JPH04193977A - Method for electroplating - Google Patents

Method for electroplating

Info

Publication number
JPH04193977A
JPH04193977A JP32481490A JP32481490A JPH04193977A JP H04193977 A JPH04193977 A JP H04193977A JP 32481490 A JP32481490 A JP 32481490A JP 32481490 A JP32481490 A JP 32481490A JP H04193977 A JPH04193977 A JP H04193977A
Authority
JP
Japan
Prior art keywords
plating
chamber
tank
anode
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32481490A
Other languages
Japanese (ja)
Inventor
Hirotoku Ota
広徳 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32481490A priority Critical patent/JPH04193977A/en
Publication of JPH04193977A publication Critical patent/JPH04193977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To reduce the dispersion of plating thickness and to reduce operations in an adverse environment by using an insoluble electrode as the anode of a plating bath, and executing the replenishment of copper in an electrodialysis bath. CONSTITUTION:As an insoluble anode electrode, a platinum electrode 3 is set. By a cation exchange resin membrane 6 and an anion exchange resin membrane 7, it is partitioned into three small chambers. A copper electrode 11 is set in an anode chamber 8, and a platinum electrode 12 is set in a cathode chamber 10. A plating soln. 2 is fed to an intermediate chamber 9 by a pump 18. Furthermore, this plating soln. 14 is fed to a plating bath 1 by a pump 19. The compsn. of the plating soln. is constituted of 200g/l sulfuric acid, 70g/l penta hydrate of copper sulfate and 60ppm chlorine. Moreover, the compsn. of a copper compound aq. soln. 13 in the anode chamber 8 is constituted of 200g/l penta hydrate of copper sulfate, and 40g/l aq. soln. of sodium hydroxide 15 is poured into the cathode chamber 10. The result plating with 2.0A/dm<2> current density and 25mum plating thickness for 57min is very good.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気めっき方法に関し、特に印刷配線板の電気
めっき方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electroplating method, and particularly to a method for electroplating printed wiring boards.

[従来の技術] 従来の印刷配線板の電気めっき方法は、第3図に示すよ
うに、めっき槽1に、例えば硫酸及び硫酸銅を含むめっ
き液2を満たす。次に陽極電極として銅ホール25.2
5’  をアノードケース26゜26″に入れ、さらに
これらをアノードバック27.27’ に入れ、めっき
槽lに浸漬する。
[Prior Art] In the conventional electroplating method for printed wiring boards, as shown in FIG. 3, a plating tank 1 is filled with a plating solution 2 containing, for example, sulfuric acid and copper sulfate. Next, the copper hole 25.2 is used as the anode electrode.
5' are placed in an anode case 26°26'', and then these are placed in an anode bag 27 and 27', and immersed in a plating bath 1.

次に、所望の箇所に穴あけを施し、無電解めっき処理を
行った基板4をめっき治具に取り付け、めっき槽Jに浸
漬する。次に、銅ボール25,25′ を陽極、基板4
を陰極として直流電流を流す。
Next, the substrate 4, which has been subjected to the electroless plating process with holes drilled at desired locations, is attached to a plating jig and immersed in the plating bath J. Next, the copper balls 25, 25' are used as anodes, and the substrate 4
A direct current is passed through the electrode as a cathode.

これによって銅ボール25.25’ より銅イオンがめ
つき液2中に溶解し、基板4に銅か析出される。
As a result, copper ions from the copper balls 25, 25' are dissolved into the plating solution 2, and copper is deposited on the substrate 4.

[発明が解決しようとする課題] この従来の電気めっき方法では、陽極として銅ホールを
使用しているため、めっきを行うことにより銅か溶解し
、銅ボールの表面積か徐々に小さくなるため、陽極の表
面積を一定にすることが困難であり、めっき液の組成の
変動や電流密度の分布が不均一になる。
[Problems to be Solved by the Invention] This conventional electroplating method uses copper holes as anodes, so the copper dissolves during plating and the surface area of the copper balls gradually decreases. It is difficult to keep the surface area constant, resulting in fluctuations in the composition of the plating solution and uneven distribution of current density.

また、銅ホールを補給するときに、めっき槽上での硫酸
雰囲気、高電流9重い銅ボールの運搬等の環境1作業性
が悪い。
In addition, when replenishing copper holes, workability is poor in environments such as a sulfuric acid atmosphere on a plating tank and transportation of heavy copper balls with high current.

本発明の目的は、めっき液の組成の変動や電流密度の分
布の不均一をなくし、悪影響下での作業を減らす電気め
っき方法を提供することにある。
An object of the present invention is to provide an electroplating method that eliminates variations in the composition of a plating solution and non-uniform distribution of current density, and reduces work under adverse conditions.

[課題を解決するための手段] 前記目的を達成するため、本発明に係る電気めっき方法
においては、不溶性の陽極電極を設置されためっき槽と
、 陰イオン交換樹脂膜及び陽イオン交換樹脂膜を用いて陰
極室、中間室、陽極室の3つの小部屋に仕切られ、前記
陰極室及び前記陽極室にそれぞれ電極を設けた電気透祈
槽とを有し、 前記めっき槽と前記電気透祈槽の前記中間室との間にめ
っき液の循環機構を設け、 前記めっき槽及び前記電気透祈槽の前記中間室にめっき
液を満たし、前記電気透祈槽の前記陰極室に電解質溶液
を満たし、前記陽極室に銅イオンを含む電解質溶液を満
たし、前記循環機構により前記めっき槽と前記電気透祈
槽の前記中間室との間で、前記めっき液を循環させ、次
に、前記めっき槽にめっき治具に取り付けた基板を湯漬
し、前記めっき槽の前記陽極電極と前記基板との間に直
流電流を流し、これと同時に前記電気透祈槽の前記陰極
室及び陽極室それぞれに設けた電極間に、前記めっき槽
で流した直流電流と同じ値の直流電流を流して被めっき
体に電気めっきするものである。
[Means for Solving the Problems] In order to achieve the above object, in the electroplating method according to the present invention, a plating tank equipped with an insoluble anode electrode, an anion exchange resin membrane and a cation exchange resin membrane are used. The plating tank and the electrotransparent tank are divided into three small rooms: a cathode chamber, an intermediate chamber, and an anode chamber, and each of the cathode chamber and the anode chamber is provided with an electrode. A plating solution circulation mechanism is provided between the intermediate chamber of the plating tank and the electrotransparent prayer tank, the plating solution is filled in the intermediate chamber of the plating tank and the electrotransparent prayer tank, and the cathode chamber of the electrotransparent prayer tank is filled with an electrolyte solution. Filling the anode chamber with an electrolyte solution containing copper ions, circulating the plating solution between the plating bath and the intermediate chamber of the electrolytic bath by the circulation mechanism, and then plating the plating bath. The substrate attached to the jig is immersed in hot water, and a direct current is passed between the anode electrode of the plating tank and the substrate, and at the same time, a direct current is applied between the electrodes provided in each of the cathode chamber and anode chamber of the electroplating tank. Second, the object to be plated is electroplated by passing a direct current of the same value as the direct current passed in the plating bath.

[作用] めっき槽及び電気透祈槽の中間室にめっき液を満たし、
電気透祈槽の陰極室に電解質溶液を満たし、陰極室に銅
イオンを含む電解質溶液を満たし、循環機構によりめっ
き槽と電気透祈槽の中間室との間でめっき液を循環させ
、めっき槽にめっき治具に取り付けた基板を浸漬し、め
っき槽の陽極電極と基板との間に直流電流を流し、これ
と同時に電気透祈槽の陰極室及び陰極室それぞれに設け
た電極間に、めっき槽で流した直流電流と同じ値の直流
電流を流すものである。硫酸及び硫酸銅の水溶液からな
るめっき液において、陽極電極として不溶性の電極を用
いてめっきを行うと、陰極である基板側では、次の(1
)式の反応か起こり、金属銅の析出が生じる。
[Function] Fill the intermediate chamber of the plating tank and the electrolytic tank with plating solution,
The cathode chamber of the electrolytic bath is filled with an electrolyte solution, the cathode chamber is filled with an electrolyte solution containing copper ions, and the plating solution is circulated between the plating bath and the intermediate chamber of the electrolytic bath by a circulation mechanism, and the plating bath is completed. The substrate attached to the plating jig is immersed in the plating jig, and a direct current is passed between the anode electrode of the plating tank and the substrate. A DC current of the same value as that passed in the tank is passed through. When plating is performed using an insoluble electrode as the anode electrode in a plating solution consisting of an aqueous solution of sulfuric acid and copper sulfate, the following (1)
) reaction occurs, resulting in the precipitation of metallic copper.

Cu” +  2e  −* Cu’      −(
1)陽極である不溶性電極側では、次の(2)式の反応
が起こる。
Cu” + 2e −* Cu’ −(
1) On the insoluble electrode side, which is the anode, the following reaction (2) occurs.

+  1 ・ H,○→2H+−〇2 ↑ +2e −(2)次に
、陰イオン交換樹脂膜及び陽イオン交換樹脂膜を用いて
、陰極室、中間室、陽極室の3つの小部屋に仕切られた
電気透祈槽を設け、陽極室及び陰極室に電極を設置する
。中間室にはめっき液を満たし、陽極室には銅イオンを
含む電解質溶液、例えば硫酸銅水溶液を満たし、陰極室
には電解質溶液、例えば水酸化ナトリウム水溶液を満た
す。
+ 1 ・ H,○→2H+-〇2 ↑ +2e -(2) Next, use an anion exchange resin membrane and a cation exchange resin membrane to partition into three small rooms: a cathode chamber, an intermediate chamber, and an anode chamber. An electrically conductive tank will be installed, and electrodes will be installed in the anode and cathode chambers. The intermediate chamber is filled with a plating solution, the anode chamber is filled with an electrolyte solution containing copper ions, such as an aqueous copper sulfate solution, and the cathode chamber is filled with an electrolyte solution, such as an aqueous sodium hydroxide solution.

そして、両電極間に直流電流を流すと、陽極室から中間
室へ陽イオン交換樹脂膜を通って、銅イオンが選択的に
移動する。また、陰極室から中間室へ陰イオン交換樹脂
膜を通って、水酸イオンか選択的に移動するが、めっき
液中の水素イオンによって中和される。
Then, when a direct current is passed between the two electrodes, copper ions selectively move from the anode chamber to the intermediate chamber through the cation exchange resin membrane. Furthermore, hydroxide ions selectively move from the cathode chamber to the intermediate chamber through the anion exchange resin membrane, but are neutralized by hydrogen ions in the plating solution.

次に、前述しためっき槽と、この電気透祈槽の中間室と
を配管でつなぎ、めっき液を循環することにより、めっ
き槽内でめっき反応により消費される銅イオンを電気透
祈槽の中間室内で蓄積される銅イオンにより補なうこと
かできる。
Next, by connecting the aforementioned plating tank and the intermediate chamber of this electro-transparent tank with piping and circulating the plating solution, the copper ions consumed by the plating reaction in the plating tank are removed from the intermediate chamber of the electro-transparent tank. This can be supplemented by copper ions accumulated indoors.

陽極室を満たす銅イオンを含む電解質溶液の銅イオン濃
度を高くすることにより、めっき液が満たされている中
間室へ移動する陽イオンはほとんど銅イオンのみとなる
By increasing the copper ion concentration of the electrolyte solution containing copper ions that fills the anode chamber, almost only copper ions move to the intermediate chamber filled with the plating solution.

従って、めっき槽で流す電流値と電気透祈槽て流す電流
値を等しくしてやれば、めっきの析出で消費した銅イオ
ンの量と電気透祈槽で中間室に移動した銅イオンの量は
等しくなるため、めっき液中の銅濃度は常に一定である
Therefore, if the current value passed in the plating bath and the current value passed in the electrolytic bath are made equal, the amount of copper ions consumed during plating deposition and the amount of copper ions transferred to the intermediate chamber in the electrolytic bath will be equal. Therefore, the copper concentration in the plating solution is always constant.

また、めっき槽と電気透祈槽の電流値を等しくすること
により、めっき槽内の陽極で発生する水素イオンと、電
気透祈槽の陰極室から中間室へ移動する水酸イオンとが
等モルで中和されるため、めっき液中の硫酸濃度も常に
一定となる。従って、以上の方法により、めっき液の組
成を常に一定に保ちながら電気めっきをする二とが可能
となり、めっき槽の陽極電極の面積は常に一定であるた
め、電流密度の分布が常に均一である電気めっきができ
る。
In addition, by making the current values of the plating tank and the electrolytic tank equal, the hydrogen ions generated at the anode in the plating tank and the hydroxide ions moving from the cathode chamber of the electrolytic tank to the intermediate chamber are equal in mole. The sulfuric acid concentration in the plating solution is always constant. Therefore, with the above method, it is possible to perform electroplating while keeping the composition of the plating solution constant, and because the area of the anode electrode in the plating bath is always constant, the distribution of current density is always uniform. Capable of electroplating.

[実施例1 次に、本発明の実施例について図面を参照して説明する
[Example 1 Next, an example of the present invention will be described with reference to the drawings.

(実施例1) 第1図は、本発明の実施例1を示す概略図である。(Example 1) FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

図において、めっき槽l内に、不溶性陽極電極として白
金電極3,3′ を設置する。このとき、白金電極3,
3″の表面積は、めっき治具の有効めっき面積と同等と
した。陽イオン交換樹脂膜6と、陰イオン交換樹脂膜7
を用いて、陽極室8゜中間室9.陰極室10の3つの小
部屋に仕切られた電気透祈槽5を設け、陽極室8に陽極
電極として銅電極11を設置し、陰極室′、0に陰極電
極として白金電極12を設置する。めっき槽1内のめっ
き液2を電気透祈槽5の中間室9に送るためにポンプ1
8を介して配管を継ぐ3また電気透祈槽5の中間室9の
めっき液14をめっき槽lへ送るため、ポンプ19とフ
ィルター20を介して配管を継ぐ。
In the figure, platinum electrodes 3, 3' are installed as insoluble anode electrodes in a plating tank l. At this time, the platinum electrode 3,
The surface area of 3" was equal to the effective plating area of the plating jig. Cation exchange resin membrane 6 and anion exchange resin membrane 7
Using the anode chamber 8 degrees and the intermediate chamber 9. An electrically conductive tank 5 partitioned into three small rooms of a cathode chamber 10 is provided, a copper electrode 11 is installed as an anode electrode in the anode chamber 8, and a platinum electrode 12 is installed as a cathode electrode in the cathode chambers' and 0. A pump 1 is used to send the plating solution 2 in the plating tank 1 to the intermediate chamber 9 of the electrotransfer tank 5.
The piping is connected via a pump 19 and a filter 20 in order to send the plating solution 14 in the intermediate chamber 9 of the electrolytic tank 5 to the plating tank l.

次に、めっき槽1及び電気透祈槽5の中間室9にめっき
液2,14を満たし、ポンプ18.i9を動かし、めっ
き液2,14を循環させる。使用しためっき液2,14
の組成は、硫酸200g/Q、硫酸銅五水塩70 g 
/ Q 、塩素60 p pmである。
Next, the intermediate chambers 9 of the plating bath 1 and the electrolytic bath 5 are filled with the plating solutions 2 and 14, and the pump 18. Move i9 to circulate the plating solutions 2 and 14. Plating solution used 2,14
The composition is 200 g/Q of sulfuric acid, 70 g of copper sulfate pentahydrate.
/Q, 60 ppm chlorine.

また、電気透祈槽5の陽極室8に入れた銅化合物水溶液
13の組成は、硫酸銅王水塩200g/Qであり、陰極
室10には40 g/Qの水酸化ナトリウム水溶液15
を入れる。
Further, the composition of the copper compound aqueous solution 13 placed in the anode chamber 8 of the electrotransmission tank 5 is 200 g/Q of copper sulfate aqua regia, and the composition of the copper compound aqueous solution 13 placed in the anode chamber 8 of the electrotransmission tank 5 is 40 g/Q of sodium hydroxide aqueous solution 15 in the cathode chamber 10.
Put in.

次に、所望の箇所に穴あけを施され、無電解銅めっき処
理を行った基板4をめっき治具に取り付け、めっき槽1
中のめっき液2に浸漬する。陰極電流密度を2.○A/
dm’として、設定めっき厚25μm、めっき時間57
分のめっきを行った。
Next, the substrate 4 with holes drilled at desired locations and subjected to electroless copper plating is attached to a plating jig, and the plating bath 1 is
Immerse it in the plating solution 2 inside. The cathode current density is 2. ○A/
dm', set plating thickness 25 μm, plating time 57
plating was performed.

これと同時に、電気透祈槽5の陽極室8内の銅電極11
と陰極室10内の白金電極12をリード線17で直流電
源16に継ぎ、両電極間にめつき槽1で流した電流値と
等しい電流値を流した。
At the same time, the copper electrode 11 in the anode chamber 8 of the electrolytic tank 5
The platinum electrode 12 in the cathode chamber 10 was connected to a DC power source 16 via a lead wire 17, and a current value equal to the current value passed in the plating bath 1 was passed between the two electrodes.

めっき前後における硫酸濃度、銅濃度を分析したところ
、それぞれ200 g / Q 、  70 g / 
Q (硫酸銅王水塩として)であり、めっき前後での変
化は見られなかった。また、基板のめつき厚の分布を調
べたところ、バラツキが小さく非常に良好であった。
Analyzing the sulfuric acid concentration and copper concentration before and after plating, they were 200 g/Q and 70 g/Q, respectively.
Q (as copper sulfate aqua regia), and no change was observed before and after plating. Furthermore, when the distribution of the plating thickness of the substrate was investigated, it was found that the variation was small and very good.

(実施例2) 第2図は、本発明の実施例2を示す概略図である。(Example 2) FIG. 2 is a schematic diagram showing a second embodiment of the present invention.

実施例1では、銅イオンの補給源として電気透祈槽5の
陽極室8内に設置した銅電極11より電流を流すことに
より銅が溶解するか、実施例2では、電気透祈槽5の陽
極室8に設置する電極は白金電極24とし、銅化合物水
溶液23が入れである銅補充槽22を設け、ポンプ21
を通して電気透祈槽5の陽極室8に銅を補給している。
In Example 1, copper is dissolved by passing a current through the copper electrode 11 installed in the anode chamber 8 of the electrolytic prayer tank 5 as a supply source of copper ions; The electrode installed in the anode chamber 8 is a platinum electrode 24, a copper replenishment tank 22 containing a copper compound aqueous solution 23 is provided, and a pump 21 is installed.
Copper is supplied to the anode chamber 8 of the electrolytic tank 5 through the tank.

その他の装置の構成は実施例1と同じである。The other device configurations are the same as in the first embodiment.

めっき前後における硫酸濃度、銅濃度を分析したところ
、両成分ともめっき前後での変化は見られず、また基板
のめっき厚のバラツキも小さく、非常に良好であった。
When the sulfuric acid concentration and copper concentration were analyzed before and after plating, no change was observed in both components before and after plating, and the variation in the plating thickness of the substrate was also small, which was very good.

また、めっき条件を変更しても本発明の効果は認められ
る。
Furthermore, the effects of the present invention can be observed even if the plating conditions are changed.

[発明の効果1 以上説明したように本発明は、めっき槽の陽極に不溶性
の電極を用い、銅の補充を電気透祈槽て行っているため
、浴組成の変動かなく、めっき厚のバラツキも小さく、
また悪環境下での作業が減少するという効果を有する。
[Effect of the invention 1 As explained above, in the present invention, an insoluble electrode is used as the anode of the plating bath, and copper is replenished in the electrolytic bath, so there is no change in the bath composition and variations in the plating thickness are eliminated. Also small,
It also has the effect of reducing the amount of work required under adverse environments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、本発明の実施例による電気めっき方
法を示す概略図、第3図は、従来の電気めっき方法を示
す概略図である。 1・・・めっき槽      2,14・・・めっき液
3.3’ 、12.24・・白金電極 4・・・基板5
・・・電気透祈槽    6・・・陽イオン交換樹脂膜
7・・・陰イオン交換樹脂膜 8・・・陽極室9・・・
中間室       10・・・陰極室11・・・銅電
極   13.23・・・銅化合物水溶液15・・水酸
化ナトリウム水溶液 16・・・直流電源17・・・リ
ード線   18,19.21・・・ポンプ20・・・
フィルター    22・・・銅補充槽25.25’・
・・銅ボール 26.26’  ・・・アノ−ヒケ−1″ス27.27
’ ・・・アノードバック
1 and 2 are schematic diagrams showing an electroplating method according to an embodiment of the present invention, and FIG. 3 is a schematic diagram showing a conventional electroplating method. 1... Plating tank 2, 14... Plating solution 3.3', 12.24... Platinum electrode 4... Substrate 5
... Electrotransmission tank 6 ... Cation exchange resin membrane 7 ... Anion exchange resin membrane 8 ... Anode chamber 9 ...
Intermediate chamber 10... Cathode chamber 11... Copper electrode 13.23... Copper compound aqueous solution 15... Sodium hydroxide aqueous solution 16... DC power supply 17... Lead wire 18, 19.21... Pump 20...
Filter 22...Copper replenishment tank 25.25'
・・Copper ball 26.26' ・・Anno sinker 1″ space 27.27
' ・・・Anode back

Claims (1)

【特許請求の範囲】[Claims] (1)不溶性の陽極電極を設置されためっき槽と、陰イ
オン交換樹脂膜及び陽イオン交換樹脂膜を用いて陰極室
,中間室,陽極室の3つの小部屋に仕切られ、前記陰極
室及び前記陽極室にそれぞれ電極を設けた電気透析槽と
を有し、 前記めっき槽と前記電気透析槽の前記中間室との間にめ
っき液の循環機構を設け、 前記めっき槽及び前記電気透析槽の前記中間室にめっき
液を満たし、前記電気透析槽の前記陰極室に電解質溶液
を満たし、前記陽極室に銅イオンを含む電解質溶液を満
たし、前記循環機構により前記めっき槽と前記電気透祈
槽の前記中間室との間で、前記めっき液を循環させ、次
に、前記めっき槽にめっき治具に取り付けた基板を浸漬
し、前記めっき槽の前記陽極電極と前記基板との間に直
流電流を流し、これと同時に前記電気透析槽の前記陰極
室及び陽極室それぞれに設けた電極間に、前記めっき槽
で流した直流電流と同じ値の直流電流を流して被めっき
体に電気めっきすることを特徴とする電気めっき方法。
(1) A plating tank in which an insoluble anode electrode is installed, and is partitioned into three small rooms, a cathode chamber, an intermediate chamber, and an anode chamber, using an anion exchange resin membrane and a cation exchange resin membrane, and the cathode chamber and an electrodialysis tank in which each of the anode chambers is provided with an electrode; a plating solution circulation mechanism is provided between the plating tank and the intermediate chamber of the electrodialysis tank; The intermediate chamber is filled with a plating solution, the cathode chamber of the electrodialysis tank is filled with an electrolyte solution, the anode chamber is filled with an electrolyte solution containing copper ions, and the circulation mechanism is used to separate the plating tank and the electrodialysis tank. The plating solution is circulated between the intermediate chamber and the substrate attached to the plating jig is immersed in the plating tank, and a direct current is applied between the anode electrode of the plating tank and the substrate. At the same time, a direct current having the same value as the direct current passed in the plating tank is applied between the electrodes provided in each of the cathode chamber and anode chamber of the electrodialysis tank to electroplate the object to be plated. Characteristic electroplating method.
JP32481490A 1990-11-27 1990-11-27 Method for electroplating Pending JPH04193977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32481490A JPH04193977A (en) 1990-11-27 1990-11-27 Method for electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32481490A JPH04193977A (en) 1990-11-27 1990-11-27 Method for electroplating

Publications (1)

Publication Number Publication Date
JPH04193977A true JPH04193977A (en) 1992-07-14

Family

ID=18169975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32481490A Pending JPH04193977A (en) 1990-11-27 1990-11-27 Method for electroplating

Country Status (1)

Country Link
JP (1) JPH04193977A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878258B2 (en) * 2002-02-11 2005-04-12 Applied Materials, Inc. Apparatus and method for removing contaminants from semiconductor copper electroplating baths

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878258B2 (en) * 2002-02-11 2005-04-12 Applied Materials, Inc. Apparatus and method for removing contaminants from semiconductor copper electroplating baths

Similar Documents

Publication Publication Date Title
EP1264918B1 (en) Electrolytic copper plating method
JP4221064B2 (en) Electrodeposition method of copper layer
CN101363127B (en) Electrolytic copper plating process
US6120673A (en) Method and device for regenerating tin-plating solutions
US5143593A (en) Method of copper plating
US4935109A (en) Double-cell electroplating apparatus and method
CN106591897B (en) A kind of no cryanide ion liquid copper plating solution and copper-plating technique
TWI683931B (en) Anode for electrolytic copper plating and electrolytic copper plating device using the same
JPH04362199A (en) Electroplating device
JPH10121297A (en) Electrolytic copper plating device using insoluble anode and copper plating method employing the device
CN101492831B (en) Anode apparatus for electroplating and electroplating apparatus comprising the same
JP2510422B2 (en) Copper plating method for printed circuit boards
JPH05171499A (en) Method and device for electroplating with tin or tin-lead alloy using insoluble anode
JPH04193977A (en) Method for electroplating
TWI451003B (en) Nickel ph adjustment method and apparatus
JP2017008404A (en) Plating device and plating method
JP3903120B2 (en) Copper sulfate plating method
JPH0423000B2 (en)
JP3110444U (en) Electrolytic recovery device for metal and electrolytic plating system
US4401527A (en) Process for the electrodeposition of palladium
JPH0673393B2 (en) Copper plating method for printed circuit boards
JPH05302199A (en) Method for controlling composition of copper plating bath in copper plating using insoluble anode
JP2012237050A (en) Copper sulfate plating method using insoluble anode and device therefor
JPH04284691A (en) Electrically plating method for printed circuit board
JPH01184281A (en) Chemical etching method with iodine