の理由
によるものである。すなわち、管状材22の軸芯○が放
射線11の位置にある場合のリニアビーム受光幅をCと
すると、次の関係が成立する。
However, in reality, as shown in FIG. 1, there is a high possibility that there is a deviation by X. Therefore, in the wall thickness measuring device for a tubular material according to one embodiment of the present invention, the positions of both side surfaces of the cross section of the tubular material 22 are determined by I pairs of linear beams. 2 is irradiated onto the tubular material 22 to determine the value of X. That is, from the linear beam reception widths A and B detected by the pair of optical detectors 4, the value of X is determined by setting x=lA-Bl/2. The reason why X is determined in this way is as follows. That is, if the linear beam reception width when the axis ◯ of the tubular member 22 is located at the position of the radiation 11 is C, the following relationship holds true.

A=C十X・・・・・・・・・・・・(6)B=C−x
・・・・・・・・・・・・(7)A−B=2x    
 ;、x= (A−B)/2しかし、管状材22の軸芯
Oは、第1図とは逆の方向にずれることもあるので、 x=lA−Bl/2となる。
A=C10X・・・・・・・・・・・・(6)B=C−x
・・・・・・・・・・・・(7) A-B=2x
;,x=(A-B)/2 However, since the axis O of the tubular member 22 may be shifted in the opposite direction to that shown in FIG. 1, x=lA-Bl/2.

このようにして求まるXを、距離演算手段5で演算し、
このXを基にあらかじめ設定しである肉厚測定管状材の
目標肉厚および外径寸法を使用して、肉厚補正係数演算
手段6により、前記(4)式に基づき肉厚補正係数αを
演算する。
The distance calculation means 5 calculates X obtained in this way,
Using the target wall thickness and outer diameter of the wall thickness measurement tubular material, which are set in advance based on this calculate.

α : j/ [(a! −x! )I/茸−((a−
t)   ’   −x’   )   ”’  コ−
(4)ただし、 t:目標肉厚 a:外径寸法の1/2 そして、肉厚検出器2からの肉厚信号とこの演算された
肉厚補正係数αとから、前記(5)式に基づき補正肉厚
演算手段により補正肉厚を演算する。
α: j/ [(a! -x!) I/mushroom-((a-
t) '-x' ) ”' co-
(4) However, t: Target wall thickness a: 1/2 of the outer diameter dimension Then, from the wall thickness signal from the wall thickness detector 2 and the calculated wall thickness correction coefficient α, the equation (5) above is obtained. Based on this, the corrected wall thickness is calculated by the corrected wall thickness calculation means.

t’=α(y+’  yt’)      −(5)た
だし、 t′ :補正肉厚 ylo−V*’:肉厚信号に対応する肉厚第2図は、本
発明の1実施例の管状材の肉厚側、定装置により、同一
鋼管の長手方向の肉厚のバラツキの傾向を同一寸法の鋼
管354本について測定したもの平均値を示すグラフで
ある。このように、鋼管の長手方向の肉厚のバラツキの
傾向を容易に把握することができるので、肉厚のバラツ
キをな(す対策を容易に打ち出すことかでき、鋼管の歩
留を向上させるとともに、鋼管の品質も向上させること
ができる。
t'=α(y+'yt')-(5) However, t': Corrected wall thickness ylo-V*': Wall thickness corresponding to the wall thickness signal FIG. 2 shows the tubular material according to one embodiment of the present invention. This is a graph showing the average value of 354 steel pipes of the same size, measured by a constant device for the tendency of variation in wall thickness in the longitudinal direction of the same steel pipe. In this way, it is possible to easily grasp the tendency of variation in wall thickness in the longitudinal direction of steel pipes, so it is possible to easily develop countermeasures to eliminate variations in wall thickness, thereby improving the yield of steel pipes and , the quality of steel pipes can also be improved.

[発明の効果コ この発明により、管状材の正確な肉厚を安価な測定装置
により測定することかできる。
[Effects of the Invention] According to the present invention, the accurate wall thickness of a tubular material can be measured using an inexpensive measuring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の管状材の肉厚測定装置の構
成を示すブロック図、第2図は鋼管の長手方向の肉厚の
バラツキを示すグラフ、第3図および第4図は従来の管
状材の肉厚測定装置の説明図、第5図は本発明の1実施
例の管状材の肉厚測定装置で肉厚を測定するときの測定
原理を示す説明図、第6図はαが補正係数として使用で
きることを示す説明図である。 1・・・放射線照射手段、2・・・肉厚検出器、3・・
・リニアビーム照射手段、4・・・光学的検出器、5・
・・距離演算手段、6・・・肉厚補正係数演算手段、7
・・・補正肉厚演算手段。
FIG. 1 is a block diagram showing the configuration of a wall thickness measuring device for a tubular material according to an embodiment of the present invention, FIG. 2 is a graph showing variations in wall thickness in the longitudinal direction of steel pipes, and FIGS. 3 and 4 are FIG. 5 is an explanatory diagram of a conventional wall thickness measuring device for tubular materials, and FIG. FIG. 7 is an explanatory diagram showing that α can be used as a correction coefficient. 1...Radiation irradiation means, 2...Thickness detector, 3...
・Linear beam irradiation means, 4... optical detector, 5.
...Distance calculation means, 6...Thickness correction coefficient calculation means, 7
...Correction wall thickness calculation means.

Claims (1)

【特許請求の範囲】[Claims] 管状材に放射線をその外方から貫通するように照射する
放射線照射手段と、貫通した該放射線の透過減衰量を測
定して前記管状材の透過部における肉厚を求める肉厚検
出器と、前記放射線照射手段の両側にあって放射線と平
行な方向に前記管状材にリニアビームを照射する1対の
リニアビーム照射手段と、それぞれのリニアビーム照射
手段から照射されたリニアビームを光学的に検出する1
対の光学的検出器と、この1対の光学的検出器からの信
号により前記管状材の軸芯から前記放射線が照射された
位置までの距離を演算する距離演算手段と、この距離演
算手段からの距離信号とあらかじめ設定されている管状
材の目標肉厚および外径寸法とから肉厚補正係数を演算
する肉厚補正係数演算手段と、演算された肉厚補正係数
と前記肉厚検出器からの肉厚信号とから管状材の補正さ
れた肉厚を演算する補正肉厚演算手段とから構成される
ことを特徴とする管状材の肉厚測定装置。
radiation irradiation means for irradiating radiation to the tubular material so as to penetrate from the outside; a wall thickness detector for measuring the transmission attenuation of the penetrating radiation to determine the wall thickness of the transparent portion of the tubular material; A pair of linear beam irradiation means that are located on both sides of the radiation irradiation means and irradiate the tubular material with linear beams in a direction parallel to the radiation, and optically detect the linear beams irradiated from the respective linear beam irradiation means. 1
a pair of optical detectors, a distance calculation means for calculating a distance from the axis of the tubular material to a position irradiated with the radiation based on signals from the pair of optical detectors; wall thickness correction coefficient calculation means for calculating a wall thickness correction coefficient from the distance signal and the preset target wall thickness and outer diameter dimension of the tubular material; A wall thickness measuring device for a tubular material, comprising a corrected wall thickness calculating means for calculating the corrected wall thickness of the tubular material from the wall thickness signal of the wall thickness signal.
JP2324598A 1990-11-27 1990-11-27 Tube thickness measuring device Expired - Fee Related JPH0774732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2324598A JPH0774732B2 (en) 1990-11-27 1990-11-27 Tube thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2324598A JPH0774732B2 (en) 1990-11-27 1990-11-27 Tube thickness measuring device

Publications (2)

Publication Number Publication Date
JPH04194610A true JPH04194610A (en) 1992-07-14
JPH0774732B2 JPH0774732B2 (en) 1995-08-09

Family

ID=18167609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2324598A Expired - Fee Related JPH0774732B2 (en) 1990-11-27 1990-11-27 Tube thickness measuring device

Country Status (1)

Country Link
JP (1) JPH0774732B2 (en)

Also Published As

Publication number Publication date
JPH0774732B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US8447012B2 (en) Radiation inspection apparatus
WO2001071325A3 (en) Calibration and alignment of x-ray reflectometric systems
US4695729A (en) Tubular part wall thickness measuring device
KR950703139A (en) ONLINE TOMOGRAPHIC GAUGING OF SHEET METAL
TWI439664B (en) Radiation thickness meter
JPS5646406A (en) Thickness measuring method for pipe wall of tubular material
ES2111273T3 (en) PROCEDURE AND CALIBRATION DEVICE FOR A SET OF MEASUREMENT OF THE CROSS-PROFILE PROFILE OF A THICKNESS OF A FLAT PRODUCT.
US20040234027A1 (en) System and method for the measurement of the layer thickness of a multi-layer pipe
JPH04194610A (en) Measuring device for wall thickness of tube-shaped material
JPS6385309A (en) Method and apparatus for measuring thickness of liquid film on plate-like material
JPH02114146A (en) Method and device for measuring crack length and strain in structure part and test piece
JP3101776B2 (en) Turbidity measuring device
CA1210529A (en) Tubular part wall thickness measuring device
JPH0236882B2 (en) KANJOZAINOHOSHASENTOKASHIKINIKUATSUSOKUTEISOCHI
JPH04348211A (en) Optical shape measuring method
FI89411B (en) Method and arrangement for thickness measurement
JPH0437924B2 (en)
JPH01124703A (en) Method and device for noncontact measurement of film characteristic
JPH0850007A (en) Method and apparatus for evaluating film thickness
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
JP2905895B2 (en) Radiation measurement equipment
GB2027879A (en) Apparatus for determining the wall thickness of hollow objects or tubes
JPH09126746A (en) Thickness gauge
SU1315879A1 (en) Device for determining longitudinal dimensions of flaws on radiographic pictures of long-distance pipeline welds
JPS6098305A (en) Method and device for inspecting surface of structure member